C2MT / models /ResNet_cifar.py
LanXiaoPang613
Add files via upload
d3cde70 unverified
raw
history blame
26.6 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn import Parameter
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=stride, padding=1, bias=False)
def conv1x1(in_planes, planes, stride=1):
return nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False)
def branchBottleNeck(channel_in, channel_out, kernel_size):
middle_channel = channel_out//4
return nn.Sequential(
nn.Conv2d(channel_in, middle_channel, kernel_size=1, stride=1),
nn.BatchNorm2d(middle_channel),
nn.ReLU(),
nn.Conv2d(middle_channel, middle_channel, kernel_size=kernel_size, stride=kernel_size),
nn.BatchNorm2d(middle_channel),
nn.ReLU(),
nn.Conv2d(middle_channel, channel_out, kernel_size=1, stride=1),
nn.BatchNorm2d(channel_out),
nn.ReLU(),
)
def branchMLP(channel_in, channel_out):
middle_channel = channel_out//4
return nn.Sequential(
conv1x1(channel_in, channel_in, stride=8),
nn.BatchNorm2d(512 * block.expansion),
nn.ReLU(),
)
def invertedBottleNeck(channel_in, channel_out, kernel_size):
middle_channel = channel_out * 2
return nn.Sequential(
nn.Conv2d(channel_in, middle_channel, kernel_size=1, stride=1),
nn.BatchNorm2d(middle_channel),
nn.ReLU(),
nn.Conv2d(middle_channel, middle_channel, kernel_size=kernel_size, stride=kernel_size),
nn.BatchNorm2d(middle_channel),
nn.ReLU(),
nn.Conv2d(middle_channel, channel_out, kernel_size=1, stride=1),
nn.BatchNorm2d(channel_out),
nn.ReLU(),
)
class BatchNorm2dMul(nn.Module):
def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True):
super(BatchNorm2dMul, self).__init__()
self.bn = nn.BatchNorm2d(num_features, eps=eps, momentum=momentum, affine=False, track_running_stats=track_running_stats)
self.gamma = nn.Parameter(torch.ones(num_features))
self.beta = nn.Parameter(torch.zeros(num_features))
self.affine = affine
def forward(self, x):
bn_out = self.bn(x)
if self.affine:
out = self.gamma[None, :, None, None] * bn_out + self.beta[None, :, None, None]
return out, bn_out
def _weights_init(m):
classname = m.__class__.__name__
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight)
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class BasicBlock_s(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock_s, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2dMul(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = BatchNorm2dMul(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
bn_outputs = []
residual = x
output = self.conv1(x)
output, bn_out = self.bn1(output)
bn_outputs.append(bn_out)
output = self.relu(output)
output = self.conv2(output)
output, bn_out = self.bn2(output)
bn_outputs.append(bn_out)
if self.downsample is not None:
residual = self.downsample(x)
output += residual
output = self.relu(output)
return output, bn_outputs
class BottleneckBlock(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BottleneckBlock, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes*self.expansion)
self.bn3 = nn.BatchNorm2d(planes*self.expansion)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
output = self.conv1(x)
output = self.bn1(output)
output = self.relu(output)
output = self.conv2(output)
output = self.bn2(output)
output = self.relu(output)
output = self.conv3(output)
output = self.bn3(output)
if self.downsample is not None:
residual = self.downsample(x)
output += residual
output = self.relu(output)
return output
class LayerBlock(nn.Module):
def __init__(self, block, inplanes, planes, num_blocks, stride):
super(LayerBlock, self).__init__()
downsample = None
if stride !=1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layer = []
layer.append(block(inplanes, planes, stride=stride, downsample=downsample))
inplanes = planes * block.expansion
for i in range(1, num_blocks):
layer.append(block(inplanes, planes))
self.layers = nn.Sequential(*layer)
def forward(self, x):
bn_outputs = []
for layer in self.layers:
x, bn_output = layer(x)
bn_outputs.extend(bn_output)
return x, bn_outputs
class SDResNet(nn.Module):
"""
Resnet model
Args:
block (class): block type, BasicBlock or BottlenetckBlock
layers (int list): layer num in each block
num_classes (int): class num
"""
def __init__(self, block, layers, num_classes=10, position_all=True):
super(SDResNet, self).__init__()
self.position_all = position_all
self.inplanes = 64
