|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.init as init |
|
from torch.nn import Parameter |
|
|
|
model_urls = { |
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', |
|
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', |
|
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', |
|
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', |
|
} |
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, |
|
stride=stride, padding=1, bias=False) |
|
|
|
def conv1x1(in_planes, planes, stride=1): |
|
return nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
def branchBottleNeck(channel_in, channel_out, kernel_size): |
|
middle_channel = channel_out//4 |
|
return nn.Sequential( |
|
nn.Conv2d(channel_in, middle_channel, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, middle_channel, kernel_size=kernel_size, stride=kernel_size), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, channel_out, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(channel_out), |
|
nn.ReLU(), |
|
) |
|
|
|
def branchMLP(channel_in, channel_out): |
|
middle_channel = channel_out//4 |
|
return nn.Sequential( |
|
conv1x1(channel_in, channel_in, stride=8), |
|
nn.BatchNorm2d(512 * block.expansion), |
|
nn.ReLU(), |
|
) |
|
|
|
def invertedBottleNeck(channel_in, channel_out, kernel_size): |
|
middle_channel = channel_out * 2 |
|
return nn.Sequential( |
|
nn.Conv2d(channel_in, middle_channel, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, middle_channel, kernel_size=kernel_size, stride=kernel_size), |
|
nn.BatchNorm2d(middle_channel), |
|
nn.ReLU(), |
|
|
|
nn.Conv2d(middle_channel, channel_out, kernel_size=1, stride=1), |
|
nn.BatchNorm2d(channel_out), |
|
nn.ReLU(), |
|
) |
|
|
|
class BatchNorm2dMul(nn.Module): |
|
def __init__(self, num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True): |
|
super(BatchNorm2dMul, self).__init__() |
|
self.bn = nn.BatchNorm2d(num_features, eps=eps, momentum=momentum, affine=False, track_running_stats=track_running_stats) |
|
self.gamma = nn.Parameter(torch.ones(num_features)) |
|
self.beta = nn.Parameter(torch.zeros(num_features)) |
|
self.affine = affine |
|
|
|
def forward(self, x): |
|
bn_out = self.bn(x) |
|
if self.affine: |
|
out = self.gamma[None, :, None, None] * bn_out + self.beta[None, :, None, None] |
|
return out, bn_out |
|
|
|
def _weights_init(m): |
|
classname = m.__class__.__name__ |
|
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): |
|
init.kaiming_normal_(m.weight) |
|
|
|
class LambdaLayer(nn.Module): |
|
def __init__(self, lambd): |
|
super(LambdaLayer, self).__init__() |
|
self.lambd = lambd |
|
|
|
def forward(self, x): |
|
return self.lambd(x) |
|
|
|
class BasicBlock_s(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(BasicBlock_s, self).__init__() |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion*planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion*planes) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = BatchNorm2dMul(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = BatchNorm2dMul(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
bn_outputs = [] |
|
|
|
residual = x |
|
output = self.conv1(x) |
|
output, bn_out = self.bn1(output) |
|
bn_outputs.append(bn_out) |
|
output = self.relu(output) |
|
|
|
output = self.conv2(output) |
|
output, bn_out = self.bn2(output) |
|
bn_outputs.append(bn_out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
output += residual |
|
output = self.relu(output) |
|
return output, bn_outputs |
|
|
|
class BottleneckBlock(nn.Module): |
|
expansion = 4 |
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BottleneckBlock, self).__init__() |
|
self.conv1 = conv1x1(inplanes, planes) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.conv2 = conv3x3(planes, planes, stride) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.conv3 = conv1x1(planes, planes*self.expansion) |
|
self.bn3 = nn.BatchNorm2d(planes*self.expansion) |
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
output = self.conv1(x) |
|
output = self.bn1(output) |
|
output = self.relu(output) |
|
|
|
output = self.conv2(output) |
|
output = self.bn2(output) |
|
output = self.relu(output) |
|
|
|
output = self.conv3(output) |
|
output = self.bn3(output) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
output += residual |
|
output = self.relu(output) |
|
|
|
return output |
|
|
|
class LayerBlock(nn.Module): |
|
def __init__(self, block, inplanes, planes, num_blocks, stride): |
|
super(LayerBlock, self).__init__() |
|
downsample = None |
|
if stride !=1 or inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
layer = [] |
|
layer.append(block(inplanes, planes, stride=stride, downsample=downsample)) |
|
inplanes = planes * block.expansion |
|
for i in range(1, num_blocks): |
|
