tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/random
/mtrand
/distributions.c
/* Copyright 2005 Robert Kern ([email protected]) | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a | |
* copy of this software and associated documentation files (the | |
* "Software"), to deal in the Software without restriction, including | |
* without limitation the rights to use, copy, modify, merge, publish, | |
* distribute, sublicense, and/or sell copies of the Software, and to | |
* permit persons to whom the Software is furnished to do so, subject to | |
* the following conditions: | |
* | |
* The above copyright notice and this permission notice shall be included | |
* in all copies or substantial portions of the Software. | |
* | |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | |
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | |
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | |
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
*/ | |
/* The implementations of rk_hypergeometric_hyp(), rk_hypergeometric_hrua(), | |
* and rk_triangular() were adapted from Ivan Frohne's rv.py which has this | |
* license: | |
* | |
* Copyright 1998 by Ivan Frohne; Wasilla, Alaska, U.S.A. | |
* All Rights Reserved | |
* | |
* Permission to use, copy, modify and distribute this software and its | |
* documentation for any purpose, free of charge, is granted subject to the | |
* following conditions: | |
* The above copyright notice and this permission notice shall be included in | |
* all copies or substantial portions of the software. | |
* | |
* THE SOFTWARE AND DOCUMENTATION IS PROVIDED WITHOUT WARRANTY OF ANY KIND, | |
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO MERCHANTABILITY, FITNESS | |
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR | |
* OR COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM OR DAMAGES IN A CONTRACT | |
* ACTION, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | |
* SOFTWARE OR ITS DOCUMENTATION. | |
*/ | |
/* | |
* log-gamma function to support some of these distributions. The | |
* algorithm comes from SPECFUN by Shanjie Zhang and Jianming Jin and their | |
* book "Computation of Special Functions", 1996, John Wiley & Sons, Inc. | |
*/ | |
static double loggam(double x) | |
{ | |
double x0, x2, xp, gl, gl0; | |
long k, n; | |
static double a[10] = {8.333333333333333e-02,-2.777777777777778e-03, | |
7.936507936507937e-04,-5.952380952380952e-04, | |
8.417508417508418e-04,-1.917526917526918e-03, | |
6.410256410256410e-03,-2.955065359477124e-02, | |
1.796443723688307e-01,-1.39243221690590e+00}; | |
x0 = x; | |
n = 0; | |
if ((x == 1.0) || (x == 2.0)) | |
{ | |
return 0.0; | |
} | |
else if (x <= 7.0) | |
{ | |
n = (long)(7 - x); | |
x0 = x + n; | |
} | |
x2 = 1.0/(x0*x0); | |
xp = 2*M_PI; | |
gl0 = a[9]; | |
for (k=8; k>=0; k--) | |
{ | |
gl0 *= x2; | |
gl0 += a[k]; | |
} | |
gl = gl0/x0 + 0.5*log(xp) + (x0-0.5)*log(x0) - x0; | |
if (x <= 7.0) | |
{ | |
for (k=1; k<=n; k++) | |
{ | |
gl -= log(x0-1.0); | |
x0 -= 1.0; | |
} | |
} | |
return gl; | |
} | |
double rk_normal(rk_state *state, double loc, double scale) | |
{ | |
return loc + scale*rk_gauss(state); | |
} | |
