tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/ma
/tests
/test_extras.py
# pylint: disable-msg=W0611, W0612, W0511 | |
"""Tests suite for MaskedArray. | |
Adapted from the original test_ma by Pierre Gerard-Marchant | |
:author: Pierre Gerard-Marchant | |
:contact: pierregm_at_uga_dot_edu | |
:version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ | |
""" | |
from __future__ import division, absolute_import, print_function | |
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" | |
__version__ = '1.0' | |
__revision__ = "$Revision: 3473 $" | |
__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' | |
import numpy as np | |
from numpy.testing import TestCase, run_module_suite | |
from numpy.ma.testutils import (rand, assert_, assert_array_equal, | |
assert_equal, assert_almost_equal) | |
from numpy.ma.core import (array, arange, masked, MaskedArray, masked_array, | |
getmaskarray, shape, nomask, ones, zeros, count) | |
from numpy.ma.extras import ( | |
atleast_2d, mr_, dot, polyfit, | |
cov, corrcoef, median, average, | |
unique, setxor1d, setdiff1d, union1d, intersect1d, in1d, ediff1d, | |
apply_over_axes, apply_along_axis, | |
compress_rowcols, mask_rowcols, | |
clump_masked, clump_unmasked, | |
flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, | |
masked_all, masked_all_like) | |
class TestGeneric(TestCase): | |
# | |
def test_masked_all(self): | |
# Tests masked_all | |
# Standard dtype | |
test = masked_all((2,), dtype=float) | |
control = array([1, 1], mask=[1, 1], dtype=float) | |
assert_equal(test, control) | |
# Flexible dtype | |
dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) | |
test = masked_all((2,), dtype=dt) | |
control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) | |
assert_equal(test, control) | |
test = masked_all((2, 2), dtype=dt) | |
control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]], | |
mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]], | |
dtype=dt) | |
assert_equal(test, control) | |
# Nested dtype | |
dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) | |
test = masked_all((2,), dtype=dt) | |
control = array([(1, (1, 1)), (1, (1, 1))], | |
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) | |
assert_equal(test, control) | |
test = masked_all((2,), dtype=dt) | |
control = array([(1, (1, 1)), (1, (1, 1))], | |
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) | |
assert_equal(test, control) | |
test = masked_all((1, 1), dtype=dt) | |
control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt) | |
assert_equal(test, control) | |
def test_masked_all_like(self): | |
# Tests masked_all | |
# Standard dtype | |
base = array([1, 2], dtype=float) | |
test = masked_all_like(base) | |
control = array([1, 1], mask=[1, 1], dtype=float) | |
assert_equal(test, control) | |
# Flexible dtype | |
dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) | |
base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) | |
test = masked_all_like(base) | |
control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt) | |
assert_equal(test, control) | |
# Nested dtype | |
dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) | |
control = array([(1, (1, 1)), (1, (1, 1))], | |
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) | |
test = masked_all_like(control) | |
assert_equal(test, control) | |
def test_clump_masked(self): | |
# Test clump_masked | |
a = masked_array(np.arange(10)) | |
a[[0, 1, 2, 6, 8, 9]] = masked | |
# | |
test = clump_masked(a) | |
control = [slice(0, 3), slice(6, 7), slice(8, 10)] | |
assert_equal(test, control) | |
def test_clump_unmasked(self): | |
# Test clump_unmasked | |
a = masked_array(np.arange(10)) | |
a[[0, 1, 2, 6, 8, 9]] = masked | |
test = clump_unmasked(a) | |
control = [slice(3, 6), slice(7, 8), ] | |
assert_equal(test, control) | |
def test_flatnotmasked_contiguous(self): | |
# Test flatnotmasked_contiguous | |
a = arange(10) | |
# No mask | |
test = flatnotmasked_contiguous(a) | |
