File size: 6,433 Bytes
0ef3ed2 bd8f1a7 0ef3ed2 bd8f1a7 4bbe4c1 0ef3ed2 bd8f1a7 0ef3ed2 bd8f1a7 0ef3ed2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.warplayer import warp
# from train_log.refine import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=True),
nn.LeakyReLU(0.2, True)
)
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(out_planes),
nn.LeakyReLU(0.2, True)
)
class Head(nn.Module):
def __init__(self):
super(Head, self).__init__()
self.cnn0 = nn.Conv2d(3, 16, 3, 2, 1)
self.cnn1 = nn.Conv2d(16, 16, 3, 1, 1)
self.cnn2 = nn.Conv2d(16, 16, 3, 1, 1)
self.cnn3 = nn.ConvTranspose2d(16, 4, 4, 2, 1)
self.relu = nn.LeakyReLU(0.2, True)
def forward(self, x, feat=False):
x0 = self.cnn0(x)
x = self.relu(x0)
x1 = self.cnn1(x)
x = self.relu(x1)
x2 = self.cnn2(x)
x = self.relu(x2)
x3 = self.cnn3(x)
if feat:
return [x0, x1, x2, x3]
return x3
class ResConv(nn.Module):
def __init__(self, c, dilation=1):
super(ResConv, self).__init__()
self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\
)
self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True)
self.relu = nn.LeakyReLU(0.2, True)
def forward(self, x):
return self.relu(self.conv(x) * self.beta + x)
class IFBlock(nn.Module):
def __init__(self, in_planes, c=64):
super(IFBlock, self).__init__()
self.conv0 = nn.Sequential(
conv(in_planes, c//2, 3, 2, 1),
conv(c//2, c, 3, 2, 1),
)
self.convblock = nn.Sequential(
ResConv(c),
ResConv(c),
ResConv(c),
ResConv(c),
ResConv(c),
ResConv(c),
ResConv(c),
ResConv(c),
)
self.lastconv = nn.Sequential(
nn.ConvTranspose2d(c, 4*13, 4, 2, 1),
nn.PixelShuffle(2)
)
def forward(self, x, flow=None, scale=1):
x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False)
if flow is not None:
flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
x = torch.cat((x, flow), 1)
feat = self.conv0(x)
feat = self.convblock(feat)
tmp = self.lastconv(feat)
tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
flow = tmp[:, :4] * scale
mask = tmp[:, 4:5]
feat = tmp[:, 5:]
return flow, mask, feat
class IFNet(nn.Module):
def __init__(self):
super(IFNet, self).__init__()
self.block0 = IFBlock(7+8, c=192)
self.block1 = IFBlock(8+4+8+8, c=128)
self.block2 = IFBlock(8+4+8+8, c=96)
self.block3 = IFBlock(8+4+8+8, c=64)
self.block4 = IFBlock(8+4+8+8, c=32)
self.encode = Head()
# not used during inference
'''
self.teacher = IFBlock(8+4+8+3+8, c=64)
self.caltime = nn.Sequential(
nn.Conv2d(16+9, 8, 3, 2, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(32, 64, 3, 2, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.LeakyReLU(0.2, True),
nn.Conv2d(64, 1, 3, 1, 1),
nn.Sigmoid()
)
'''
def forward(self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False):
if training == False:
channel = x.shape[1] // 2
img0 = x[:, :channel]
img1 = x[:, channel:]
if not torch.is_tensor(timestep):
timestep = (x[:, :1].clone() * 0 + 1) * timestep
else:
timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3])
f0 = self.encode(img0[:, :3])
f1 = self.encode(img1[:, :3])
flow_list = []
merged = []
mask_list = []
warped_img0 = img0
warped_img1 = img1
flow = None
mask = None
loss_cons = 0
block = [self.block0, self.block1, self.block2, self.block3, self.block4]
for i in range(5):
if flow is None:
flow, mask, feat = block[i](torch.cat((img0[:, :3], img1[:, :3], f0, f1, timestep), 1), None, scale=scale_list[i])
if ensemble:
print("warning: ensemble is not supported since RIFEv4.21")
else:
wf0 = warp(f0, flow[:, :2])
wf1 = warp(f1, flow[:, 2:4])
fd, m0, feat = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], wf0, wf1, timestep, mask, feat), 1), flow, scale=scale_list[i])
if ensemble:
print("warning: ensemble is not supported since RIFEv4.21")
else:
mask = m0
flow = flow + fd
mask_list.append(mask)
flow_list.append(flow)
warped_img0 = warp(img0, flow[:, :2])
warped_img1 = warp(img1, flow[:, 2:4])
merged.append((warped_img0, warped_img1))
mask = torch.sigmoid(mask)
merged[4] = (warped_img0 * mask + warped_img1 * (1 - mask))
if not fastmode:
print('contextnet is removed')
'''
c0 = self.contextnet(img0, flow[:, :2])
c1 = self.contextnet(img1, flow[:, 2:4])
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
res = tmp[:, :3] * 2 - 1
merged[4] = torch.clamp(merged[4] + res, 0, 1)
'''
return flow_list, mask_list[4], merged
|