double rk_standard_exponential(rk_state *state) | |
{ | |
/* We use -log(1-U) since U is [0, 1) */ | |
return -log(1.0 - rk_double(state)); | |
} | |
double rk_exponential(rk_state *state, double scale) | |
{ | |
return scale * rk_standard_exponential(state); | |
} | |
double rk_uniform(rk_state *state, double loc, double scale) | |
{ | |
return loc + scale*rk_double(state); | |
} | |
double rk_standard_gamma(rk_state *state, double shape) | |
{ | |
double b, c; | |
double U, V, X, Y; | |
if (shape == 1.0) | |
{ | |
return rk_standard_exponential(state); | |
} | |
else if (shape < 1.0) | |
{ | |
for (;;) | |
{ | |
U = rk_double(state); | |
V = rk_standard_exponential(state); | |
if (U <= 1.0 - shape) | |
{ | |
X = pow(U, 1./shape); | |
if (X <= V) | |
{ | |
return X; | |
} | |
} | |
else | |
{ | |
Y = -log((1-U)/shape); | |
X = pow(1.0 - shape + shape*Y, 1./shape); | |
if (X <= (V + Y)) | |
{ | |
return X; | |
} | |
} | |
} | |
} | |
else | |
{ | |
b = shape - 1./3.; | |
c = 1./sqrt(9*b); | |
for (;;) | |
{ | |
do | |
{ | |
X = rk_gauss(state); | |
V = 1.0 + c*X; | |
} while (V <= 0.0); | |
V = V*V*V; | |
U = rk_double(state); | |
if (U < 1.0 - 0.0331*(X*X)*(X*X)) return (b*V); | |
if (log(U) < 0.5*X*X + b*(1. - V + log(V))) return (b*V); | |
} | |
} | |
} | |
double rk_gamma(rk_state *state, double shape, double scale) | |
{ | |
return scale * rk_standard_gamma(state, shape); | |
} | |
double rk_beta(rk_state *state, double a, double b) | |
{ | |
double Ga, Gb; | |
if ((a <= 1.0) && (b <= 1.0)) | |
{ | |
double U, V, X, Y; | |
/* Use Jonk's algorithm */ | |
while (1) | |
{ | |
U = rk_double(state); | |
V = rk_double(state); | |
X = pow(U, 1.0/a); | |
Y = pow(V, 1.0/b); | |
if ((X + Y) <= 1.0) | |
{ | |
return X / (X + Y); | |
} | |
} | |
} | |
else | |
{ | |
Ga = rk_standard_gamma(state, a); | |
Gb = rk_standard_gamma(state, b); | |
return Ga/(Ga + Gb); | |
} | |
} | |
double rk_chisquare(rk_state *state, double df) | |
{ | |
return 2.0*rk_standard_gamma(state, df/2.0); | |
} | |
double rk_noncentral_chisquare(rk_state *state, double df, double nonc) | |
{ | |
double Chi2, N; | |
Chi2 = rk_chisquare(state, df-1); | |
N = rk_gauss(state) + sqrt(nonc); | |
return Chi2 + N*N; | |
} | |
double rk_f(rk_state *state, double dfnum, double dfden) | |
{ | |
return ((rk_chisquare(state, dfnum) * dfden) / | |
(rk_chisquare(state, dfden) * dfnum)); | |
} | |
double rk_noncentral_f(rk_state *state, double dfnum, double dfden, double nonc) | |
{ | |
double t = rk_noncentral_chisquare(state, dfnum, nonc) * dfden; | |
return t / (rk_chisquare(state, dfden) * dfnum); | |
} | |
long rk_binomial_btpe(rk_state *state, long n, double p) | |
{ | |
double r,q,fm,p1,xm,xl,xr,c,laml,lamr,p2,p3,p4; | |
double a,u,v,s,F,rho,t,A,nrq,x1,x2,f1,f2,z,z2,w,w2,x; | |
long m,y,k,i; | |
if (!(state->has_binomial) || | |
(state->nsave != n) || | |
(state->psave != p)) | |
{ | |
/* initialize */ | |
state->nsave = n; | |
state->psave = p; | |
state->has_binomial = 1; | |
state->r = r = min(p, 1.0-p); | |
state->q = q = 1.0 - r; | |
state->fm = fm = n*r+r; | |
state->m = m = (long)floor(state->fm); | |
state->p1 = p1 = floor(2.195*sqrt(n*r*q)-4.6*q) + 0.5; | |
state->xm = xm = m + 0.5; | |
