JayKimDevolved's picture
JayKimDevolved/deepseek
c011401 verified
from __future__ import division, absolute_import, print_function
from numpy.testing import (TestCase, run_module_suite, assert_,
assert_array_equal)
from numpy import random
from numpy.compat import long
import numpy as np
class TestRegression(TestCase):
def test_VonMises_range(self):
# Make sure generated random variables are in [-pi, pi].
# Regression test for ticket #986.
for mu in np.linspace(-7., 7., 5):
r = random.mtrand.vonmises(mu, 1, 50)
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
def test_hypergeometric_range(self):
# Test for ticket #921
assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
def test_logseries_convergence(self):
# Test for ticket #923
N = 1000
np.random.seed(0)
rvsn = np.random.logseries(0.8, size=N)
# these two frequency counts should be close to theoretical
# numbers with this large sample
# theoretical large N result is 0.49706795
freq = np.sum(rvsn == 1) / float(N)
msg = "Frequency was %f, should be > 0.45" % freq
assert_(freq > 0.45, msg)
# theoretical large N result is 0.19882718
freq = np.sum(rvsn == 2) / float(N)
msg = "Frequency was %f, should be < 0.23" % freq
assert_(freq < 0.23, msg)
def test_permutation_longs(self):
np.random.seed(1234)
a = np.random.permutation(12)
np.random.seed(1234)
b = np.random.permutation(long(12))
assert_array_equal(a, b)
def test_randint_range(self):
# Test for ticket #1690
lmax = np.iinfo('l').max
lmin = np.iinfo('l').min
try:
random.randint(lmin, lmax)
except:
raise AssertionError
def test_shuffle_mixed_dimension(self):
# Test for trac ticket #2074
for t in [[1, 2, 3, None],
[(1, 1), (2, 2), (3, 3), None],
[1, (2, 2), (3, 3), None],
[(1, 1), 2, 3, None]]:
np.random.seed(12345)
shuffled = list(t)
random.shuffle(shuffled)
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
def test_call_within_randomstate(self):
# Check that custom RandomState does not call into global state
m = np.random.RandomState()
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
for i in range(3):
np.random.seed(i)
m.seed(4321)
# If m.state is not honored, the result will change
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
def test_multivariate_normal_size_types(self):
# Test for multivariate_normal issue with 'size' argument.
# Check that the multivariate_normal size argument can be a
# numpy integer.
np.random.multivariate_normal([0], [[0]], size=1)
np.random.multivariate_normal([0], [[0]], size=np.int_(1))
np.random.multivariate_normal([0], [[0]], size=np.int64(1))
if __name__ == "__main__":
run_module_suite()