layer.append(block(inplanes, planes)) |
|
self.layers = nn.Sequential(*layer) |
|
|
|
def forward(self, x): |
|
bn_outputs = [] |
|
for layer in self.layers: |
|
x, bn_output = layer(x) |
|
bn_outputs.extend(bn_output) |
|
return x, bn_outputs |
|
|
|
class SDResNet(nn.Module): |
|
""" |
|
Resnet model |
|
|
|
Args: |
|
block (class): block type, BasicBlock or BottlenetckBlock |
|
layers (int list): layer num in each block |
|
num_classes (int): class num |
|
""" |
|
|
|
def __init__(self, block, layers, num_classes=10, position_all=True): |
|
super(SDResNet, self).__init__() |
|
|
|
self.position_all = position_all |
|
|
|
self.inplanes = 64 |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self.layer1 = LayerBlock(block, 64, 64, layers[0], stride=1) |
|
self.layer2 = LayerBlock(block, 64, 128, layers[1], stride=2) |
|
self.layer3 = LayerBlock(block, 128, 256, layers[2], stride=2) |
|
self.layer4 = LayerBlock(block, 256, 512, layers[3], stride=2) |
|
|
|
self.downsample1_1 = nn.Sequential( |
|
conv1x1(64 * block.expansion, 512 * block.expansion, stride=8), |
|
nn.BatchNorm2d(512 * block.expansion), |
|
nn.ReLU(), |
|
) |
|
self.bottleneck1_1 = branchBottleNeck(64 * block.expansion, 512 * block.expansion, kernel_size=8) |
|
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc1 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
self.downsample2_1 = nn.Sequential( |
|
conv1x1(128 * block.expansion, 512 * block.expansion, stride=4), |
|
nn.BatchNorm2d(512 * block.expansion), |
|
) |
|
self.bottleneck2_1 = branchBottleNeck(128 * block.expansion, 512 * block.expansion, kernel_size=4) |
|
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc2 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
self.downsample3_1 = nn.Sequential( |
|
conv1x1(256 * block.expansion, 512 * block.expansion, stride=2), |
|
nn.BatchNorm2d(512 * block.expansion), |
|
) |
|
self.bottleneck3_1 = branchBottleNeck(256 * block.expansion, 512 * block.expansion, kernel_size=2) |
|
self.avgpool3 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc3 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1,1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
self.apply(_weights_init) |
|
|
|
def _make_layer(self, block, planes, layers, stride=1): |
|
"""A block with 'layers' layers |
|
Args: |
|
block (class): block type |
|
planes (int): output channels = planes * expansion |
|
layers (int): layer num in the block |
|
stride (int): the first layer stride in the block |
|
""" |
|
downsample = None |
|
if stride !=1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
layer = [] |
|
layer.append(block(self.inplanes, planes, stride=stride, downsample=downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, layers): |
|
layer.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layer) |
|
|
|
def forward(self, x, feat_out=False): |
|
all_bn_outputs = [] |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
|
|
x, bn_outputs = self.layer1(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
middle_output1 = self.bottleneck1_1(x) |
|
middle_output1 = self.avgpool1(middle_output1) |
|
middle1_fea = middle_output1 |
|
middle_output1 = torch.flatten(middle_output1, 1) |
|
middle_output1 = self.middle_fc1(middle_output1) |
|
|
|
x, bn_outputs = self.layer2(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
middle_output2 = self.bottleneck2_1(x) |
|
middle_output2 = self.avgpool2(middle_output2) |
|
middle2_fea = middle_output2 |
|
middle_output2 = torch.flatten(middle_output2, 1) |
|
middle_output2 = self.middle_fc2(middle_output2) |
|
|
|
x, bn_outputs = self.layer3(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
middle_output3 = self.bottleneck3_1(x) |
|
middle_output3 = self.avgpool3(middle_output3) |
|
middle3_fea = middle_output3 |
|
middle_output3 = torch.flatten(middle_output3, 1) |
|
middle_output3 = self.middle_fc3(middle_output3) |
|
|
|
x, bn_outputs = self.layer4(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
x = self.avgpool(x) |
|
final_fea = x |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
if self.position_all and feat_out: |
|
return {'outputs': [x, middle_output1, middle_output2, middle_output3], |
|
'features': [final_fea, middle1_fea, middle2_fea, middle3_fea], |
|
'bn_outputs': all_bn_outputs} |
|
else: |
|
return x |
|
|
|
class SDResNet_mlp(nn.Module): |
|
""" |
|
Resnet model |
|
|
|
Args: |
|
block (class): block type, BasicBlock or BottlenetckBlock |
|
layers (int list): layer num in each block |
|
num_classes (int): class num |
|
""" |
|
|
|
def __init__(self, block, layers, num_classes=10, position_all=True): |
|
super(SDResNet_mlp, self).__init__() |
|
|
|
self.position_all = position_all |
|
|
|
self.inplanes = 64 |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self.layer1 = LayerBlock(block, 64, 64, layers[0], stride=1) |
