tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/lib
/tests
/test_stride_tricks.py
from __future__ import division, absolute_import, print_function | |
import numpy as np | |
from numpy.testing import ( | |
run_module_suite, assert_equal, assert_array_equal, | |
assert_raises | |
) | |
from numpy.lib.stride_tricks import as_strided, broadcast_arrays | |
def assert_shapes_correct(input_shapes, expected_shape): | |
# Broadcast a list of arrays with the given input shapes and check the | |
# common output shape. | |
inarrays = [np.zeros(s) for s in input_shapes] | |
outarrays = broadcast_arrays(*inarrays) | |
outshapes = [a.shape for a in outarrays] | |
expected = [expected_shape] * len(inarrays) | |
assert_equal(outshapes, expected) | |
def assert_incompatible_shapes_raise(input_shapes): | |
# Broadcast a list of arrays with the given (incompatible) input shapes | |
# and check that they raise a ValueError. | |
inarrays = [np.zeros(s) for s in input_shapes] | |
assert_raises(ValueError, broadcast_arrays, *inarrays) | |
def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False): | |
# Broadcast two shapes against each other and check that the data layout | |
# is the same as if a ufunc did the broadcasting. | |
x0 = np.zeros(shape0, dtype=int) | |
# Note that multiply.reduce's identity element is 1.0, so when shape1==(), | |
# this gives the desired n==1. | |
n = int(np.multiply.reduce(shape1)) | |
x1 = np.arange(n).reshape(shape1) | |
if transposed: | |
x0 = x0.T | |
x1 = x1.T | |
if flipped: | |
x0 = x0[::-1] | |
x1 = x1[::-1] | |
# Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the | |
# result should be exactly the same as the broadcasted view of x1. | |
y = x0 + x1 | |
b0, b1 = broadcast_arrays(x0, x1) | |
assert_array_equal(y, b1) | |
def test_same(): | |
x = np.arange(10) | |
y = np.arange(10) | |
bx, by = broadcast_arrays(x, y) | |
assert_array_equal(x, bx) | |
assert_array_equal(y, by) | |
def test_one_off(): | |
x = np.array([[1, 2, 3]]) | |
y = np.array([[1], [2], [3]]) | |
bx, by = broadcast_arrays(x, y) | |
bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) | |
by0 = bx0.T | |
assert_array_equal(bx0, bx) | |
assert_array_equal(by0, by) | |
def test_same_input_shapes(): | |
# Check that the final shape is just the input shape. | |
data = [ | |
(), | |
(1,), | |
(3,), | |
(0, 1), | |
(0, 3), | |
(1, 0), | |
(3, 0), | |
(1, 3), | |
(3, 1), | |
(3, 3), | |
] | |
for shape in data: | |
input_shapes = [shape] | |
# Single input. | |
assert_shapes_correct(input_shapes, shape) | |
# Double input. | |
input_shapes2 = [shape, shape] | |
assert_shapes_correct(input_shapes2, shape) | |
# Triple input. | |
input_shapes3 = [shape, shape, shape] | |
assert_shapes_correct(input_shapes3, shape) | |
def test_two_compatible_by_ones_input_shapes(): | |
# Check that two different input shapes of the same length, but some have | |
# ones, broadcast to the correct shape. | |
data = [ | |
[[(1,), (3,)], (3,)], | |
[[(1, 3), (3, 3)], (3, 3)], | |
[[(3, 1), (3, 3)], (3, 3)], | |
[[(1, 3), (3, 1)], (3, 3)], | |
[[(1, 1), (3, 3)], (3, 3)], | |
[[(1, 1), (1, 3)], (1, 3)], | |
[[(1, 1), (3, 1)], (3, 1)], | |
[[(1, 0), (0, 0)], (0, 0)], | |
[[(0, 1), (0, 0)], (0, 0)], | |
[[(1, 0), (0, 1)], (0, 0)], | |
[[(1, 1), (0, 0)], (0, 0)], | |
[[(1, 1), (1, 0)], (1, 0)], | |
[[(1, 1), (0, 1)], (0, 1)], | |
] | |
for input_shapes, expected_shape in data: | |
assert_shapes_correct(input_shapes, expected_shape) | |
# Reverse the input shapes since broadcasting should be symmetric. | |
assert_shapes_correct(input_shapes[::-1], expected_shape) | |
def test_two_compatible_by_prepending_ones_input_shapes(): | |