assert_equal(test, slice(0, a.size)) | |
# Some mask | |
a[(a < 3) | (a > 8) | (a == 5)] = masked | |
test = flatnotmasked_contiguous(a) | |
assert_equal(test, [slice(3, 5), slice(6, 9)]) | |
# | |
a[:] = masked | |
test = flatnotmasked_contiguous(a) | |
assert_equal(test, None) | |
class TestAverage(TestCase): | |
# Several tests of average. Why so many ? Good point... | |
def test_testAverage1(self): | |
# Test of average. | |
ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) | |
assert_equal(2.0, average(ott, axis=0)) | |
assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) | |
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1) | |
assert_equal(2.0, result) | |
self.assertTrue(wts == 4.0) | |
ott[:] = masked | |
assert_equal(average(ott, axis=0).mask, [True]) | |
ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) | |
ott = ott.reshape(2, 2) | |
ott[:, 1] = masked | |
assert_equal(average(ott, axis=0), [2.0, 0.0]) | |
assert_equal(average(ott, axis=1).mask[0], [True]) | |
assert_equal([2., 0.], average(ott, axis=0)) | |
result, wts = average(ott, axis=0, returned=1) | |
assert_equal(wts, [1., 0.]) | |
def test_testAverage2(self): | |
# More tests of average. | |
w1 = [0, 1, 1, 1, 1, 0] | |
w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] | |
x = arange(6, dtype=np.float_) | |
assert_equal(average(x, axis=0), 2.5) | |
assert_equal(average(x, axis=0, weights=w1), 2.5) | |
y = array([arange(6, dtype=np.float_), 2.0 * arange(6)]) | |
assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) | |
assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) | |
assert_equal(average(y, axis=1), | |
[average(x, axis=0), average(x, axis=0) * 2.0]) | |
assert_equal(average(y, None, weights=w2), 20. / 6.) | |
assert_equal(average(y, axis=0, weights=w2), | |
[0., 1., 2., 3., 4., 10.]) | |
assert_equal(average(y, axis=1), | |
[average(x, axis=0), average(x, axis=0) * 2.0]) | |
m1 = zeros(6) | |
m2 = [0, 0, 1, 1, 0, 0] | |
m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] | |
m4 = ones(6) | |
m5 = [0, 1, 1, 1, 1, 1] | |
assert_equal(average(masked_array(x, m1), axis=0), 2.5) | |
assert_equal(average(masked_array(x, m2), axis=0), 2.5) | |
assert_equal(average(masked_array(x, m4), axis=0).mask, [True]) | |
assert_equal(average(masked_array(x, m5), axis=0), 0.0) | |
assert_equal(count(average(masked_array(x, m4), axis=0)), 0) | |
z = masked_array(y, m3) | |
assert_equal(average(z, None), 20. / 6.) | |
assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) | |
assert_equal(average(z, axis=1), [2.5, 5.0]) | |
assert_equal(average(z, axis=0, weights=w2), | |
[0., 1., 99., 99., 4.0, 10.0]) | |
def test_testAverage3(self): | |
# Yet more tests of average! | |
a = arange(6) | |
b = arange(6) * 3 | |
r1, w1 = average([[a, b], [b, a]], axis=1, returned=1) | |
assert_equal(shape(r1), shape(w1)) | |
assert_equal(r1.shape, w1.shape) | |
r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=1) | |
assert_equal(shape(w2), shape(r2)) | |
r2, w2 = average(ones((2, 2, 3)), returned=1) | |
assert_equal(shape(w2), shape(r2)) | |
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1) | |
assert_equal(shape(w2), shape(r2)) | |
a2d = array([[1, 2], [0, 4]], float) | |
a2dm = masked_array(a2d, [[False, False], [True, False]]) | |
a2da = average(a2d, axis=0) | |
assert_equal(a2da, [0.5, 3.0]) | |
a2dma = average(a2dm, axis=0) | |
assert_equal(a2dma, [1.0, 3.0]) | |
a2dma = average(a2dm, axis=None) | |
assert_equal(a2dma, 7. / 3.) | |
a2dma = average(a2dm, axis=1) | |
assert_equal(a2dma, [1.5, 4.0]) | |
def test_onintegers_with_mask(self): | |
# Test average on integers with mask | |
a = average(array([1, 2])) | |
assert_equal(a, 1.5) | |
a = average(array([1, 2, 3, 4], mask=[False, False, True, True])) | |
assert_equal(a, 1.5) | |
def test_complex(self): | |
# Test with complex data. | |
# (Regression test for https://github.com/numpy/numpy/issues/2684) | |
mask = np.array([[0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0]], dtype=bool) | |