|
self.layer2 = LayerBlock(block, 64, 128, layers[1], stride=2) |
|
self.layer3 = LayerBlock(block, 128, 256, layers[2], stride=2) |
|
self.layer4 = LayerBlock(block, 256, 512, layers[3], stride=2) |
|
|
|
self.downsample1_1 = nn.Sequential( |
|
conv1x1(64 * block.expansion, 512 * block.expansion), |
|
nn.BatchNorm2d(512 * block.expansion), |
|
nn.ReLU(), |
|
) |
|
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc1 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
self.downsample2_1 = nn.Sequential( |
|
conv1x1(128 * block.expansion, 512 * block.expansion), |
|
nn.BatchNorm2d(512 * block.expansion), |
|
nn.ReLU() |
|
) |
|
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc2 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
self.downsample3_1 = nn.Sequential( |
|
conv1x1(256 * block.expansion, 512 * block.expansion), |
|
nn.BatchNorm2d(512 * block.expansion), |
|
nn.ReLU() |
|
) |
|
self.avgpool3 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc3 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1,1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
self.apply(_weights_init) |
|
|
|
def _make_layer(self, block, planes, layers, stride=1): |
|
"""A block with 'layers' layers |
|
Args: |
|
block (class): block type |
|
planes (int): output channels = planes * expansion |
|
layers (int): layer num in the block |
|
stride (int): the first layer stride in the block |
|
""" |
|
downsample = None |
|
if stride !=1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
layer = [] |
|
layer.append(block(self.inplanes, planes, stride=stride, downsample=downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, layers): |
|
layer.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layer) |
|
|
|
def forward(self, x): |
|
all_bn_outputs = [] |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x, bn_outputs = self.layer1(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
x, bn_outputs = self.layer2(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
x, bn_outputs = self.layer3(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
x, bn_outputs = self.layer4(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
x = self.avgpool(x) |
|
final_fea = x |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
if self.position_all: |
|
return {'outputs': [x, middle_output1, middle_output2, middle_output3], |
|
'bn_outputs': all_bn_outputs} |
|
else: |
|
return {'outputs': [x, x], |
|
'bn_outputs': all_bn_outputs} |
|
|
|
class SDResNet_residual(nn.Module): |
|
""" |
|
Resnet model |
|
|
|
Args: |
|
block (class): block type, BasicBlock or BottlenetckBlock |
|
layers (int list): layer num in each block |
|
num_classes (int): class num |
|
""" |
|
|
|
def __init__(self, block, layers, num_classes=10, position_all=True): |
|
super(SDResNet_residual, self).__init__() |
|
|
|
self.position_all = position_all |
|
|
|
self.inplanes = 64 |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self.layer1 = LayerBlock(block, 64, 64, layers[0], stride=1) |
|
self.layer2 = LayerBlock(block, 64, 128, layers[1], stride=2) |
|
self.layer3 = LayerBlock(block, 128, 256, layers[2], stride=2) |
|
self.layer4 = LayerBlock(block, 256, 512, layers[3], stride=2) |
|
|
|
self.bottleneck1_1 = LayerBlock(block, 64, 512, 1, stride=8) |
|
|
|
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc1 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
self.bottleneck2_1 = LayerBlock(block, 128, 512, 1, stride=4) |
|
|
|
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc2 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.bottleneck3_1 = LayerBlock(block, 256, 512, 1, stride=2) |
|
self.avgpool3 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc3 = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1,1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
self.apply(_weights_init) |
|
|
|
def _make_layer(self, block, planes, layers, stride=1): |
|
"""A block with 'layers' layers |
|
Args: |
|
block (class): block type |
|
planes (int): output channels = planes * expansion |
|
layers (int): layer num in the block |
|
stride (int): the first layer stride in the block |
|
""" |
|
downsample = None |
|
if stride !=1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
layer = [] |
|
layer.append(block(self.inplanes, planes, stride=stride, downsample=downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, layers): |
|
layer.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layer) |
|
|
|
def forward(self, x): |
|
all_bn_outputs = [] |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
|
|
x, bn_outputs = self.layer1(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
middle_output1, _ = self.bottleneck1_1(x) |
|
middle_output1 = self.avgpool1(middle_output1) |
|