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = LayerBlock(block, 64, 64, layers[0], stride=1)
self.layer2 = LayerBlock(block, 64, 128, layers[1], stride=2)
self.layer3 = LayerBlock(block, 128, 256, layers[2], stride=2)
self.layer4 = LayerBlock(block, 256, 512, layers[3], stride=2)
self.downsample1_1 = nn.Sequential(
conv1x1(64 * block.expansion, 512 * block.expansion, stride=8),
nn.BatchNorm2d(512 * block.expansion),
nn.ReLU(),
)
self.bottleneck1_1 = branchBottleNeck(64 * block.expansion, 512 * block.expansion, kernel_size=8)
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc1 = nn.Linear(512 * block.expansion, num_classes)
self.downsample2_1 = nn.Sequential(
conv1x1(128 * block.expansion, 512 * block.expansion, stride=4),
nn.BatchNorm2d(512 * block.expansion),
)
self.bottleneck2_1 = branchBottleNeck(128 * block.expansion, 512 * block.expansion, kernel_size=4)
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc2 = nn.Linear(512 * block.expansion, num_classes)
self.downsample3_1 = nn.Sequential(
conv1x1(256 * block.expansion, 512 * block.expansion, stride=2),
nn.BatchNorm2d(512 * block.expansion),
)
self.bottleneck3_1 = branchBottleNeck(256 * block.expansion, 512 * block.expansion, kernel_size=2)
self.avgpool3 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc3 = nn.Linear(512 * block.expansion, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.apply(_weights_init)
def _make_layer(self, block, planes, layers, stride=1):
"""A block with 'layers' layers
Args:
block (class): block type
planes (int): output channels = planes * expansion
layers (int): layer num in the block
stride (int): the first layer stride in the block
"""
downsample = None
if stride !=1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layer = []
layer.append(block(self.inplanes, planes, stride=stride, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, layers):
layer.append(block(self.inplanes, planes))
return nn.Sequential(*layer)
def forward(self, x, feat_out=False):
all_bn_outputs = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# x = self.maxpool(x)
x, bn_outputs = self.layer1(x)
all_bn_outputs.extend(bn_outputs)
middle_output1 = self.bottleneck1_1(x)
middle_output1 = self.avgpool1(middle_output1)
middle1_fea = middle_output1
middle_output1 = torch.flatten(middle_output1, 1)
middle_output1 = self.middle_fc1(middle_output1)
x, bn_outputs = self.layer2(x)
all_bn_outputs.extend(bn_outputs)
middle_output2 = self.bottleneck2_1(x)
middle_output2 = self.avgpool2(middle_output2)
middle2_fea = middle_output2
middle_output2 = torch.flatten(middle_output2, 1)
middle_output2 = self.middle_fc2(middle_output2)
x, bn_outputs = self.layer3(x)
all_bn_outputs.extend(bn_outputs)
middle_output3 = self.bottleneck3_1(x)
middle_output3 = self.avgpool3(middle_output3)
middle3_fea = middle_output3
middle_output3 = torch.flatten(middle_output3, 1)
middle_output3 = self.middle_fc3(middle_output3)
x, bn_outputs = self.layer4(x)
all_bn_outputs.extend(bn_outputs)
x = self.avgpool(x)
final_fea = x
x = torch.flatten(x, 1)
x = self.fc(x)
if self.position_all and feat_out:
return {'outputs': [x, middle_output1, middle_output2, middle_output3],
'features': [final_fea, middle1_fea, middle2_fea, middle3_fea],
'bn_outputs': all_bn_outputs}
else:
return x
class SDResNet_mlp(nn.Module):
"""
Resnet model
Args:
block (class): block type, BasicBlock or BottlenetckBlock
layers (int list): layer num in each block
num_classes (int): class num
"""
def __init__(self, block, layers, num_classes=10, position_all=True):
super(SDResNet_mlp, self).__init__()
self.position_all = position_all
self.inplanes = 64
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = LayerBlock(block, 64, 64, layers[0], stride=1)
self.layer2 = LayerBlock(block, 64, 128, layers[1], stride=2)
self.layer3 = LayerBlock(block, 128, 256, layers[2], stride=2)
self.layer4 = LayerBlock(block, 256, 512, layers[3], stride=2)
self.downsample1_1 = nn.Sequential(
conv1x1(64 * block.expansion, 512 * block.expansion),
nn.BatchNorm2d(512 * block.expansion),
nn.ReLU(),
)
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc1 = nn.Linear(512 * block.expansion, num_classes)
self.downsample2_1 = nn.Sequential(
conv1x1(128 * block.expansion, 512 * block.expansion),
nn.BatchNorm2d(512 * block.expansion),
nn.ReLU()
)
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc2 = nn.Linear(512 * block.expansion, num_classes)