state->xl = xl = xm - p1; | |
state->xr = xr = xm + p1; | |
state->c = c = 0.134 + 20.5/(15.3 + m); | |
a = (fm - xl)/(fm-xl*r); | |
state->laml = laml = a*(1.0 + a/2.0); | |
a = (xr - fm)/(xr*q); | |
state->lamr = lamr = a*(1.0 + a/2.0); | |
state->p2 = p2 = p1*(1.0 + 2.0*c); | |
state->p3 = p3 = p2 + c/laml; | |
state->p4 = p4 = p3 + c/lamr; | |
} | |
else | |
{ | |
r = state->r; | |
q = state->q; | |
fm = state->fm; | |
m = state->m; | |
p1 = state->p1; | |
xm = state->xm; | |
xl = state->xl; | |
xr = state->xr; | |
c = state->c; | |
laml = state->laml; | |
lamr = state->lamr; | |
p2 = state->p2; | |
p3 = state->p3; | |
p4 = state->p4; | |
} | |
/* sigh ... */ | |
Step10: | |
nrq = n*r*q; | |
u = rk_double(state)*p4; | |
v = rk_double(state); | |
if (u > p1) goto Step20; | |
y = (long)floor(xm - p1*v + u); | |
goto Step60; | |
Step20: | |
if (u > p2) goto Step30; | |
x = xl + (u - p1)/c; | |
v = v*c + 1.0 - fabs(m - x + 0.5)/p1; | |
if (v > 1.0) goto Step10; | |
y = (long)floor(x); | |
goto Step50; | |
Step30: | |
if (u > p3) goto Step40; | |
y = (long)floor(xl + log(v)/laml); | |
if (y < 0) goto Step10; | |
v = v*(u-p2)*laml; | |
goto Step50; | |
Step40: | |
y = (long)floor(xr - log(v)/lamr); | |
if (y > n) goto Step10; | |
v = v*(u-p3)*lamr; | |
Step50: | |
k = fabs(y - m); | |
if ((k > 20) && (k < ((nrq)/2.0 - 1))) goto Step52; | |
s = r/q; | |
a = s*(n+1); | |
F = 1.0; | |
if (m < y) | |
{ | |
for (i=m+1; i<=y; i++) | |
{ | |
F *= (a/i - s); | |
} | |
} | |
else if (m > y) | |
{ | |
for (i=y+1; i<=m; i++) | |
{ | |
F /= (a/i - s); | |
} | |
} | |
if (v > F) goto Step10; | |
goto Step60; | |
Step52: | |
rho = (k/(nrq))*((k*(k/3.0 + 0.625) + 0.16666666666666666)/nrq + 0.5); | |
t = -k*k/(2*nrq); | |
A = log(v); | |
if (A < (t - rho)) goto Step60; | |
if (A > (t + rho)) goto Step10; | |
x1 = y+1; | |
f1 = m+1; | |
z = n+1-m; | |
w = n-y+1; | |
x2 = x1*x1; | |
f2 = f1*f1; | |
z2 = z*z; | |
w2 = w*w; | |
if (A > (xm*log(f1/x1) | |
+ (n-m+0.5)*log(z/w) | |
+ (y-m)*log(w*r/(x1*q)) | |
+ (13680.-(462.-(132.-(99.-140./f2)/f2)/f2)/f2)/f1/166320. | |
+ (13680.-(462.-(132.-(99.-140./z2)/z2)/z2)/z2)/z/166320. | |
+ (13680.-(462.-(132.-(99.-140./x2)/x2)/x2)/x2)/x1/166320. | |
+ (13680.-(462.-(132.-(99.-140./w2)/w2)/w2)/w2)/w/166320.)) | |
{ | |
goto Step10; | |
} | |
Step60: | |
if (p > 0.5) | |
{ | |
y = n - y; | |
} | |
return y; | |
} | |
long rk_binomial_inversion(rk_state *state, long n, double p) | |
{ | |
double q, qn, np, px, U; | |
long X, bound; | |
if (!(state->has_binomial) || | |
(state->nsave != n) || | |
(state->psave != p)) | |
{ | |
state->nsave = n; | |
state->psave = p; | |
state->has_binomial = 1; | |
state->q = q = 1.0 - p; | |
state->r = qn = exp(n * log(q)); | |
state->c = np = n*p; | |
state->m = bound = min(n, np + 10.0*sqrt(np*q + 1)); | |
} else | |
{ | |
q = state->q; | |
qn = state->r; | |
np = state->c; | |
bound = state->m; | |
} | |
X = 0; | |
px = qn; | |
U = rk_double(state); | |
while (U > px) | |
{ | |
X++; | |
if (X > bound) | |
{ | |
X = 0; | |
px = qn; | |
U = rk_double(state); | |
} else | |
{ | |
U -= px; | |
px = ((n-X+1) * p * px)/(X*q); | |
} | |
} | |
return X; | |
} | |
long rk_binomial(rk_state *state, long n, double p) | |
