JayKimDevolved's picture
JayKimDevolved/deepseek
c011401 verified
/* Copyright 2005 Robert Kern ([email protected])
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _RK_DISTR_
#define _RK_DISTR_
#include "randomkit.h"
#ifdef __cplusplus
extern "C" {
#endif
/* References:
*
* Devroye, Luc. _Non-Uniform Random Variate Generation_.
* Springer-Verlag, New York, 1986.
* http://cgm.cs.mcgill.ca/~luc/rnbookindex.html
*
* Kachitvichyanukul, V. and Schmeiser, B. W. Binomial Random Variate
* Generation. Communications of the ACM, 31, 2 (February, 1988) 216.
*
* Hoermann, W. The Transformed Rejection Method for Generating Poisson Random
* Variables. Insurance: Mathematics and Economics, (to appear)
* http://citeseer.csail.mit.edu/151115.html
*
* Marsaglia, G. and Tsang, W. W. A Simple Method for Generating Gamma
* Variables. ACM Transactions on Mathematical Software, Vol. 26, No. 3,
* September 2000, Pages 363–372.
*/
/* Normal distribution with mean=loc and standard deviation=scale. */
extern double rk_normal(rk_state *state, double loc, double scale);
/* Standard exponential distribution (mean=1) computed by inversion of the
* CDF. */
extern double rk_standard_exponential(rk_state *state);
/* Exponential distribution with mean=scale. */
extern double rk_exponential(rk_state *state, double scale);
/* Uniform distribution on interval [loc, loc+scale). */
extern double rk_uniform(rk_state *state, double loc, double scale);
/* Standard gamma distribution with shape parameter.
* When shape < 1, the algorithm given by (Devroye p. 304) is used.
* When shape == 1, a Exponential variate is generated.
* When shape > 1, the small and fast method of (Marsaglia and Tsang 2000)
* is used.
*/
extern double rk_standard_gamma(rk_state *state, double shape);
/* Gamma distribution with shape and scale. */
extern double rk_gamma(rk_state *state, double shape, double scale);
/* Beta distribution computed by combining two gamma variates (Devroye p. 432).
*/
extern double rk_beta(rk_state *state, double a, double b);
/* Chi^2 distribution computed by transforming a gamma variate (it being a
* special case Gamma(df/2, 2)). */
extern double rk_chisquare(rk_state *state, double df);
/* Noncentral Chi^2 distribution computed by modifying a Chi^2 variate. */
extern double rk_noncentral_chisquare(rk_state *state, double df, double nonc);
/* F distribution computed by taking the ratio of two Chi^2 variates. */
extern double rk_f(rk_state *state, double dfnum, double dfden);
/* Noncentral F distribution computed by taking the ratio of a noncentral Chi^2
* and a Chi^2 variate. */
extern double rk_noncentral_f(rk_state *state, double dfnum, double dfden, double nonc);
/* Binomial distribution with n Bernoulli trials with success probability p.
* When n*p <= 30, the "Second waiting time method" given by (Devroye p. 525) is
* used. Otherwise, the BTPE algorithm of (Kachitvichyanukul and Schmeiser 1988)
* is used. */
extern long rk_binomial(rk_state *state, long n, double p);
/* Binomial distribution using BTPE. */
extern long rk_binomial_btpe(rk_state *state, long n, double p);
/* Binomial distribution using inversion and chop-down */
extern long rk_binomial_inversion(rk_state *state, long n, double p);
/* Negative binomial distribution computed by generating a Gamma(n, (1-p)/p)
* variate Y and returning a Poisson(Y) variate (Devroye p. 543). */
extern long rk_negative_binomial(rk_state *state, double n, double p);
/* Poisson distribution with mean=lam.
* When lam < 10, a basic algorithm using repeated multiplications of uniform
* variates is used (Devroye p. 504).
* When lam >= 10, algorithm PTRS from (Hoermann 1992) is used.
*/
extern long rk_poisson(rk_state *state, double lam);
/* Poisson distribution computed by repeated multiplication of uniform variates.
*/
extern long rk_poisson_mult(rk_state *state, double lam);
/* Poisson distribution computer by the PTRS algorithm. */
extern long rk_poisson_ptrs(rk_state *state, double lam);
/* Standard Cauchy distribution computed by dividing standard gaussians
* (Devroye p. 451). */
extern double rk_standard_cauchy(rk_state *state);
/* Standard t-distribution with df degrees of freedom (Devroye p. 445 as
* corrected in the Errata). */
extern double rk_standard_t(rk_state *state, double df);
/* von Mises circular distribution with center mu and shape kappa on [-pi,pi]
* (Devroye p. 476 as corrected in the Errata). */
extern double rk_vonmises(rk_state *state, double mu, double kappa);
/* Pareto distribution via inversion (Devroye p. 262) */
extern double rk_pareto(rk_state *state, double a);
/* Weibull distribution via inversion (Devroye p. 262) */
extern double rk_weibull(rk_state *state, double a);
/* Power distribution via inversion (Devroye p. 262) */
extern double rk_power(rk_state *state, double a);
/* Laplace distribution */
extern double rk_laplace(rk_state *state, double loc, double scale);
/* Gumbel distribution */
extern double rk_gumbel(rk_state *state, double loc, double scale);
/* Logistic distribution */
extern double rk_logistic(rk_state *state, double loc, double scale);
/* Log-normal distribution */
extern double rk_lognormal(rk_state *state, double mean, double sigma);
/* Rayleigh distribution */
extern double rk_rayleigh(rk_state *state, double mode);
/* Wald distribution */
extern double rk_wald(rk_state *state, double mean, double scale);
/* Zipf distribution */
extern long rk_zipf(rk_state *state, double a);
/* Geometric distribution */
extern long rk_geometric(rk_state *state, double p);
extern long rk_geometric_search(rk_state *state, double p);
extern long rk_geometric_inversion(rk_state *state, double p);
/* Hypergeometric distribution */
extern long rk_hypergeometric(rk_state *state, long good, long bad, long sample);
extern long rk_hypergeometric_hyp(rk_state *state, long good, long bad, long sample);
extern long rk_hypergeometric_hrua(rk_state *state, long good, long bad, long sample);
/* Triangular distribution */
extern double rk_triangular(rk_state *state, double left, double mode, double right);
/* Logarithmic series distribution */
extern long rk_logseries(rk_state *state, double p);
#ifdef __cplusplus
}
#endif
#endif /* _RK_DISTR_ */