Update handler.py
Browse files- handler.py +23 -17
handler.py
CHANGED
@@ -3,48 +3,54 @@ from pyannote.audio import Pipeline
|
|
3 |
import torch
|
4 |
import base64
|
5 |
import numpy as np
|
6 |
-
import os
|
7 |
|
8 |
SAMPLE_RATE = 16000
|
9 |
|
10 |
class EndpointHandler():
|
11 |
def __init__(self, path=""):
|
12 |
-
self.pipeline = Pipeline.from_pretrained(
|
13 |
-
"pyannote/[email protected]",
|
14 |
-
use_auth_token=os.environ.get("HF_API_TOKEN")
|
15 |
-
)
|
16 |
-
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
17 |
|
18 |
def __call__(self, data: Dict) -> Dict:
|
19 |
"""
|
20 |
Args:
|
21 |
data (Dict):
|
22 |
'inputs': Base64-encoded audio bytes
|
23 |
-
'parameters': Additional diarization parameters (
|
24 |
Return:
|
25 |
Dict: Speaker diarization results
|
26 |
"""
|
27 |
inputs = data.get("inputs")
|
28 |
-
parameters = data.get("parameters", {}) #
|
29 |
|
30 |
# Decode the base64 audio data
|
31 |
audio_data = base64.b64decode(inputs)
|
32 |
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
33 |
|
34 |
-
# Handle multi-channel audio (convert to mono)
|
35 |
-
if audio_nparray.ndim > 1:
|
36 |
-
audio_nparray = audio_nparray.mean(axis=0) # Average channels to create mono
|
37 |
-
|
38 |
# Convert to PyTorch tensor
|
39 |
audio_tensor = torch.from_numpy(audio_nparray).float().unsqueeze(0)
|
40 |
-
if audio_tensor.dim() == 1:
|
41 |
-
audio_tensor = audio_tensor.unsqueeze(0)
|
42 |
-
|
43 |
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
44 |
|
45 |
-
#
|
|
|
|
|
|
|
46 |
try:
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
except Exception as e:
|
49 |
print(f"An unexpected error occurred: {e}")
|
50 |
return {"error": "Diarization failed unexpectedly"}
|
|
|
3 |
import torch
|
4 |
import base64
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
SAMPLE_RATE = 16000
|
8 |
|
9 |
class EndpointHandler():
|
10 |
def __init__(self, path=""):
|
11 |
+
self.pipeline = Pipeline.from_pretrained("KIFF/pyannote-speaker-diarization-endpoint")
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def __call__(self, data: Dict) -> Dict:
|
14 |
"""
|
15 |
Args:
|
16 |
data (Dict):
|
17 |
'inputs': Base64-encoded audio bytes
|
18 |
+
'parameters': Additional diarization parameters, including 'num_speakers' (optional)
|
19 |
Return:
|
20 |
Dict: Speaker diarization results
|
21 |
"""
|
22 |
inputs = data.get("inputs")
|
23 |
+
parameters = data.get("parameters", {}) # Default to empty dict if not provided
|
24 |
|
25 |
# Decode the base64 audio data
|
26 |
audio_data = base64.b64decode(inputs)
|
27 |
audio_nparray = np.frombuffer(audio_data, dtype=np.int16)
|
28 |
|
|
|
|
|
|
|
|
|
29 |
# Convert to PyTorch tensor
|
30 |
audio_tensor = torch.from_numpy(audio_nparray).float().unsqueeze(0)
|
|
|
|
|
|
|
31 |
pyannote_input = {"waveform": audio_tensor, "sample_rate": SAMPLE_RATE}
|
32 |
|
33 |
+
# Extract num_speakers from parameters, if present
|
34 |
+
num_speakers = parameters.pop("num_speakers", None)
|
35 |
+
|
36 |
+
# Run diarization pipeline
|
37 |
try:
|
38 |
+
if num_speakers is not None:
|
39 |
+
diarization = self.pipeline(pyannote_input, num_speakers=num_speakers, **parameters)
|
40 |
+
else:
|
41 |
+
diarization = self.pipeline(pyannote_input, **parameters)
|
42 |
+
except TypeError as e:
|
43 |
+
print(f"Error: TypeError: {e}")
|
44 |
+
if "num_speakers" in str(e):
|
45 |
+
print("The 'num_speakers' parameter might not be supported by this version of the pipeline.")
|
46 |
+
print("Trying without num_speakers...")
|
47 |
+
try:
|
48 |
+
diarization = self.pipeline(pyannote_input, **parameters)
|
49 |
+
except Exception as e:
|
50 |
+
print(f"An error occurred even without 'num_speakers': {e}")
|
51 |
+
return {"error": "Diarization failed"}
|
52 |
+
else:
|
53 |
+
return {"error": "Diarization failed with an unexpected TypeError. Check the server logs for details."}
|
54 |
except Exception as e:
|
55 |
print(f"An unexpected error occurred: {e}")
|
56 |
return {"error": "Diarization failed unexpectedly"}
|