File size: 6,433 Bytes
0ef3ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8f1a7
0ef3ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8f1a7
 
 
 
4bbe4c1
0ef3ed2
 
 
 
bd8f1a7
0ef3ed2
bd8f1a7
0ef3ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.warplayer import warp
# from train_log.refine import *

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=True),        
        nn.LeakyReLU(0.2, True)
    )

def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=False),
        nn.BatchNorm2d(out_planes),
        nn.LeakyReLU(0.2, True)
    )
    
class Head(nn.Module):
    def __init__(self):
        super(Head, self).__init__()
        self.cnn0 = nn.Conv2d(3, 16, 3, 2, 1)
        self.cnn1 = nn.Conv2d(16, 16, 3, 1, 1)
        self.cnn2 = nn.Conv2d(16, 16, 3, 1, 1)
        self.cnn3 = nn.ConvTranspose2d(16, 4, 4, 2, 1)
        self.relu = nn.LeakyReLU(0.2, True)

    def forward(self, x, feat=False):
        x0 = self.cnn0(x)
        x = self.relu(x0)
        x1 = self.cnn1(x)
        x = self.relu(x1)
        x2 = self.cnn2(x)
        x = self.relu(x2)
        x3 = self.cnn3(x)
        if feat:
            return [x0, x1, x2, x3]
        return x3

class ResConv(nn.Module):
    def __init__(self, c, dilation=1):
        super(ResConv, self).__init__()
        self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\
)
        self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True)
        self.relu = nn.LeakyReLU(0.2, True)

    def forward(self, x):
        return self.relu(self.conv(x) * self.beta + x)

class IFBlock(nn.Module):
    def __init__(self, in_planes, c=64):
        super(IFBlock, self).__init__()
        self.conv0 = nn.Sequential(
            conv(in_planes, c//2, 3, 2, 1),
            conv(c//2, c, 3, 2, 1),
            )
        self.convblock = nn.Sequential(
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
        )
        self.lastconv = nn.Sequential(
            nn.ConvTranspose2d(c, 4*13, 4, 2, 1),
            nn.PixelShuffle(2)
        )

    def forward(self, x, flow=None, scale=1):
        x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False)
        if flow is not None:
            flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
            x = torch.cat((x, flow), 1)
        feat = self.conv0(x)
        feat = self.convblock(feat)
        tmp = self.lastconv(feat)
        tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
        flow = tmp[:, :4] * scale
        mask = tmp[:, 4:5]
        feat = tmp[:, 5:]
        return flow, mask, feat
        
class IFNet(nn.Module):
    def __init__(self):
        super(IFNet, self).__init__()
        self.block0 = IFBlock(7+8, c=192)
        self.block1 = IFBlock(8+4+8+8, c=128)
        self.block2 = IFBlock(8+4+8+8, c=96)
        self.block3 = IFBlock(8+4+8+8, c=64)
        self.block4 = IFBlock(8+4+8+8, c=32)
        self.encode = Head()

        # not used during inference
        '''

        self.teacher = IFBlock(8+4+8+3+8, c=64)

        self.caltime = nn.Sequential(

            nn.Conv2d(16+9, 8, 3, 2, 1),

            nn.LeakyReLU(0.2, True),

            nn.Conv2d(32, 64, 3, 2, 1),

            nn.LeakyReLU(0.2, True),

            nn.Conv2d(64, 64, 3, 1, 1),

            nn.LeakyReLU(0.2, True),

            nn.Conv2d(64, 64, 3, 1, 1),

            nn.LeakyReLU(0.2, True),

            nn.Conv2d(64, 1, 3, 1, 1),

            nn.Sigmoid()

        )
        '''

    def forward(self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False):
        if training == False:
            channel = x.shape[1] // 2
            img0 = x[:, :channel]
            img1 = x[:, channel:]
        if not torch.is_tensor(timestep):
            timestep = (x[:, :1].clone() * 0 + 1) * timestep
        else:
            timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3])
        f0 = self.encode(img0[:, :3])
        f1 = self.encode(img1[:, :3])
        flow_list = []
        merged = []
        mask_list = []
        warped_img0 = img0
        warped_img1 = img1
        flow = None
        mask = None
        loss_cons = 0
        block = [self.block0, self.block1, self.block2, self.block3, self.block4]
        for i in range(5):
            if flow is None:
                flow, mask, feat = block[i](torch.cat((img0[:, :3], img1[:, :3], f0, f1, timestep), 1), None, scale=scale_list[i])
                if ensemble:
                    print("warning: ensemble is not supported since RIFEv4.21")
            else:
                wf0 = warp(f0, flow[:, :2])
                wf1 = warp(f1, flow[:, 2:4])
                fd, m0, feat = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], wf0, wf1, timestep, mask, feat), 1), flow, scale=scale_list[i])
                if ensemble:
                    print("warning: ensemble is not supported since RIFEv4.21")
                else:
                    mask = m0
                flow = flow + fd
            mask_list.append(mask)
            flow_list.append(flow)
            warped_img0 = warp(img0, flow[:, :2])
            warped_img1 = warp(img1, flow[:, 2:4])
            merged.append((warped_img0, warped_img1))
        mask = torch.sigmoid(mask)
        merged[4] = (warped_img0 * mask + warped_img1 * (1 - mask))
        if not fastmode:
            print('contextnet is removed')
            '''

            c0 = self.contextnet(img0, flow[:, :2])

            c1 = self.contextnet(img1, flow[:, 2:4])

            tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)

            res = tmp[:, :3] * 2 - 1

            merged[4] = torch.clamp(merged[4] + res, 0, 1)

            '''
        return flow_list, mask_list[4], merged