update the export-onnx.py
Browse files- export-onnx.py +199 -0
export-onnx.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
3 |
+
|
4 |
+
"""
|
5 |
+
We use
|
6 |
+
https://hf-mirror.com/yuekai/model_repo_sense_voice_small/blob/main/export_onnx.py
|
7 |
+
as a reference while writing this file.
|
8 |
+
|
9 |
+
Thanks to https://github.com/yuekaizhang for making the file public.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
from typing import Any, Dict, Tuple
|
14 |
+
|
15 |
+
import onnx
|
16 |
+
import torch
|
17 |
+
from model import SenseVoiceSmall
|
18 |
+
from onnxruntime.quantization import QuantType, quantize_dynamic
|
19 |
+
|
20 |
+
|
21 |
+
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
|
22 |
+
"""Add meta data to an ONNX model. It is changed in-place.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
filename:
|
26 |
+
Filename of the ONNX model to be changed.
|
27 |
+
meta_data:
|
28 |
+
Key-value pairs.
|
29 |
+
"""
|
30 |
+
model = onnx.load(filename)
|
31 |
+
while len(model.metadata_props):
|
32 |
+
model.metadata_props.pop()
|
33 |
+
|
34 |
+
for key, value in meta_data.items():
|
35 |
+
meta = model.metadata_props.add()
|
36 |
+
meta.key = key
|
37 |
+
meta.value = str(value)
|
38 |
+
|
39 |
+
onnx.save(model, filename)
|
40 |
+
|
41 |
+
|
42 |
+
def modified_forward(
|
43 |
+
self,
|
44 |
+
x: torch.Tensor,
|
45 |
+
x_length: torch.Tensor,
|
46 |
+
language: torch.Tensor,
|
47 |
+
text_norm: torch.Tensor,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
x:
|
52 |
+
A 3-D tensor of shape (N, T, C) with dtype torch.float32
|
53 |
+
x_length:
|
54 |
+
A 1-D tensor of shape (N,) with dtype torch.int32
|
55 |
+
language:
|
56 |
+
A 1-D tensor of shape (N,) with dtype torch.int32
|
57 |
+
See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L640
|
58 |
+
text_norm:
|
59 |
+
A 1-D tensor of shape (N,) with dtype torch.int32
|
60 |
+
See also https://github.com/FunAudioLLM/SenseVoice/blob/a80e676461b24419cf1130a33d4dd2f04053e5cc/model.py#L642
|
61 |
+
"""
|
62 |
+
language_query = self.embed(language).unsqueeze(1)
|
63 |
+
text_norm_query = self.embed(text_norm).unsqueeze(1)
|
64 |
+
|
65 |
+
event_emo_query = self.embed(torch.LongTensor([[1, 2]])).repeat(x.size(0), 1, 1)
|
66 |
+
|
67 |
+
x = torch.cat((language_query, event_emo_query, text_norm_query, x), dim=1)
|
68 |
+
x_length += 4
|
69 |
+
|
70 |
+
encoder_out, encoder_out_lens = self.encoder(x, x_length)
|
71 |
+
if isinstance(encoder_out, tuple):
|
72 |
+
encoder_out = encoder_out[0]
|
73 |
+
|
74 |
+
ctc_logits = self.ctc.ctc_lo(encoder_out)
|
75 |
+
|
76 |
+
return ctc_logits
|
77 |
+
|
78 |
+
|
79 |
+
def load_cmvn(filename) -> Tuple[str, str]:
|
80 |
+
neg_mean = None
|
81 |
+
inv_stddev = None
|
82 |
+
|
83 |
+
with open(filename) as f:
|
84 |
+
for line in f:
|
85 |
+
if not line.startswith("<LearnRateCoef>"):
|
86 |
+
continue
|
87 |
+
t = line.split()[3:-1]
|
88 |
+
|
89 |
+
if neg_mean is None:
|
90 |
+
neg_mean = ",".join(t)
|
91 |
+
else:
|
92 |
+
inv_stddev = ",".join(t)
|
93 |
+
|
94 |
+
return neg_mean, inv_stddev
|
95 |
+
|
96 |
+
|
97 |
+
def generate_tokens(params):
|
98 |
+
sp = params["tokenizer"].sp
|
99 |
+
with open("tokens.txt", "w", encoding="utf-8") as f:
|
100 |
+
for i in range(sp.vocab_size()):
|
101 |
+
f.write(f"{sp.id_to_piece(i)} {i}\n")
|
102 |
+
|
103 |
+
os.system("head tokens.txt; tail -n200 tokens.txt")
|
104 |
+
|