self.downsample3_1 = nn.Sequential(
conv1x1(256 * block.expansion, 512 * block.expansion),
nn.BatchNorm2d(512 * block.expansion),
nn.ReLU()
)
self.avgpool3 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc3 = nn.Linear(512 * block.expansion, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.apply(_weights_init)
def _make_layer(self, block, planes, layers, stride=1):
"""A block with 'layers' layers
Args:
block (class): block type
planes (int): output channels = planes * expansion
layers (int): layer num in the block
stride (int): the first layer stride in the block
"""
downsample = None
if stride !=1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layer = []
layer.append(block(self.inplanes, planes, stride=stride, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, layers):
layer.append(block(self.inplanes, planes))
return nn.Sequential(*layer)
def forward(self, x):
all_bn_outputs = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x, bn_outputs = self.layer1(x)
all_bn_outputs.extend(bn_outputs)
# middle_output1 = self.downsample1_1(x)
# middle_output1 = self.avgpool1(middle_output1)
# middle1_fea = middle_output1
# middle_output1 = torch.flatten(middle_output1, 1)
# middle_output1 = self.middle_fc1(middle_output1)
x, bn_outputs = self.layer2(x)
all_bn_outputs.extend(bn_outputs)
# middle_output2 = self.downsample2_1(x)
# middle_output2 = self.avgpool2(middle_output2)
# middle2_fea = middle_output2
# middle_output2 = torch.flatten(middle_output2, 1)
# middle_output2 = self.middle_fc2(middle_output2)
x, bn_outputs = self.layer3(x)
all_bn_outputs.extend(bn_outputs)
# middle_output3 = self.downsample3_1(x)
# middle_output3 = self.avgpool3(middle_output3)
# middle3_fea = middle_output3
# middle_output3 = torch.flatten(middle_output3, 1)
# middle_output3 = self.middle_fc3(middle_output3)
x, bn_outputs = self.layer4(x)
all_bn_outputs.extend(bn_outputs)
x = self.avgpool(x)
final_fea = x
x = torch.flatten(x, 1)
x = self.fc(x)
if self.position_all:
return {'outputs': [x, middle_output1, middle_output2, middle_output3],
'bn_outputs': all_bn_outputs}
else:
return {'outputs': [x, x],
'bn_outputs': all_bn_outputs}
class SDResNet_residual(nn.Module):
"""
Resnet model
Args:
block (class): block type, BasicBlock or BottlenetckBlock
layers (int list): layer num in each block
num_classes (int): class num
"""
def __init__(self, block, layers, num_classes=10, position_all=True):
super(SDResNet_residual, self).__init__()
self.position_all = position_all
self.inplanes = 64
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = LayerBlock(block, 64, 64, layers[0], stride=1)
self.layer2 = LayerBlock(block, 64, 128, layers[1], stride=2)
self.layer3 = LayerBlock(block, 128, 256, layers[2], stride=2)
self.layer4 = LayerBlock(block, 256, 512, layers[3], stride=2)
self.bottleneck1_1 = LayerBlock(block, 64, 512, 1, stride=8)
# branchBottleNeck(64 * block.expansion, 512 * block.expansion, kernel_size=8)
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc1 = nn.Linear(512 * block.expansion, num_classes)
self.bottleneck2_1 = LayerBlock(block, 128, 512, 1, stride=4)
# branchBottleNeck(128 * block.expansion, 512 * block.expansion, kernel_size=4)
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc2 = nn.Linear(512 * block.expansion, num_classes)
# self.downsample3_1 = nn.Sequential(
# conv1x1(256 * block.expansion, 512 * block.expansion, stride=2),
# nn.BatchNorm2d(512 * block.expansion),
# )
self.bottleneck3_1 = LayerBlock(block, 256, 512, 1, stride=2)
self.avgpool3 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc3 = nn.Linear(512 * block.expansion, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.apply(_weights_init)
def _make_layer(self, block, planes, layers, stride=1):
"""A block with 'layers' layers
Args:
block (class): block type
planes (int): output channels = planes * expansion
layers (int): layer num in the block
stride (int): the first layer stride in the block
"""
downsample = None
if stride !=1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layer = []
layer.append(block(self.inplanes, planes, stride=stride, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, layers):
layer.append(block(self.inplanes, planes))
return nn.Sequential(*layer)
def forward(self, x):
all_bn_outputs = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# x = self.maxpool(x)
