""" Test functions for linalg module """ from __future__ import division, absolute_import, print_function from numpy.testing import * import numpy as np from numpy import linalg, arange, float64, array, dot, transpose rlevel = 1 class TestRegression(TestCase): def test_eig_build(self, level = rlevel): """Ticket #652""" rva = array([1.03221168e+02 +0.j, -1.91843603e+01 +0.j, -6.04004526e-01+15.84422474j, -6.04004526e-01-15.84422474j, -1.13692929e+01 +0.j, -6.57612485e-01+10.41755503j, -6.57612485e-01-10.41755503j, 1.82126812e+01 +0.j, 1.06011014e+01 +0.j, 7.80732773e+00 +0.j, -7.65390898e-01 +0.j, 1.51971555e-15 +0.j, -1.51308713e-15 +0.j]) a = arange(13*13, dtype = float64) a.shape = (13, 13) a = a%17 va, ve = linalg.eig(a) va.sort() rva.sort() assert_array_almost_equal(va, rva) def test_eigh_build(self, level = rlevel): """Ticket 662.""" rvals = [68.60568999, 89.57756725, 106.67185574] cov = array([[ 77.70273908, 3.51489954, 15.64602427], [3.51489954, 88.97013878, -1.07431931], [15.64602427, -1.07431931, 98.18223512]]) vals, vecs = linalg.eigh(cov) assert_array_almost_equal(vals, rvals) def test_svd_build(self, level = rlevel): """Ticket 627.""" a = array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) m, n = a.shape u, s, vh = linalg.svd(a) b = dot(transpose(u[:, n:]), a) assert_array_almost_equal(b, np.zeros((2, 2))) def test_norm_vector_badarg(self): """Regression for #786: Froebenius norm for vectors raises TypeError.""" self.assertRaises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro') def test_lapack_endian(self): # For bug #1482 a = array([[5.7998084, -2.1825367 ], [-2.1825367, 9.85910595]], dtype='>f8') b = array(a, dtype=' 0.5) assert_equal(c, 1) assert_equal(np.linalg.matrix_rank(a), 1) assert_array_less(1, np.linalg.norm(a, ord=2)) if __name__ == '__main__': run_module_suite()