a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j], | |
[9j, 0+1j, 2+3j, 4+5j, 7+7j]], | |
mask=mask) | |
av = average(a) | |
expected = np.average(a.compressed()) | |
assert_almost_equal(av.real, expected.real) | |
assert_almost_equal(av.imag, expected.imag) | |
av0 = average(a, axis=0) | |
expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j | |
assert_almost_equal(av0.real, expected0.real) | |
assert_almost_equal(av0.imag, expected0.imag) | |
av1 = average(a, axis=1) | |
expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j | |
assert_almost_equal(av1.real, expected1.real) | |
assert_almost_equal(av1.imag, expected1.imag) | |
# Test with the 'weights' argument. | |
wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5], | |
[1.0, 1.0, 1.0, 1.0, 1.0]]) | |
wav = average(a, weights=wts) | |
expected = np.average(a.compressed(), weights=wts[~mask]) | |
assert_almost_equal(wav.real, expected.real) | |
assert_almost_equal(wav.imag, expected.imag) | |
wav0 = average(a, weights=wts, axis=0) | |
expected0 = (average(a.real, weights=wts, axis=0) + | |
average(a.imag, weights=wts, axis=0)*1j) | |
assert_almost_equal(wav0.real, expected0.real) | |
assert_almost_equal(wav0.imag, expected0.imag) | |
wav1 = average(a, weights=wts, axis=1) | |
expected1 = (average(a.real, weights=wts, axis=1) + | |
average(a.imag, weights=wts, axis=1)*1j) | |
assert_almost_equal(wav1.real, expected1.real) | |
assert_almost_equal(wav1.imag, expected1.imag) | |
class TestConcatenator(TestCase): | |
# Tests for mr_, the equivalent of r_ for masked arrays. | |
def test_1d(self): | |
# Tests mr_ on 1D arrays. | |
assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6])) | |
b = ones(5) | |
m = [1, 0, 0, 0, 0] | |
d = masked_array(b, mask=m) | |
c = mr_[d, 0, 0, d] | |
self.assertTrue(isinstance(c, MaskedArray)) | |
assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) | |
assert_array_equal(c.mask, mr_[m, 0, 0, m]) | |
def test_2d(self): | |
# Tests mr_ on 2D arrays. | |
a_1 = rand(5, 5) | |
a_2 = rand(5, 5) | |
m_1 = np.round_(rand(5, 5), 0) | |
m_2 = np.round_(rand(5, 5), 0) | |
b_1 = masked_array(a_1, mask=m_1) | |
b_2 = masked_array(a_2, mask=m_2) | |
# append columns | |
d = mr_['1', b_1, b_2] | |
self.assertTrue(d.shape == (5, 10)) | |
assert_array_equal(d[:, :5], b_1) | |
assert_array_equal(d[:, 5:], b_2) | |
assert_array_equal(d.mask, np.r_['1', m_1, m_2]) | |
d = mr_[b_1, b_2] | |
self.assertTrue(d.shape == (10, 5)) | |
assert_array_equal(d[:5,:], b_1) | |
assert_array_equal(d[5:,:], b_2) | |
assert_array_equal(d.mask, np.r_[m_1, m_2]) | |
class TestNotMasked(TestCase): | |
# Tests notmasked_edges and notmasked_contiguous. | |
def test_edges(self): | |
# Tests unmasked_edges | |
data = masked_array(np.arange(25).reshape(5, 5), | |
mask=[[0, 0, 1, 0, 0], | |
[0, 0, 0, 1, 1], | |
[1, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0], | |
[1, 1, 1, 0, 0]],) | |
test = notmasked_edges(data, None) | |
assert_equal(test, [0, 24]) | |
test = notmasked_edges(data, 0) | |
assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) | |
assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)]) | |
test = notmasked_edges(data, 1) | |
assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)]) | |
assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)]) | |
# | |
test = notmasked_edges(data.data, None) | |
assert_equal(test, [0, 24]) | |
test = notmasked_edges(data.data, 0) | |
assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)]) | |
assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)]) | |
test = notmasked_edges(data.data, -1) | |
assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)]) | |
assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)]) | |
# | |
data[-2] = masked | |
test = notmasked_edges(data, 0) | |
assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) | |
assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)]) | |
test = notmasked_edges(data, -1) | |
assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)]) | |
assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)]) | |
def test_contiguous(self): | |
# Tests notmasked_contiguous | |
a = masked_array(np.arange(24).reshape(3, 8), | |
mask=[[0, 0, 0, 0, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1, 1, 1], | |
[0, 0, 0, 0, 0, 0, 1, 0], ]) | |
tmp = notmasked_contiguous(a, None) | |
assert_equal(tmp[-1], slice(23, 24, None)) | |
assert_equal(tmp[-2], slice(16, 22, None)) | |
assert_equal(tmp[-3], slice(0, 4, None)) | |
# | |
tmp = notmasked_contiguous(a, 0) | |
self.assertTrue(len(tmp[-1]) == 1) | |
self.assertTrue(tmp[-2] is None) | |
assert_equal(tmp[-3], tmp[-1]) | |
self.assertTrue(len(tmp[0]) == 2) | |
# | |
tmp = notmasked_contiguous(a, 1) | |
assert_equal(tmp[0][-1], slice(0, 4, None)) | |
self.assertTrue(tmp[1] is None) | |
assert_equal(tmp[2][-1], slice(7, 8, None)) | |
assert_equal(tmp[2][-2], slice(0, 6, None)) | |
class Test2DFunctions(TestCase): | |
# Tests 2D functions | |
def test_compress2d(self): | |
# Tests compress2d | |
x = array(np.arange(9).reshape(3, 3), | |
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) | |
assert_equal(compress_rowcols(x), [[4, 5], [7, 8]]) | |
assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]]) | |
assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]]) | |
x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(compress_rowcols(x), [[0, 2], [6, 8]]) | |
assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]]) | |
assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(compress_rowcols(x), [[8]]) | |
assert_equal(compress_rowcols(x, 0), [[6, 7, 8]]) | |
assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | |
assert_equal(compress_rowcols(x).size, 0) | |
assert_equal(compress_rowcols(x, 0).size, 0) | |
assert_equal(compress_rowcols(x, 1).size, 0) | |
def test_mask_rowcols(self): | |
# Tests mask_rowcols. | |
x = array(np.arange(9).reshape(3, 3), | |
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x).mask, | |
[[1, 1, 1], [1, 0, 0], [1, 0, 0]]) | |
assert_equal(mask_rowcols(x, 0).mask, | |
[[1, 1, 1], [0, 0, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x, 1).mask, | |
[[1, 0, 0], [1, 0, 0], [1, 0, 0]]) | |
x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x).mask, | |
[[0, 1, 0], [1, 1, 1], [0, 1, 0]]) | |
assert_equal(mask_rowcols(x, 0).mask, | |
[[0, 0, 0], [1, 1, 1], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x, 1).mask, | |
[[0, 1, 0], [0, 1, 0], [0, 1, 0]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x).mask, | |
[[1, 1, 1], [1, 1, 1], [1, 1, 0]]) | |
assert_equal(mask_rowcols(x, 0).mask, | |
[[1, 1, 1], [1, 1, 1], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x, 1,).mask, | |
[[1, 1, 0], [1, 1, 0], [1, 1, 0]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | |
self.assertTrue(mask_rowcols(x).all() is masked) | |
self.assertTrue(mask_rowcols(x, 0).all() is masked) | |
self.assertTrue(mask_rowcols(x, 1).all() is masked) | |
self.assertTrue(mask_rowcols(x).mask.all()) | |
self.assertTrue(mask_rowcols(x, 0).mask.all()) | |
self.assertTrue(mask_rowcols(x, 1).mask.all()) | |
def test_dot(self): | |
# Tests dot product | |
n = np.arange(1, 7) | |
# | |
m = [1, 0, 0, 0, 0, 0] | |
a = masked_array(n, mask=m).reshape(2, 3) | |
b = masked_array(n, mask=m).reshape(3, 2) | |
c = dot(a, b, True) | |
assert_equal(c.mask, [[1, 1], [1, 0]]) | |
c = dot(b, a, True) | |
assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) | |
c = dot(a, b, False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
m = [0, 0, 0, 0, 0, 1] | |
a = masked_array(n, mask=m).reshape(2, 3) | |
b = masked_array(n, mask=m).reshape(3, 2) | |
c = dot(a, b, True) | |
assert_equal(c.mask, [[0, 1], [1, 1]]) | |
c = dot(b, a, True) | |
assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]]) | |
c = dot(a, b, False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
assert_equal(c, dot(a, b)) | |
c = dot(b, a, False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
