File size: 3,623 Bytes
8e1d9f0 11914d9 9c21642 ccda540 9c21642 a245a8d f349f96 9c21642 14c43a5 9c21642 8d9e7c8 07130f4 8d9e7c8 9c21642 07130f4 9c21642 8e1d9f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: bigscience-openrail-m
metrics:
- code_eval
library_name: transformers
tags:
- code
---
<p style="font-size:28px;" align="center">
π MoTCoder
</p>
<p align="center">
β’ π€ <a href="https://huggingface.co/datasets/JingyaoLi/MoTCode-Data" target="_blank">Data </a> β’ π€ <a href="https://huggingface.co/JingyaoLi/MoTCoder-15B-v1.0" target="_blank">Model </a> β’ π± <a href="https://github.com/dvlab-research/MoTCoder" target="_blank">Code</a> β’ π <a href="https://arxiv.org/abs/2312.15960" target="_blank">Paper</a> <br>
</p>
Large Language Models (LLMs) have showcased impressive capabilities in handling straightforward programming tasks. However, their performance tends to falter when confronted with more challenging programming problems. We observe that conventional models often generate solutions as monolithic code blocks, restricting their effectiveness in tackling intricate questions. To overcome this limitation, we present Modular-of-Thought Coder (MoTCoder). We introduce a pioneering framework for MoT instruction tuning, designed to promote the decomposition of tasks into logical sub-tasks and sub-modules.
Our investigations reveal that, through the cultivation and utilization of sub-modules, MoTCoder significantly improves both the modularity and correctness of the generated solutions, leading to substantial relative *pass@1* improvements of 12.9% on APPS and 9.43% on CodeContests.

## Performance

**Performance on APPS**
| Model | Size | Pass@ | Introductory | Interview | Competition | All |
|------------|-------|-------|--------------|-----------|-------------|-------|
| **CodeT5** | 770M | 1 | 6.60 | 1.03 | 0.30 | 2.00 |
| **GPT-Neo** | 2.7B | 1 | 14.68 | 9.85 | 6.54 | 10.15 |
| | | 5 | 19.89 | 13.19 | 9.90 | 13.87 |
| **GPT-2** | 0.1B | 1 | 5.64 | 6.93 | 4.37 | 6.16 |
| | | 5 | 13.81 | 10.97 | 7.03 | 10.75 |
| | 1.5B | 1 | 7.40 | 9.11 | 5.05 | 7.96 |
| | | 5 | 16.86 | 13.84 | 9.01 | 13.48 |
| **GPT-3** | 175B | 1 | 0.57 | 0.65 | 0.21 | 0.55 |
| **StarCoder** | 15B | 1 | 7.25 | 6.89 | 4.08 | 6.40 |
| **WizardCoder**| 15B | 1 | 26.04 | 4.21 | 0.81 | 7.90 |
| **MoTCoder** | 15B | 1 | **33.80** | **19.70** | **11.09** | **20.80** |
| **text-davinci-002** | - | 1 | - | - | - | 7.48 |
| **code-davinci-002** | - | 1 | 29.30 | 6.40 | 2.50 | 10.20 |
| **GPT3.5** | - | 1 | 48.00 | 19.42 | 5.42 | 22.33 |
**Performance on CodeContests**
| Model | Size | Revision | Val pass@1 | Val pass@5 | Test pass@1 | Test pass@5 | Average pass@1 | Average pass@5 |
|-------|------|----------|------------|------------|-------------|-------------|----------------|----------------|
| **code-davinci-002** | - | - | - | - | 1.00 | - | 1.00 | - |
| **code-davinci-002 + CodeT** | - | 5 | - | - | 3.20 | - | 3.20 | - |
| **WizardCoder** | 15B | - | 1.11 | 3.18 | 1.98 | 3.27 | 1.55 | 3.23 |
| **WizardCoder + CodeChain** | 15B | 5 | 2.35 | 3.29 | 2.48 | 3.30 | 2.42 | 3.30 |
| **MoTCoder** | 15B | - | **2.39** | **7.69** | **6.18** | **12.73** | **4.29** | **10.21** |
| **GPT3.5** | - | - | 6.81 | 16.23 | 5.82 | 11.16 | 6.32 | 13.70 |
|