File size: 6,531 Bytes
5d2f37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import ReduceLROnPlateau
import numpy as np
from PIL import Image
import random
import torch.nn.functional as F


class CustomDataset(Dataset):

    def __init__(self, red_dir, green_dir, blue_dir, nir_dir, mask_dir, pytorch=True):
        super().__init__()
        self.red_dir = red_dir
        self.green_dir = green_dir
        self.blue_dir = blue_dir
        self.nir_dir = nir_dir
        self.mask_dir = mask_dir

        red_files = [f for f in self.red_dir.iterdir() if f.is_file()]
        self.files = [self.combine_files(f) for f in red_files]
        self.pytorch = pytorch


    def combine_files(self, red_files: Path):
        base_name = red_files.name

        files = {
            'red': red_files,
            'green': self.green_dir / base_name.replace('red', 'green'),
            'blue': self.blue_dir / base_name.replace('red', 'blue'),
            'nir': self.nir_dir / base_name.replace('red', 'nir'),
            'mask': self.mask_dir / base_name.replace('red', 'gt'),
        }

        for key, path in files.items():
            if not path.exists():
                raise FileNotFoundError(f'Missing file: {path} for {red_files}')
        return files


    def __len__(self):
        return len(self.files)


    def open_as_array(self, idx, invert=False, nir_included=False):
        rgb = np.stack([
                np.array(Image.open(self.files[idx]['red'])),
                np.array(Image.open(self.files[idx]['green'])),
                np.array(Image.open(self.files[idx]['blue']))
            ], axis=2)

        if nir_included:
            nir = np.array(Image.open(self.files[idx]['nir']))
            nir = np.expand_dims(nir, 2)
            rgb = np.concatenate([rgb, nir], axis=2)

        if invert:
            rgb = rgb.transpose((2, 0, 1))

        raw_rgb = (rgb / np.iinfo(rgb.dtype).max)
        return raw_rgb

    def open_mask(self,idx, expand_dims=True):
        raw_mask = np.array(Image.open(self.files[idx]['mask']))
        raw_mask = np.where(raw_mask == 255, 1, 0) # Transform the mask into binary array where pixels with value 256(white) become 1(clouds), pixels with 0 or anything else becomes 0(not clouds)

        return np.expand_dims(raw_mask, 0) if expand_dims else raw_mask

    def __getitem__(self, idx):
        X = torch.tensor(self.open_as_array(idx, invert=True, nir_included=True), dtype=torch.float32)
        y = torch.tensor(self.open_mask(idx, expand_dims=True), dtype=torch.float32)

        return X, y


class doubleConv(nn.Module):

    def __init__(self, in_channels, out_channels):
        super().__init__()

        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        )

    def forward(self, x):
        return self.double_conv(x)


class downSample(nn.Module):

    def __init__(self, in_channels, out_channels):
        super().__init__()

        self.conv = doubleConv(in_channels, out_channels)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        down = self.conv(x)
        p = self.pool(down)

        return down, p


class upSample(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()

        self.up = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2)
        self.conv = doubleConv(out_channels * 2, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        x = torch.cat([x1, x2], 1)
        return self.conv(x)


class SpatialAttention(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3, padding=1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_pooling = torch.mean(x, dim=1, keepdim=True)
        max_pooling = torch.max(x, dim=1, keepdim=True)[0] # return on max values and not their indices
        concat = torch.cat([avg_pooling, max_pooling], dim=1)
        attention = self.conv(concat)
        attention = self.sigmoid(attention)
        output = x * attention
        return output


class UNet(nn.Module):
    def __init__(self, in_channels, num_classes):
        super().__init__()

        self.down_conv1 = downSample(in_channels, 32)
        self.down_conv2 = downSample(32, 64)
        self.down_conv3 = downSample(64, 128)

        self.bottleneck = doubleConv(128, 256)
        self.spatial_attention = SpatialAttention()

        self.up_conv1 = upSample(256, 128)
        self.up_conv2 = upSample(128, 64)
        self.up_conv3 = upSample(64, 32)

        self.out = nn.Conv2d(in_channels=32 , out_channels=num_classes, kernel_size=1)

    def forward(self, x):

        down1, p1 = self.down_conv1(x)
        down2, p2 = self.down_conv2(p1)
        down3, p3 = self.down_conv3(p2)

        b = self.bottleneck(p3)
        b = self.spatial_attention(b)

        up1 = self.up_conv1(b, down3)
        up2 = self.up_conv2(up1, down2)
        up3 = self.up_conv3(up2, down1)

        output = self.out(up3)
        return output

def acc_fn(predb, yb):
    preds = torch.sigmoid(predb)  # Convert logits to probabilities
    preds = (preds > 0.5).float()  # Threshold at 0.5
    return (preds == yb).float().mean()  # Compare with ground truth

def calculate_metrics(y_true, y_pred):
    TP = torch.sum((y_true == 1) & (y_pred == 1)).float()
    TN = torch.sum((y_true == 0) & (y_pred == 0)).float()
    FP = torch.sum((y_true == 0) & (y_pred == 1)).float()
    FN = torch.sum((y_true == 1) & (y_pred == 0)).float()

    jaccard = TP / (TP + FN + FP + 1e-10)
    precision = TP / (TP + FP + 1e-10)
    recall = TP / (TP + FN + 1e-10)
    specificity = TN / (TN + FP + 1e-10)
    overall_acc = (TP + TN) / (TP + TN + FP + FN + 1e-10)

    return {
        "Jaccard index": jaccard.item(),
        "Precision": precision.item(),
        "Recall": recall.item(),
        "Specificity": specificity.item(),
        "Overall Accuracy": overall_acc.item()
    }