|
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
from torch.optim import AdamW
|
|
import torch.optim as optim
|
|
import itertools
|
|
from model.warplayer import warp
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
import torch.nn.functional as F
|
|
|
|
device = torch.device("cuda")
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=True),
|
|
nn.LeakyReLU(0.2, True)
|
|
)
|
|
|
|
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
|
padding=padding, dilation=dilation, bias=True),
|
|
)
|
|
|
|
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
|
return nn.Sequential(
|
|
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True),
|
|
nn.LeakyReLU(0.2, True)
|
|
)
|
|
|
|
class Conv2(nn.Module):
|
|
def __init__(self, in_planes, out_planes, stride=2):
|
|
super(Conv2, self).__init__()
|
|
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
|
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
return x
|
|
|
|
c = 16
|
|
class Contextnet(nn.Module):
|
|
def __init__(self):
|
|
super(Contextnet, self).__init__()
|
|
self.conv1 = Conv2(3, c)
|
|
self.conv2 = Conv2(c, 2*c)
|
|
self.conv3 = Conv2(2*c, 4*c)
|
|
self.conv4 = Conv2(4*c, 8*c)
|
|
|
|
def forward(self, x, flow):
|
|
x = self.conv1(x)
|
|
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
|
|
f1 = warp(x, flow)
|
|
x = self.conv2(x)
|
|
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
|
|
f2 = warp(x, flow)
|
|
x = self.conv3(x)
|
|
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
|
|
f3 = warp(x, flow)
|
|
x = self.conv4(x)
|
|
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
|
|
f4 = warp(x, flow)
|
|
return [f1, f2, f3, f4]
|
|
|
|
class Unet(nn.Module):
|
|
def __init__(self):
|
|
super(Unet, self).__init__()
|
|
self.down0 = Conv2(17, 2*c)
|
|
self.down1 = Conv2(4*c, 4*c)
|
|
self.down2 = Conv2(8*c, 8*c)
|
|
self.down3 = Conv2(16*c, 16*c)
|
|
self.up0 = deconv(32*c, 8*c)
|
|
self.up1 = deconv(16*c, 4*c)
|
|
self.up2 = deconv(8*c, 2*c)
|
|
self.up3 = deconv(4*c, c)
|
|
self.conv = nn.Conv2d(c, 3, 3, 1, 1)
|
|
|
|
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
|
|
s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
|
|
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
|
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
|
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
|
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
|
x = self.up1(torch.cat((x, s2), 1))
|
|
x = self.up2(torch.cat((x, s1), 1))
|
|
x = self.up3(torch.cat((x, s0), 1))
|
|
x = self.conv(x)
|
|
return torch.sigmoid(x)
|
|
|