middle1_fea = middle_output1 |
|
middle_output1 = torch.flatten(middle_output1, 1) |
|
middle_output1 = self.middle_fc1(middle_output1) |
|
|
|
x, bn_outputs = self.layer2(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
middle_output2, _ = self.bottleneck2_1(x) |
|
middle_output2 = self.avgpool2(middle_output2) |
|
middle2_fea = middle_output2 |
|
middle_output2 = torch.flatten(middle_output2, 1) |
|
middle_output2 = self.middle_fc2(middle_output2) |
|
|
|
x, bn_outputs = self.layer3(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
middle_output3, _ = self.bottleneck3_1(x) |
|
middle_output3 = self.avgpool3(middle_output3) |
|
middle3_fea = middle_output3 |
|
middle_output3 = torch.flatten(middle_output3, 1) |
|
middle_output3 = self.middle_fc3(middle_output3) |
|
|
|
x, bn_outputs = self.layer4(x) |
|
all_bn_outputs.extend(bn_outputs) |
|
x = self.avgpool(x) |
|
final_fea = x |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
if self.position_all: |
|
return {'outputs': [x, middle_output1, middle_output2, middle_output3], |
|
'features': [final_fea, middle1_fea, middle2_fea, middle3_fea], |
|
'bn_outputs': all_bn_outputs} |
|
else: |
|
return {'outputs': [x, middle_output3], |
|
'features': [final_fea, middle1_fea, middle2_fea, middle3_fea], |
|
'bn_outputs': all_bn_outputs} |
|
|
|
class SDResNet_s(nn.Module): |
|
""" |
|
Resnet model small |
|
|
|
Args: |
|
block (class): block type, BasicBlock or BottlenetckBlock |
|
layers (int list): layer num in each block |
|
num_classes (int): class num |
|
""" |
|
|
|
def __init__(self, block, layers, num_classes=10): |
|
super(SDResNet_s, self).__init__() |
|
|
|
self.inplanes = 16 |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self.layer1 = self._make_layer(block, 16, layers[0]) |
|
self.layer2 = self._make_layer(block, 32, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 64, layers[2], stride=2) |
|
|
|
self.downsample1_1 = nn.Sequential( |
|
conv1x1(16 * block.expansion, 64 * block.expansion, stride=4), |
|
nn.BatchNorm2d(64 * block.expansion), |
|
) |
|
self.bottleneck1_1 = branchBottleNeck(16 * block.expansion, 64 * block.expansion, kernel_size=4) |
|
self.avgpool1 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc1 = nn.Linear(64 * block.expansion, num_classes) |
|
|
|
|
|
self.downsample2_1 = nn.Sequential( |
|
conv1x1(32 * block.expansion, 64 * block.expansion, stride=2), |
|
nn.BatchNorm2d(64 * block.expansion), |
|
) |
|
self.bottleneck2_1 = branchBottleNeck(32 * block.expansion, 64 * block.expansion, kernel_size=2) |
|
self.avgpool2 = nn.AdaptiveAvgPool2d((1,1)) |
|
self.middle_fc2 = nn.Linear(64 * block.expansion, num_classes) |
|
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1,1)) |
|
self.fc = nn.Linear(64 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _make_layer(self, block, planes, layers, stride=1): |
|
"""A block with 'layers' layers |
|
Args: |
|
block (class): block type |
|
planes (int): output channels = planes * expansion |
|
layers (int): layer num in the block |
|
stride (int): the first layer stride in the block |
|
""" |
|
strides = [stride] + [1]*(layers-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.inplanes, planes, stride)) |
|
self.inplanes = planes * block.expansion |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.layer1(x) |
|
middle_output1 = self.bottleneck1_1(x) |
|
middle_output1 = self.avgpool1(middle_output1) |
|
middle1_fea = middle_output1 |
|
middle_output1 = torch.flatten(middle_output1, 1) |
|
middle_output1 = self.middle_fc1(middle_output1) |
|
|
|
x = self.layer2(x) |
|
middle_output2 = self.bottleneck2_1(x) |
|
middle_output2 = self.avgpool2(middle_output2) |
|
middle2_fea = middle_output2 |
|
middle_output2 = torch.flatten(middle_output2, 1) |
|
middle_output2 = self.middle_fc2(middle_output2) |
|
|
|
x = self.layer3(x) |
|
x = self.avgpool(x) |
|
final_fea = x |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
return {'outputs': [x, middle_output1, middle_output2], |
|
'features': [final_fea, middle1_fea, middle2_fea]} |
|
|
|
def sdresnet18(num_classes=10, position_all=True): |
|
return SDResNet(BasicBlock, [2,2,2,2], num_classes=num_classes, position_all=position_all) |
|
|
|
def sdresnet34(num_classes=10, position_all=True): |
|
return SDResNet(BasicBlock, [3,4,6,3], num_classes=num_classes, position_all=position_all) |
|
|
|
def sdresnet34_mlp(num_classes=10, position_all=True): |
|
return SDResNet_mlp(BasicBlock, [3,4,6,3], num_classes=num_classes, position_all=position_all) |
|
|
|
def sdresnet34_residual(num_classes=10, position_all=True): |
|
return SDResNet_residual(BasicBlock, [3,4,6,3], num_classes=num_classes, position_all=position_all) |
|
|
|
def sdresnet32(num_classes=10): |
|
return SDResNet_s(BasicBlock_s, [5,5,5], num_classes=num_classes) |
|
|