m = [0, 0, 0, 0, 0, 0] | |
a = masked_array(n, mask=m).reshape(2, 3) | |
b = masked_array(n, mask=m).reshape(3, 2) | |
c = dot(a, b) | |
assert_equal(c.mask, nomask) | |
c = dot(b, a) | |
assert_equal(c.mask, nomask) | |
# | |
a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3) | |
b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) | |
c = dot(a, b, True) | |
assert_equal(c.mask, [[1, 1], [0, 0]]) | |
c = dot(a, b, False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, True) | |
assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) | |
c = dot(b, a, False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) | |
b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) | |
c = dot(a, b, True) | |
assert_equal(c.mask, [[0, 0], [1, 1]]) | |
c = dot(a, b) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, True) | |
assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]]) | |
c = dot(b, a, False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) | |
b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2) | |
c = dot(a, b, True) | |
assert_equal(c.mask, [[1, 0], [1, 1]]) | |
c = dot(a, b, False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, True) | |
assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]]) | |
c = dot(b, a, False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
class TestApplyAlongAxis(TestCase): | |
# Tests 2D functions | |
def test_3d(self): | |
a = arange(12.).reshape(2, 2, 3) | |
def myfunc(b): | |
return b[1] | |
xa = apply_along_axis(myfunc, 2, a) | |
assert_equal(xa, [[1, 4], [7, 10]]) | |
# Tests kwargs functions | |
def test_3d_kwargs(self): | |
a = arange(12).reshape(2, 2, 3) | |
def myfunc(b, offset=0): | |
return b[1+offset] | |
xa = apply_along_axis(myfunc, 2, a, offset=1) | |
assert_equal(xa, [[2, 5], [8, 11]]) | |
class TestApplyOverAxes(TestCase): | |
# Tests apply_over_axes | |
def test_basic(self): | |
a = arange(24).reshape(2, 3, 4) | |
test = apply_over_axes(np.sum, a, [0, 2]) | |
ctrl = np.array([[[60], [92], [124]]]) | |
assert_equal(test, ctrl) | |
a[(a % 2).astype(np.bool)] = masked | |
test = apply_over_axes(np.sum, a, [0, 2]) | |
ctrl = np.array([[[28], [44], [60]]]) | |
assert_equal(test, ctrl) | |
class TestMedian(TestCase): | |
def test_2d(self): | |
# Tests median w/ 2D | |
(n, p) = (101, 30) | |
x = masked_array(np.linspace(-1., 1., n),) | |
x[:10] = x[-10:] = masked | |
z = masked_array(np.empty((n, p), dtype=float)) | |
z[:, 0] = x[:] | |
idx = np.arange(len(x)) | |
for i in range(1, p): | |
np.random.shuffle(idx) | |
z[:, i] = x[idx] | |
assert_equal(median(z[:, 0]), 0) | |
assert_equal(median(z), 0) | |
assert_equal(median(z, axis=0), np.zeros(p)) | |
assert_equal(median(z.T, axis=1), np.zeros(p)) | |
def test_2d_waxis(self): | |
# Tests median w/ 2D arrays and different axis. | |
x = masked_array(np.arange(30).reshape(10, 3)) | |
x[:3] = x[-3:] = masked | |
assert_equal(median(x), 14.5) | |
assert_equal(median(x, axis=0), [13.5, 14.5, 15.5]) | |
assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0]) | |
assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]) | |
def test_3d(self): | |
# Tests median w/ 3D | |
x = np.ma.arange(24).reshape(3, 4, 2) | |
x[x % 3 == 0] = masked | |
assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]]) | |
x.shape = (4, 3, 2) | |
assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]]) | |
x = np.ma.arange(24).reshape(4, 3, 2) | |
x[x % 5 == 0] = masked | |
assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]]) | |
def test_neg_axis(self): | |
x = masked_array(np.arange(30).reshape(10, 3)) | |
x[:3] = x[-3:] = masked | |
assert_equal(median(x, axis=-1), median(x, axis=1)) | |
def test_out(self): | |
x = masked_array(np.arange(30).reshape(10, 3)) | |
x[:3] = x[-3:] = masked | |
out = masked_array(np.ones(10)) | |
r = median(x, axis=1, out=out) | |
assert_equal(r, out) | |
assert_(type(r) == MaskedArray) | |
class TestCov(TestCase): | |
def setUp(self): | |