x, bn_outputs = self.layer1(x)
all_bn_outputs.extend(bn_outputs)
middle_output1, _ = self.bottleneck1_1(x)
middle_output1 = self.avgpool1(middle_output1)
middle1_fea = middle_output1
middle_output1 = torch.flatten(middle_output1, 1)
middle_output1 = self.middle_fc1(middle_output1)
x, bn_outputs = self.layer2(x)
all_bn_outputs.extend(bn_outputs)
middle_output2, _ = self.bottleneck2_1(x)
middle_output2 = self.avgpool2(middle_output2)
middle2_fea = middle_output2
middle_output2 = torch.flatten(middle_output2, 1)
middle_output2 = self.middle_fc2(middle_output2)
x, bn_outputs = self.layer3(x)
all_bn_outputs.extend(bn_outputs)
middle_output3, _ = self.bottleneck3_1(x)
middle_output3 = self.avgpool3(middle_output3)
middle3_fea = middle_output3
middle_output3 = torch.flatten(middle_output3, 1)
middle_output3 = self.middle_fc3(middle_output3)
x, bn_outputs = self.layer4(x)
all_bn_outputs.extend(bn_outputs)
x = self.avgpool(x)
final_fea = x
x = torch.flatten(x, 1)
x = self.fc(x)
if self.position_all:
return {'outputs': [x, middle_output1, middle_output2, middle_output3],
'features': [final_fea, middle1_fea, middle2_fea, middle3_fea],
'bn_outputs': all_bn_outputs}
else:
return {'outputs': [x, middle_output3],
'features': [final_fea, middle1_fea, middle2_fea, middle3_fea],
'bn_outputs': all_bn_outputs}
class SDResNet_s(nn.Module):
"""
Resnet model small
Args:
block (class): block type, BasicBlock or BottlenetckBlock
layers (int list): layer num in each block
num_classes (int): class num
"""
def __init__(self, block, layers, num_classes=10):
super(SDResNet_s, self).__init__()
self.inplanes = 16
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 16, layers[0])
self.layer2 = self._make_layer(block, 32, layers[1], stride=2)
self.layer3 = self._make_layer(block, 64, layers[2], stride=2)
self.downsample1_1 = nn.Sequential(
conv1x1(16 * block.expansion, 64 * block.expansion, stride=4),
nn.BatchNorm2d(64 * block.expansion),
)
self.bottleneck1_1 = branchBottleNeck(16 * block.expansion, 64 * block.expansion, kernel_size=4)
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc1 = nn.Linear(64 * block.expansion, num_classes)
self.downsample2_1 = nn.Sequential(
conv1x1(32 * block.expansion, 64 * block.expansion, stride=2),
nn.BatchNorm2d(64 * block.expansion),
)
self.bottleneck2_1 = branchBottleNeck(32 * block.expansion, 64 * block.expansion, kernel_size=2)
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1))
self.middle_fc2 = nn.Linear(64 * block.expansion, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(64 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, layers, stride=1):
"""A block with 'layers' layers
Args:
block (class): block type
planes (int): output channels = planes * expansion
layers (int): layer num in the block
stride (int): the first layer stride in the block
"""
strides = [stride] + [1]*(layers-1)
layers = []
for stride in strides:
layers.append(block(self.inplanes, planes, stride))
self.inplanes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
middle_output1 = self.bottleneck1_1(x)
middle_output1 = self.avgpool1(middle_output1)
middle1_fea = middle_output1
middle_output1 = torch.flatten(middle_output1, 1)
middle_output1 = self.middle_fc1(middle_output1)
x = self.layer2(x)
middle_output2 = self.bottleneck2_1(x)
middle_output2 = self.avgpool2(middle_output2)
middle2_fea = middle_output2
middle_output2 = torch.flatten(middle_output2, 1)
middle_output2 = self.middle_fc2(middle_output2)
x = self.layer3(x)
x = self.avgpool(x)
final_fea = x
x = torch.flatten(x, 1)
x = self.fc(x)
return {'outputs': [x, middle_output1, middle_output2],
'features': [final_fea, middle1_fea, middle2_fea]}
def sdresnet18(num_classes=10, position_all=True):
return SDResNet(BasicBlock, [2,2,2,2], num_classes=num_classes, position_all=position_all)
def sdresnet34(num_classes=10, position_all=True):
return SDResNet(BasicBlock, [3,4,6,3], num_classes=num_classes, position_all=position_all)
def sdresnet34_mlp(num_classes=10, position_all=True):
return SDResNet_mlp(BasicBlock, [3,4,6,3], num_classes=num_classes, position_all=position_all)
def sdresnet34_residual(num_classes=10, position_all=True):
return SDResNet_residual(BasicBlock, [3,4,6,3], num_classes=num_classes, position_all=position_all)
def sdresnet32(num_classes=10):
return SDResNet_s(BasicBlock_s, [5,5,5], num_classes=num_classes)