# Check that two different input shapes (of different lengths) broadcast | |
# to the correct shape. | |
data = [ | |
[[(), (3,)], (3,)], | |
[[(3,), (3, 3)], (3, 3)], | |
[[(3,), (3, 1)], (3, 3)], | |
[[(1,), (3, 3)], (3, 3)], | |
[[(), (3, 3)], (3, 3)], | |
[[(1, 1), (3,)], (1, 3)], | |
[[(1,), (3, 1)], (3, 1)], | |
[[(1,), (1, 3)], (1, 3)], | |
[[(), (1, 3)], (1, 3)], | |
[[(), (3, 1)], (3, 1)], | |
[[(), (0,)], (0,)], | |
[[(0,), (0, 0)], (0, 0)], | |
[[(0,), (0, 1)], (0, 0)], | |
[[(1,), (0, 0)], (0, 0)], | |
[[(), (0, 0)], (0, 0)], | |
[[(1, 1), (0,)], (1, 0)], | |
[[(1,), (0, 1)], (0, 1)], | |
[[(1,), (1, 0)], (1, 0)], | |
[[(), (1, 0)], (1, 0)], | |
[[(), (0, 1)], (0, 1)], | |
] | |
for input_shapes, expected_shape in data: | |
assert_shapes_correct(input_shapes, expected_shape) | |
# Reverse the input shapes since broadcasting should be symmetric. | |
assert_shapes_correct(input_shapes[::-1], expected_shape) | |
def test_incompatible_shapes_raise_valueerror(): | |
# Check that a ValueError is raised for incompatible shapes. | |
data = [ | |
[(3,), (4,)], | |
[(2, 3), (2,)], | |
[(3,), (3,), (4,)], | |
[(1, 3, 4), (2, 3, 3)], | |
] | |
for input_shapes in data: | |
assert_incompatible_shapes_raise(input_shapes) | |
# Reverse the input shapes since broadcasting should be symmetric. | |
assert_incompatible_shapes_raise(input_shapes[::-1]) | |
def test_same_as_ufunc(): | |
# Check that the data layout is the same as if a ufunc did the operation. | |
data = [ | |
[[(1,), (3,)], (3,)], | |
[[(1, 3), (3, 3)], (3, 3)], | |
[[(3, 1), (3, 3)], (3, 3)], | |
[[(1, 3), (3, 1)], (3, 3)], | |
[[(1, 1), (3, 3)], (3, 3)], | |
[[(1, 1), (1, 3)], (1, 3)], | |
[[(1, 1), (3, 1)], (3, 1)], | |
[[(1, 0), (0, 0)], (0, 0)], | |
[[(0, 1), (0, 0)], (0, 0)], | |
[[(1, 0), (0, 1)], (0, 0)], | |
[[(1, 1), (0, 0)], (0, 0)], | |
[[(1, 1), (1, 0)], (1, 0)], | |
[[(1, 1), (0, 1)], (0, 1)], | |
[[(), (3,)], (3,)], | |
[[(3,), (3, 3)], (3, 3)], | |
[[(3,), (3, 1)], (3, 3)], | |
[[(1,), (3, 3)], (3, 3)], | |
[[(), (3, 3)], (3, 3)], | |
[[(1, 1), (3,)], (1, 3)], | |
[[(1,), (3, 1)], (3, 1)], | |
[[(1,), (1, 3)], (1, 3)], | |
[[(), (1, 3)], (1, 3)], | |
[[(), (3, 1)], (3, 1)], | |
[[(), (0,)], (0,)], | |
[[(0,), (0, 0)], (0, 0)], | |
[[(0,), (0, 1)], (0, 0)], | |
[[(1,), (0, 0)], (0, 0)], | |
[[(), (0, 0)], (0, 0)], | |
[[(1, 1), (0,)], (1, 0)], | |
[[(1,), (0, 1)], (0, 1)], | |
[[(1,), (1, 0)], (1, 0)], | |
[[(), (1, 0)], (1, 0)], | |
[[(), (0, 1)], (0, 1)], | |
] | |
for input_shapes, expected_shape in data: | |
assert_same_as_ufunc(input_shapes[0], input_shapes[1], | |
"Shapes: %s %s" % (input_shapes[0], input_shapes[1])) | |
# Reverse the input shapes since broadcasting should be symmetric. | |
assert_same_as_ufunc(input_shapes[1], input_shapes[0]) | |
# Try them transposed, too. | |
assert_same_as_ufunc(input_shapes[0], input_shapes[1], True) | |
# ... and flipped for non-rank-0 inputs in order to test negative | |
# strides. | |
if () not in input_shapes: | |
assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True) | |
assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True) | |
def test_as_strided(): | |
a = np.array([None]) | |
a_view = as_strided(a) | |
expected = np.array([None]) | |
assert_array_equal(a_view, np.array([None])) | |
a = np.array([1, 2, 3, 4]) | |
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,)) | |
expected = np.array([1, 3]) | |
assert_array_equal(a_view, expected) | |
a = np.array([1, 2, 3, 4]) | |
a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize)) | |
expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) | |
assert_array_equal(a_view, expected) | |
if __name__ == "__main__": | |
run_module_suite() | |