self.data = array(np.random.rand(12)) | |
def test_1d_wo_missing(self): | |
# Test cov on 1D variable w/o missing values | |
x = self.data | |
assert_almost_equal(np.cov(x), cov(x)) | |
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) | |
assert_almost_equal(np.cov(x, rowvar=False, bias=True), | |
cov(x, rowvar=False, bias=True)) | |
def test_2d_wo_missing(self): | |
# Test cov on 1 2D variable w/o missing values | |
x = self.data.reshape(3, 4) | |
assert_almost_equal(np.cov(x), cov(x)) | |
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) | |
assert_almost_equal(np.cov(x, rowvar=False, bias=True), | |
cov(x, rowvar=False, bias=True)) | |
def test_1d_w_missing(self): | |
# Test cov 1 1D variable w/missing values | |
x = self.data | |
x[-1] = masked | |
x -= x.mean() | |
nx = x.compressed() | |
assert_almost_equal(np.cov(nx), cov(x)) | |
assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False)) | |
assert_almost_equal(np.cov(nx, rowvar=False, bias=True), | |
cov(x, rowvar=False, bias=True)) | |
# | |
try: | |
cov(x, allow_masked=False) | |
except ValueError: | |
pass | |
# | |
# 2 1D variables w/ missing values | |
nx = x[1:-1] | |
assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1])) | |
assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False), | |
cov(x, x[::-1], rowvar=False)) | |
assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True), | |
cov(x, x[::-1], rowvar=False, bias=True)) | |
def test_2d_w_missing(self): | |
# Test cov on 2D variable w/ missing value | |
x = self.data | |
x[-1] = masked | |
x = x.reshape(3, 4) | |
valid = np.logical_not(getmaskarray(x)).astype(int) | |
frac = np.dot(valid, valid.T) | |
xf = (x - x.mean(1)[:, None]).filled(0) | |
assert_almost_equal(cov(x), | |
np.cov(xf) * (x.shape[1] - 1) / (frac - 1.)) | |
assert_almost_equal(cov(x, bias=True), | |
np.cov(xf, bias=True) * x.shape[1] / frac) | |
frac = np.dot(valid.T, valid) | |
xf = (x - x.mean(0)).filled(0) | |
assert_almost_equal(cov(x, rowvar=False), | |
(np.cov(xf, rowvar=False) * | |
(x.shape[0] - 1) / (frac - 1.))) | |
assert_almost_equal(cov(x, rowvar=False, bias=True), | |
(np.cov(xf, rowvar=False, bias=True) * | |
x.shape[0] / frac)) | |
class TestCorrcoef(TestCase): | |
def setUp(self): | |
self.data = array(np.random.rand(12)) | |
def test_ddof(self): | |
# Test ddof keyword | |
x = self.data | |
assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0)) | |
def test_1d_wo_missing(self): | |
# Test cov on 1D variable w/o missing values | |
x = self.data | |
assert_almost_equal(np.corrcoef(x), corrcoef(x)) | |
assert_almost_equal(np.corrcoef(x, rowvar=False), | |
corrcoef(x, rowvar=False)) | |
assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), | |
corrcoef(x, rowvar=False, bias=True)) | |
def test_2d_wo_missing(self): | |
# Test corrcoef on 1 2D variable w/o missing values | |
x = self.data.reshape(3, 4) | |
assert_almost_equal(np.corrcoef(x), corrcoef(x)) | |
assert_almost_equal(np.corrcoef(x, rowvar=False), | |
corrcoef(x, rowvar=False)) | |
assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), | |
corrcoef(x, rowvar=False, bias=True)) | |
def test_1d_w_missing(self): | |
# Test corrcoef 1 1D variable w/missing values | |
x = self.data | |
x[-1] = masked | |
x -= x.mean() | |
nx = x.compressed() | |
assert_almost_equal(np.corrcoef(nx), corrcoef(x)) | |
assert_almost_equal(np.corrcoef(nx, rowvar=False), | |
corrcoef(x, rowvar=False)) | |
assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True), | |
corrcoef(x, rowvar=False, bias=True)) | |
# | |
try: | |
corrcoef(x, allow_masked=False) | |
except ValueError: | |
pass | |
# | |
# 2 1D variables w/ missing values | |
nx = x[1:-1] | |
assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1])) | |
assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False), | |
corrcoef(x, x[::-1], rowvar=False)) | |
assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False, bias=True), | |
corrcoef(x, x[::-1], rowvar=False, bias=True)) | |