{ | |
double q; | |
if (p <= 0.5) | |
{ | |
if (p*n <= 30.0) | |
{ | |
return rk_binomial_inversion(state, n, p); | |
} | |
else | |
{ | |
return rk_binomial_btpe(state, n, p); | |
} | |
} | |
else | |
{ | |
q = 1.0-p; | |
if (q*n <= 30.0) | |
{ | |
return n - rk_binomial_inversion(state, n, q); | |
} | |
else | |
{ | |
return n - rk_binomial_btpe(state, n, q); | |
} | |
} | |
} | |
long rk_negative_binomial(rk_state *state, double n, double p) | |
{ | |
double Y; | |
Y = rk_gamma(state, n, (1-p)/p); | |
return rk_poisson(state, Y); | |
} | |
long rk_poisson_mult(rk_state *state, double lam) | |
{ | |
long X; | |
double prod, U, enlam; | |
enlam = exp(-lam); | |
X = 0; | |
prod = 1.0; | |
while (1) | |
{ | |
U = rk_double(state); | |
prod *= U; | |
if (prod > enlam) | |
{ | |
X += 1; | |
} | |
else | |
{ | |
return X; | |
} | |
} | |
} | |
long rk_poisson_ptrs(rk_state *state, double lam) | |
{ | |
long k; | |
double U, V, slam, loglam, a, b, invalpha, vr, us; | |
slam = sqrt(lam); | |
loglam = log(lam); | |
b = 0.931 + 2.53*slam; | |
a = -0.059 + 0.02483*b; | |
invalpha = 1.1239 + 1.1328/(b-3.4); | |
vr = 0.9277 - 3.6224/(b-2); | |
while (1) | |
{ | |
U = rk_double(state) - 0.5; | |
V = rk_double(state); | |
us = 0.5 - fabs(U); | |
k = (long)floor((2*a/us + b)*U + lam + 0.43); | |
if ((us >= 0.07) && (V <= vr)) | |
{ | |
return k; | |
} | |
if ((k < 0) || | |
((us < 0.013) && (V > us))) | |
{ | |
continue; | |
} | |
if ((log(V) + log(invalpha) - log(a/(us*us)+b)) <= | |
(-lam + k*loglam - loggam(k+1))) | |
{ | |
return k; | |
} | |
} | |
} | |
long rk_poisson(rk_state *state, double lam) | |
{ | |
if (lam >= 10) | |
{ | |
return rk_poisson_ptrs(state, lam); | |
} | |
else if (lam == 0) | |
{ | |
return 0; | |
} | |
else | |
{ | |
return rk_poisson_mult(state, lam); | |
} | |
} | |
double rk_standard_cauchy(rk_state *state) | |
{ | |
return rk_gauss(state) / rk_gauss(state); | |
} | |
double rk_standard_t(rk_state *state, double df) | |
{ | |
double N, G, X; | |
N = rk_gauss(state); | |
G = rk_standard_gamma(state, df/2); | |
X = sqrt(df/2)*N/sqrt(G); | |
return X; | |
} | |
/* Uses the rejection algorithm compared against the wrapped Cauchy | |
distribution suggested by Best and Fisher and documented in | |
Chapter 9 of Luc's Non-Uniform Random Variate Generation. | |
http://cg.scs.carleton.ca/~luc/rnbookindex.html | |
(but corrected to match the algorithm in R and Python) | |
*/ | |
double rk_vonmises(rk_state *state, double mu, double kappa) | |
{ | |
double s; | |
double U, V, W, Y, Z; | |
double result, mod; | |
int neg; | |
if (kappa < 1e-8) | |
{ | |
return M_PI * (2*rk_double(state)-1); | |
} | |
else | |
{ | |
/* with double precision rho is zero until 1.4e-8 */ | |
if (kappa < 1e-5) { | |
/* | |
* second order taylor expansion around kappa = 0 | |
* precise until relatively large kappas as second order is 0 | |
*/ | |
s = (1./kappa + kappa); | |
} | |
else { | |
double r = 1 + sqrt(1 + 4*kappa*kappa); | |
double rho = (r - sqrt(2*r)) / (2*kappa); | |
s = (1 + rho*rho)/(2*rho); | |
} | |
while (1) | |
{ | |
U = rk_double(state); | |
Z = cos(M_PI*U); | |
W = (1 + s*Z)/(s + Z); | |
Y = kappa * (s - W); | |
