|
import torch |
|
import torch.nn as nn |
|
|
|
try: |
|
from torch.hub import load_state_dict_from_url |
|
except ImportError: |
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
|
|
model_urls = { |
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', |
|
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', |
|
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', |
|
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=dilation, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
def branchBottleNeck(channel_in, channel_out, kernel_size): |
|
middle_channel = channel_out//4 |
|
return nn.Sequential( |
|
nn.Conv2d(channel_in, middle_channel, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, middle_channel, kernel_size=kernel_size, stride=kernel_size), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, channel_out, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(channel_out), |
|
nn.ReLU(), |
|
) |
|
|
|
class LambdaLayer(nn.Module): |
|
def __init__(self, lambd): |
|
super(LambdaLayer, self).__init__() |
|
self.lambd = lambd |
|
|
|
def forward(self, x): |
|
return self.lambd(x) |
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
base_width=64, dilation=1, norm_layer=None): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError('BasicBlock only supports groups=1 and base_width=64') |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
base_width=64, dilation=1, norm_layer=None): |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, |
|
groups=1, width_per_group=64, replace_stride_with_dilation=None, |
|
norm_layer=None): |
|
super(ResNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
self.num_classes = num_classes |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError("replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, |
|
dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, |
|
dilate=replace_stride_with_dilation[1]) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, |
|
dilate=replace_stride_with_dilation[2]) |
|
|
|
self.branch1 = self._make_branch(64*block.expansion, 512*block.expansion, kernel_size=8) |
|
self.branch2 = self._make_branch(128*block.expansion, 512*block.expansion, kernel_size=4) |
|
self.branch3 = self._make_branch(256*block.expansion, 512*block.expansion, kernel_size=2) |
|
self.branch4 = self._make_branch(512*block.expansion, 512*block.expansion, kernel_size=1) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, |
|
self.base_width, previous_dilation, norm_layer)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, groups=self.groups, |
|
base_width=self.base_width, dilation=self.dilation, |
|
norm_layer=norm_layer)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branch(self, channel_in, channel_out, kernel_size): |
|
middle_channel = channel_out // 4 |
|
return nn.Sequential( |
|
nn.Conv2d(channel_in, middle_channel, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, middle_channel, kernel_size=kernel_size, stride=kernel_size), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, channel_out, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(channel_out), |
|
nn.ReLU(), |
|
|
|
nn.AdaptiveAvgPool2d((1,1)), |
|
nn.Flatten(), |
|
nn.Linear(channel_out, self.num_classes) |
|
) |
|
|
|
def _forward_impl(self, x): |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x1 = self.branch1(x) |
|
|
|
x = self.layer2(x) |
|
x2 = self.branch2(x) |
|
|
|
x = self.layer3(x) |
|
x3 = self.branch3(x) |
|
|
|
x = self.layer4(x) |
|
x = self.avgpool(x) |
|
final_fea = x |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
return {'outputs': [x, x1, x2, x3]} |
|
|
|
def forward(self, x): |
|
return self._forward_impl(x) |
|
|
|
def sdresnet50(num_classes=14, pretrained=True): |
|
if pretrained: |
|
model = ResNet(Bottleneck, [3,4,6,3], num_classes=14) |
|
num_ftrs = model.fc.in_features |
|
model.fc = nn.Linear(num_ftrs, 1000) |
|
state_dict = load_state_dict_from_url(model_urls['resnet50'], progress=True) |
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
num_ftrs = model.fc.in_features |
|
model.fc = nn.Linear(num_ftrs, num_classes) |
|
else: |
|
model = ResNet(Bottleneck, [3,4,6,3], num_classes=50) |
|
return model |