105 |
+
|
106 |
+
def display_params(params):
|
107 |
+
print("----------params----------")
|
108 |
+
print(params)
|
109 |
+
|
110 |
+
print("----------frontend_conf----------")
|
111 |
+
print(params["frontend_conf"])
|
112 |
+
|
113 |
+
os.system(f"cat {params['frontend_conf']['cmvn_file']}")
|
114 |
+
|
115 |
+
print("----------config----------")
|
116 |
+
print(params["config"])
|
117 |
+
|
118 |
+
os.system(f"cat {params['config']}")
|
119 |
+
|
120 |
+
|
121 |
+
def main():
|
122 |
+
model, params = SenseVoiceSmall.from_pretrained(model="iic/SenseVoiceSmall")
|
123 |
+
display_params(params)
|
124 |
+
|
125 |
+
generate_tokens(params)
|
126 |
+
|
127 |
+
model.__class__.forward = modified_forward
|
128 |
+
|
129 |
+
x = torch.randn(2, 100, 560, dtype=torch.float32)
|
130 |
+
x_length = torch.tensor([80, 100], dtype=torch.int32)
|
131 |
+
language = torch.tensor([0, 3], dtype=torch.int32)
|
132 |
+
text_norm = torch.tensor([14, 15], dtype=torch.int32)
|
133 |
+
|
134 |
+
opset_version = 13
|
135 |
+
filename = "model.onnx"
|
136 |
+
torch.onnx.export(
|
137 |
+
model,
|
138 |
+
(x, x_length, language, text_norm),
|
139 |
+
filename,
|
140 |
+
opset_version=opset_version,
|
141 |
+
input_names=["x", "x_length", "language", "text_norm"],
|
142 |
+
output_names=["logits"],
|
143 |
+
dynamic_axes={
|
144 |
+
"x": {0: "N", 1: "T"},
|
145 |
+
"x_length": {0: "N"},
|
146 |
+
"language": {0: "N"},
|
147 |
+
"text_norm": {0: "N"},
|
148 |
+
"logits": {0: "N", 1: "T"},
|
149 |
+
},
|
150 |
+
)
|
151 |
+
|
152 |
+
lfr_window_size = params["frontend_conf"]["lfr_m"]
|
153 |
+
lfr_window_shift = params["frontend_conf"]["lfr_n"]
|
154 |
+
|
155 |
+
neg_mean, inv_stddev = load_cmvn(params["frontend_conf"]["cmvn_file"])
|
156 |
+
vocab_size = params["tokenizer"].sp.vocab_size()
|
157 |
+
|
158 |
+
meta_data = {
|
159 |
+
"lfr_window_size": lfr_window_size,
|
160 |
+
"lfr_window_shift": lfr_window_shift,
|
161 |
+
"normalize_samples": 0, # input should be in the range [-32768, 32767]
|
162 |
+
"neg_mean": neg_mean,
|
163 |
+
"inv_stddev": inv_stddev,
|
164 |
+
"model_type": "sense_voice_ctc",
|
165 |
+
# version 1: Use QInt8
|
166 |
+
# version 2: Use QUInt8
|
167 |
+
"version": "2",
|
168 |
+
"model_author": "iic",
|
169 |
+
"maintainer": "k2-fsa",
|
170 |
+
"vocab_size": vocab_size,
|
171 |
+
"comment": "iic/SenseVoiceSmall",
|
172 |
+
"lang_auto": model.lid_dict["auto"],
|
173 |
+
"lang_zh": model.lid_dict["zh"],
|
174 |
+
"lang_en": model.lid_dict["en"],
|
175 |
+
"lang_yue": model.lid_dict["yue"], # cantonese
|
176 |
+
"lang_ja": model.lid_dict["ja"],
|
177 |
+
"lang_ko": model.lid_dict["ko"],
|
178 |
+
"lang_nospeech": model.lid_dict["nospeech"],
|
179 |
+
"with_itn": model.textnorm_dict["withitn"],
|
180 |
+
"without_itn": model.textnorm_dict["woitn"],
|
181 |
+
"url": "https://huggingface.co/FunAudioLLM/SenseVoiceSmall",
|
182 |
+
}
|
183 |
+
add_meta_data(filename=filename, meta_data=meta_data)
|
184 |
+
|
185 |
+
filename_int8 = "model.int8.onnx"
|
186 |
+
quantize_dynamic(
|
187 |
+
model_input=filename,
|
188 |
+
model_output=filename_int8,
|
189 |
+
op_types_to_quantize=["MatMul"],
|
190 |
+
# Note that we have to use QUInt8 here.
|
191 |
+
#
|
192 |
+
# When QInt8 is used, C++ onnxruntime produces incorrect results
|
193 |
+
weight_type=QuantType.QUInt8,
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
torch.manual_seed(20240717)
|
199 |
+
main()
|