def test_2d_w_missing(self): | |
# Test corrcoef on 2D variable w/ missing value | |
x = self.data | |
x[-1] = masked | |
x = x.reshape(3, 4) | |
test = corrcoef(x) | |
control = np.corrcoef(x) | |
assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) | |
class TestPolynomial(TestCase): | |
# | |
def test_polyfit(self): | |
# Tests polyfit | |
# On ndarrays | |
x = np.random.rand(10) | |
y = np.random.rand(20).reshape(-1, 2) | |
assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3)) | |
# ON 1D maskedarrays | |
x = x.view(MaskedArray) | |
x[0] = masked | |
y = y.view(MaskedArray) | |
y[0, 0] = y[-1, -1] = masked | |
# | |
(C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True) | |
(c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3, | |
full=True) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
# | |
(C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True) | |
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
# | |
(C, R, K, S, D) = polyfit(x, y, 3, full=True) | |
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
# | |
w = np.random.rand(10) + 1 | |
wo = w.copy() | |
xs = x[1:-1] | |
ys = y[1:-1] | |
ws = w[1:-1] | |
(C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w) | |
(c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws) | |
assert_equal(w, wo) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
class TestArraySetOps(TestCase): | |
def test_unique_onlist(self): | |
# Test unique on list | |
data = [1, 1, 1, 2, 2, 3] | |
test = unique(data, return_index=True, return_inverse=True) | |
self.assertTrue(isinstance(test[0], MaskedArray)) | |
assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0])) | |
assert_equal(test[1], [0, 3, 5]) | |
assert_equal(test[2], [0, 0, 0, 1, 1, 2]) | |
def test_unique_onmaskedarray(self): | |
# Test unique on masked data w/use_mask=True | |
data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0]) | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) | |
assert_equal(test[1], [0, 3, 5, 2]) | |
assert_equal(test[2], [0, 0, 3, 1, 3, 2]) | |
# | |
data.fill_value = 3 | |
data = masked_array(data=[1, 1, 1, 2, 2, 3], | |
mask=[0, 0, 1, 0, 1, 0], fill_value=3) | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) | |
assert_equal(test[1], [0, 3, 5, 2]) | |
assert_equal(test[2], [0, 0, 3, 1, 3, 2]) | |
def test_unique_allmasked(self): | |
# Test all masked | |
data = masked_array([1, 1, 1], mask=True) | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array([1, ], mask=[True])) | |
assert_equal(test[1], [0]) | |
assert_equal(test[2], [0, 0, 0]) | |
# | |
# Test masked | |
data = masked | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array(masked)) | |
assert_equal(test[1], [0]) | |
assert_equal(test[2], [0]) | |
def test_ediff1d(self): | |
# Tests mediff1d | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
control = array([1, 1, 1, 4], mask=[1, 0, 0, 1]) | |
test = ediff1d(x) | |
assert_equal(test, control) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_tobegin(self): | |
# Test ediff1d w/ to_begin | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
test = ediff1d(x, to_begin=masked) | |
control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1]) | |
assert_equal(test, control) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_begin=[1, 2, 3]) | |
control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1]) | |
assert_equal(test, control) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_toend(self): | |
# Test ediff1d w/ to_end | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
test = ediff1d(x, to_end=masked) | |
control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1]) | |
assert_equal(test, control) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_end=[1, 2, 3]) | |
control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0]) | |
assert_equal(test, control) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_tobegin_toend(self): | |