V = rk_double(state); | |
if ((Y*(2-Y) - V >= 0) || (log(Y/V)+1 - Y >= 0)) | |
{ | |
break; | |
} | |
} | |
U = rk_double(state); | |
result = acos(W); | |
if (U < 0.5) | |
{ | |
result = -result; | |
} | |
result += mu; | |
neg = (result < 0); | |
mod = fabs(result); | |
mod = (fmod(mod+M_PI, 2*M_PI)-M_PI); | |
if (neg) | |
{ | |
mod *= -1; | |
} | |
return mod; | |
} | |
} | |
double rk_pareto(rk_state *state, double a) | |
{ | |
return exp(rk_standard_exponential(state)/a) - 1; | |
} | |
double rk_weibull(rk_state *state, double a) | |
{ | |
return pow(rk_standard_exponential(state), 1./a); | |
} | |
double rk_power(rk_state *state, double a) | |
{ | |
return pow(1 - exp(-rk_standard_exponential(state)), 1./a); | |
} | |
double rk_laplace(rk_state *state, double loc, double scale) | |
{ | |
double U; | |
U = rk_double(state); | |
if (U < 0.5) | |
{ | |
U = loc + scale * log(U + U); | |
} else | |
{ | |
U = loc - scale * log(2.0 - U - U); | |
} | |
return U; | |
} | |
double rk_gumbel(rk_state *state, double loc, double scale) | |
{ | |
double U; | |
U = 1.0 - rk_double(state); | |
return loc - scale * log(-log(U)); | |
} | |
double rk_logistic(rk_state *state, double loc, double scale) | |
{ | |
double U; | |
U = rk_double(state); | |
return loc + scale * log(U/(1.0 - U)); | |
} | |
double rk_lognormal(rk_state *state, double mean, double sigma) | |
{ | |
return exp(rk_normal(state, mean, sigma)); | |
} | |
double rk_rayleigh(rk_state *state, double mode) | |
{ | |
return mode*sqrt(-2.0 * log(1.0 - rk_double(state))); | |
} | |
double rk_wald(rk_state *state, double mean, double scale) | |
{ | |
double U, X, Y; | |
double mu_2l; | |
mu_2l = mean / (2*scale); | |
Y = rk_gauss(state); | |
Y = mean*Y*Y; | |
X = mean + mu_2l*(Y - sqrt(4*scale*Y + Y*Y)); | |
U = rk_double(state); | |
if (U <= mean/(mean+X)) | |
{ | |
return X; | |
} else | |
{ | |
return mean*mean/X; | |
} | |
} | |
long rk_zipf(rk_state *state, double a) | |
{ | |
double T, U, V; | |
long X; | |
double am1, b; | |
am1 = a - 1.0; | |
b = pow(2.0, am1); | |
do | |
{ | |
U = 1.0-rk_double(state); | |
V = rk_double(state); | |
X = (long)floor(pow(U, -1.0/am1)); | |
/* The real result may be above what can be represented in a signed | |
* long. It will get casted to -sys.maxint-1. Since this is | |
* a straightforward rejection algorithm, we can just reject this value | |
* in the rejection condition below. This function then models a Zipf | |
* distribution truncated to sys.maxint. | |
*/ | |
T = pow(1.0 + 1.0/X, am1); | |
} while (((V*X*(T-1.0)/(b-1.0)) > (T/b)) || X < 1); | |
return X; | |
} | |
long rk_geometric_search(rk_state *state, double p) | |
{ | |
double U; | |
long X; | |
double sum, prod, q; | |
X = 1; | |
sum = prod = p; | |
q = 1.0 - p; | |
U = rk_double(state); | |
while (U > sum) | |
{ | |
prod *= q; | |
sum += prod; | |
X++; | |
} | |
return X; | |
} | |
long rk_geometric_inversion(rk_state *state, double p) | |
{ | |
return (long)ceil(log(1.0-rk_double(state))/log(1.0-p)); | |
} | |
long rk_geometric(rk_state *state, double p) | |
{ | |
if (p >= 0.333333333333333333333333) | |
{ | |
return rk_geometric_search(state, p); | |
} else | |
{ | |
