tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/random
/tests
/test_regression.py
from __future__ import division, absolute_import, print_function | |
from numpy.testing import (TestCase, run_module_suite, assert_, | |
assert_array_equal) | |
from numpy import random | |
from numpy.compat import long | |
import numpy as np | |
class TestRegression(TestCase): | |
def test_VonMises_range(self): | |
# Make sure generated random variables are in [-pi, pi]. | |
# Regression test for ticket #986. | |
for mu in np.linspace(-7., 7., 5): | |
r = random.mtrand.vonmises(mu, 1, 50) | |
assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) | |
def test_hypergeometric_range(self): | |
# Test for ticket #921 | |
assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4)) | |
assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0)) | |
def test_logseries_convergence(self): | |
# Test for ticket #923 | |
N = 1000 | |
np.random.seed(0) | |
rvsn = np.random.logseries(0.8, size=N) | |
# these two frequency counts should be close to theoretical | |
# numbers with this large sample | |
# theoretical large N result is 0.49706795 | |
freq = np.sum(rvsn == 1) / float(N) | |
msg = "Frequency was %f, should be > 0.45" % freq | |
assert_(freq > 0.45, msg) | |
# theoretical large N result is 0.19882718 | |
freq = np.sum(rvsn == 2) / float(N) | |
msg = "Frequency was %f, should be < 0.23" % freq | |
assert_(freq < 0.23, msg) | |
def test_permutation_longs(self): | |
np.random.seed(1234) | |
a = np.random.permutation(12) | |
np.random.seed(1234) | |
b = np.random.permutation(long(12)) | |
assert_array_equal(a, b) | |
def test_randint_range(self): | |
# Test for ticket #1690 | |
lmax = np.iinfo('l').max | |
lmin = np.iinfo('l').min | |
try: | |
random.randint(lmin, lmax) | |
except: | |
raise AssertionError | |
def test_shuffle_mixed_dimension(self): | |
# Test for trac ticket #2074 | |
for t in [[1, 2, 3, None], | |
[(1, 1), (2, 2), (3, 3), None], | |
[1, (2, 2), (3, 3), None], | |
[(1, 1), 2, 3, None]]: | |
np.random.seed(12345) | |
shuffled = list(t) | |
random.shuffle(shuffled) | |
assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]]) | |
def test_call_within_randomstate(self): | |
# Check that custom RandomState does not call into global state | |
m = np.random.RandomState() | |
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) | |
for i in range(3): | |
np.random.seed(i) | |
m.seed(4321) | |
# If m.state is not honored, the result will change | |
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res) | |
def test_multivariate_normal_size_types(self): | |
# Test for multivariate_normal issue with 'size' argument. | |
# Check that the multivariate_normal size argument can be a | |
# numpy integer. | |
np.random.multivariate_normal([0], [[0]], size=1) | |
np.random.multivariate_normal([0], [[0]], size=np.int_(1)) | |
np.random.multivariate_normal([0], [[0]], size=np.int64(1)) | |
if __name__ == "__main__": | |
run_module_suite() | |