# Test ediff1d w/ to_begin and to_end | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
test = ediff1d(x, to_end=masked, to_begin=masked) | |
control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1]) | |
assert_equal(test, control) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked) | |
control = array([0, 1, 1, 1, 4, 1, 2, 3], | |
mask=[1, 1, 0, 0, 1, 0, 0, 0]) | |
assert_equal(test, control) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_ndarray(self): | |
# Test ediff1d w/ a ndarray | |
x = np.arange(5) | |
test = ediff1d(x) | |
control = array([1, 1, 1, 1], mask=[0, 0, 0, 0]) | |
assert_equal(test, control) | |
self.assertTrue(isinstance(test, MaskedArray)) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_end=masked, to_begin=masked) | |
control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1]) | |
self.assertTrue(isinstance(test, MaskedArray)) | |
assert_equal(test.data, control.data) | |
assert_equal(test.mask, control.mask) | |
def test_intersect1d(self): | |
# Test intersect1d | |
x = array([1, 3, 3, 3], mask=[0, 0, 0, 1]) | |
y = array([3, 1, 1, 1], mask=[0, 0, 0, 1]) | |
test = intersect1d(x, y) | |
control = array([1, 3, -1], mask=[0, 0, 1]) | |
assert_equal(test, control) | |
def test_setxor1d(self): | |
# Test setxor1d | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
test = setxor1d(a, b) | |
assert_equal(test, array([3, 4, 7])) | |
# | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = [1, 2, 3, 4, 5] | |
test = setxor1d(a, b) | |
assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) | |
# | |
a = array([1, 2, 3]) | |
b = array([6, 5, 4]) | |
test = setxor1d(a, b) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test, [1, 2, 3, 4, 5, 6]) | |
# | |
a = array([1, 8, 2, 3], mask=[0, 1, 0, 0]) | |
b = array([6, 5, 4, 8], mask=[0, 0, 0, 1]) | |
test = setxor1d(a, b) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test, [1, 2, 3, 4, 5, 6]) | |
# | |
assert_array_equal([], setxor1d([], [])) | |
def test_in1d(self): | |
# Test in1d | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
test = in1d(a, b) | |
assert_equal(test, [True, True, True, False, True]) | |
# | |
a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 5, -1], mask=[0, 0, 1]) | |
test = in1d(a, b) | |
assert_equal(test, [True, True, False, True, True]) | |
# | |
assert_array_equal([], in1d([], [])) | |
def test_in1d_invert(self): | |
# Test in1d's invert parameter | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) | |
a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 5, -1], mask=[0, 0, 1]) | |
assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) | |
assert_array_equal([], in1d([], [], invert=True)) | |
def test_union1d(self): | |
# Test union1d | |
a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
test = union1d(a, b) | |
control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1]) | |
assert_equal(test, control) | |
# | |
assert_array_equal([], union1d([], [])) | |
def test_setdiff1d(self): | |
# Test setdiff1d | |
a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1]) | |
b = array([2, 4, 3, 3, 2, 1, 5]) | |
test = setdiff1d(a, b) | |
assert_equal(test, array([6, 7, -1], mask=[0, 0, 1])) | |
# | |
a = arange(10) | |
b = arange(8) | |
assert_equal(setdiff1d(a, b), array([8, 9])) | |
def test_setdiff1d_char_array(self): | |
# Test setdiff1d_charray | |
a = np.array(['a', 'b', 'c']) | |
b = np.array(['a', 'b', 's']) | |
assert_array_equal(setdiff1d(a, b), np.array(['c'])) | |
class TestShapeBase(TestCase): | |
# | |
def test_atleast2d(self): | |
# Test atleast_2d | |
a = masked_array([0, 1, 2], mask=[0, 1, 0]) | |
b = atleast_2d(a) | |
assert_equal(b.shape, (1, 3)) | |
assert_equal(b.mask.shape, b.data.shape) | |
assert_equal(a.shape, (3,)) | |
assert_equal(a.mask.shape, a.data.shape) | |
############################################################################### | |
#------------------------------------------------------------------------------ | |
if __name__ == "__main__": | |
run_module_suite() | |