return rk_geometric_inversion(state, p); | |
} | |
} | |
long rk_hypergeometric_hyp(rk_state *state, long good, long bad, long sample) | |
{ | |
long d1, K, Z; | |
double d2, U, Y; | |
d1 = bad + good - sample; | |
d2 = (double)min(bad, good); | |
Y = d2; | |
K = sample; | |
while (Y > 0.0) | |
{ | |
U = rk_double(state); | |
Y -= (long)floor(U + Y/(d1 + K)); | |
K--; | |
if (K == 0) break; | |
} | |
Z = (long)(d2 - Y); | |
if (good > bad) Z = sample - Z; | |
return Z; | |
} | |
/* D1 = 2*sqrt(2/e) */ | |
/* D2 = 3 - 2*sqrt(3/e) */ | |
long rk_hypergeometric_hrua(rk_state *state, long good, long bad, long sample) | |
{ | |
long mingoodbad, maxgoodbad, popsize, m, d9; | |
double d4, d5, d6, d7, d8, d10, d11; | |
long Z; | |
double T, W, X, Y; | |
mingoodbad = min(good, bad); | |
popsize = good + bad; | |
maxgoodbad = max(good, bad); | |
m = min(sample, popsize - sample); | |
d4 = ((double)mingoodbad) / popsize; | |
d5 = 1.0 - d4; | |
d6 = m*d4 + 0.5; | |
d7 = sqrt((popsize - m) * sample * d4 *d5 / (popsize-1) + 0.5); | |
d8 = D1*d7 + D2; | |
d9 = (long)floor((double)((m+1)*(mingoodbad+1))/(popsize+2)); | |
d10 = (loggam(d9+1) + loggam(mingoodbad-d9+1) + loggam(m-d9+1) + | |
loggam(maxgoodbad-m+d9+1)); | |
d11 = min(min(m, mingoodbad)+1.0, floor(d6+16*d7)); | |
/* 16 for 16-decimal-digit precision in D1 and D2 */ | |
while (1) | |
{ | |
X = rk_double(state); | |
Y = rk_double(state); | |
W = d6 + d8*(Y- 0.5)/X; | |
/* fast rejection: */ | |
if ((W < 0.0) || (W >= d11)) continue; | |
Z = (long)floor(W); | |
T = d10 - (loggam(Z+1) + loggam(mingoodbad-Z+1) + loggam(m-Z+1) + | |
loggam(maxgoodbad-m+Z+1)); | |
/* fast acceptance: */ | |
if ((X*(4.0-X)-3.0) <= T) break; | |
/* fast rejection: */ | |
if (X*(X-T) >= 1) continue; | |
if (2.0*log(X) <= T) break; /* acceptance */ | |
} | |
/* this is a correction to HRUA* by Ivan Frohne in rv.py */ | |
if (good > bad) Z = m - Z; | |
/* another fix from rv.py to allow sample to exceed popsize/2 */ | |
if (m < sample) Z = good - Z; | |
return Z; | |
} | |
long rk_hypergeometric(rk_state *state, long good, long bad, long sample) | |
{ | |
if (sample > 10) | |
{ | |
return rk_hypergeometric_hrua(state, good, bad, sample); | |
} else | |
{ | |
return rk_hypergeometric_hyp(state, good, bad, sample); | |
} | |
} | |
double rk_triangular(rk_state *state, double left, double mode, double right) | |
{ | |
double base, leftbase, ratio, leftprod, rightprod; | |
double U; | |
base = right - left; | |
leftbase = mode - left; | |
ratio = leftbase / base; | |
leftprod = leftbase*base; | |
rightprod = (right - mode)*base; | |
U = rk_double(state); | |
if (U <= ratio) | |
{ | |
return left + sqrt(U*leftprod); | |
} else | |
{ | |
return right - sqrt((1.0 - U) * rightprod); | |
} | |
} | |
long rk_logseries(rk_state *state, double p) | |
{ | |
double q, r, U, V; | |
long result; | |
r = log(1.0 - p); | |
while (1) { | |
V = rk_double(state); | |
if (V >= p) { | |
return 1; | |
} | |
U = rk_double(state); | |
q = 1.0 - exp(r*U); | |
if (V <= q*q) { | |
result = (long)floor(1 + log(V)/log(q)); | |
if (result < 1) { | |
continue; | |
} | |
else { | |
return result; | |
} | |
} | |
if (V >= q) { | |
return 1; | |
} | |
return 2; | |
} | |
} | |