from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import TestCase, run_module_suite, assert_array_almost_equal from numpy.testing import assert_array_equal import threading import sys if sys.version_info[0] >= 3: import queue else: import Queue as queue def fft1(x): L = len(x) phase = -2j*np.pi*(np.arange(L)/float(L)) phase = np.arange(L).reshape(-1, 1) * phase return np.sum(x*np.exp(phase), axis=1) class TestFFTShift(TestCase): def test_fft_n(self): self.assertRaises(ValueError, np.fft.fft, [1, 2, 3], 0) class TestFFT1D(TestCase): def test_basic(self): rand = np.random.random x = rand(30) + 1j*rand(30) assert_array_almost_equal(fft1(x), np.fft.fft(x)) class TestFFTThreadSafe(TestCase): threads = 16 input_shape = (800, 200) def _test_mtsame(self, func, *args): def worker(args, q): q.put(func(*args)) q = queue.Queue() expected = func(*args) # Spin off a bunch of threads to call the same function simultaneously t = [threading.Thread(target=worker, args=(args, q)) for i in range(self.threads)] [x.start() for x in t] [x.join() for x in t] # Make sure all threads returned the correct value for i in range(self.threads): assert_array_equal(q.get(timeout=5), expected, 'Function returned wrong value in multithreaded context') def test_fft(self): a = np.ones(self.input_shape) * 1+0j self._test_mtsame(np.fft.fft, a) def test_ifft(self): a = np.ones(self.input_shape) * 1+0j self._test_mtsame(np.fft.ifft, a) def test_rfft(self): a = np.ones(self.input_shape) self._test_mtsame(np.fft.rfft, a) def test_irfft(self): a = np.ones(self.input_shape) * 1+0j self._test_mtsame(np.fft.irfft, a) if __name__ == "__main__": run_module_suite()