tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/lib
/tests
/test_function_base.py
from __future__ import division, absolute_import, print_function | |
import warnings | |
import numpy as np | |
from numpy.testing import ( | |
run_module_suite, TestCase, assert_, assert_equal, assert_array_equal, | |
assert_almost_equal, assert_array_almost_equal, assert_raises, | |
assert_allclose, assert_array_max_ulp, assert_warns, assert_raises_regex | |
) | |
from numpy.random import rand | |
from numpy.lib import * | |
from numpy.compat import long | |
class TestAny(TestCase): | |
def test_basic(self): | |
y1 = [0, 0, 1, 0] | |
y2 = [0, 0, 0, 0] | |
y3 = [1, 0, 1, 0] | |
assert_(np.any(y1)) | |
assert_(np.any(y3)) | |
assert_(not np.any(y2)) | |
def test_nd(self): | |
y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] | |
assert_(np.any(y1)) | |
assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0]) | |
assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1]) | |
class TestAll(TestCase): | |
def test_basic(self): | |
y1 = [0, 1, 1, 0] | |
y2 = [0, 0, 0, 0] | |
y3 = [1, 1, 1, 1] | |
assert_(not np.all(y1)) | |
assert_(np.all(y3)) | |
assert_(not np.all(y2)) | |
assert_(np.all(~np.array(y2))) | |
def test_nd(self): | |
y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] | |
assert_(not np.all(y1)) | |
assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1]) | |
assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1]) | |
class TestCopy(TestCase): | |
def test_basic(self): | |
a = np.array([[1, 2], [3, 4]]) | |
a_copy = np.copy(a) | |
assert_array_equal(a, a_copy) | |
a_copy[0, 0] = 10 | |
assert_equal(a[0, 0], 1) | |
assert_equal(a_copy[0, 0], 10) | |
def test_order(self): | |
# It turns out that people rely on np.copy() preserving order by | |
# default; changing this broke scikit-learn: | |
# https://github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 | |
a = np.array([[1, 2], [3, 4]]) | |
assert_(a.flags.c_contiguous) | |
assert_(not a.flags.f_contiguous) | |
a_fort = np.array([[1, 2], [3, 4]], order="F") | |
assert_(not a_fort.flags.c_contiguous) | |
assert_(a_fort.flags.f_contiguous) | |
a_copy = np.copy(a) | |
assert_(a_copy.flags.c_contiguous) | |
assert_(not a_copy.flags.f_contiguous) | |
a_fort_copy = np.copy(a_fort) | |
assert_(not a_fort_copy.flags.c_contiguous) | |
assert_(a_fort_copy.flags.f_contiguous) | |
class TestAverage(TestCase): | |
def test_basic(self): | |
y1 = np.array([1, 2, 3]) | |
assert_(average(y1, axis=0) == 2.) | |
y2 = np.array([1., 2., 3.]) | |
assert_(average(y2, axis=0) == 2.) | |
y3 = [0., 0., 0.] | |
assert_(average(y3, axis=0) == 0.) | |
y4 = np.ones((4, 4)) | |
y4[0, 1] = 0 | |
y4[1, 0] = 2 | |
assert_almost_equal(y4.mean(0), average(y4, 0)) | |
assert_almost_equal(y4.mean(1), average(y4, 1)) | |
y5 = rand(5, 5) | |
assert_almost_equal(y5.mean(0), average(y5, 0)) | |
assert_almost_equal(y5.mean(1), average(y5, 1)) | |
y6 = np.matrix(rand(5, 5)) | |
assert_array_equal(y6.mean(0), average(y6, 0)) | |
def test_weights(self): | |
y = np.arange(10) | |
w = np.arange(10) | |
actual = average(y, weights=w) | |
desired = (np.arange(10) ** 2).sum()*1. / np.arange(10).sum() | |
assert_almost_equal(actual, desired) | |
y1 = np.array([[1, 2, 3], [4, 5, 6]]) | |
w0 = [1, 2] | |
actual = average(y1, weights=w0, axis=0) | |
desired = np.array([3., 4., 5.]) | |
assert_almost_equal(actual, desired) | |
w1 = [0, 0, 1] | |
actual = average(y1, weights=w1, axis=1) | |
desired = np.array([3., 6.]) | |
assert_almost_equal(actual, desired) | |
# This should raise an error. Can we test for that ? | |
# assert_equal(average(y1, weights=w1), 9./2.) | |
# 2D Case | |
w2 = [[0, 0, 1], [0, 0, 2]] | |
desired = np.array([3., 6.]) | |
assert_array_equal(average(y1, weights=w2, axis=1), desired) | |
assert_equal(average(y1, weights=w2), 5.) | |
def test_returned(self): | |
y = np.array([[1, 2, 3], [4, 5, 6]]) | |
# No weights | |
avg, scl = average(y, returned=True) | |
assert_equal(scl, 6.) | |
avg, scl = average(y, 0, returned=True) | |
assert_array_equal(scl, np.array([2., 2., 2.])) | |
avg, scl = average(y, 1, returned=True) | |
assert_array_equal(scl, np.array([3., 3.])) | |
# With weights | |
w0 = [1, 2] | |
avg, scl = average(y, weights=w0, axis=0, returned=True) | |
assert_array_equal(scl, np.array([3., 3., 3.])) | |
w1 = [1, 2, 3] | |
avg, scl = average(y, weights=w1, axis=1, returned=True) | |
assert_array_equal(scl, np.array([6., 6.])) | |
w2 = [[0, 0, 1], [1, 2, 3]] | |
avg, scl = average(y, weights=w2, axis=1, returned=True) | |
assert_array_equal(scl, np.array([1., 6.])) | |
class TestSelect(TestCase): | |
choices = [np.array([1, 2, 3]), | |
np.array([4, 5, 6]), | |
np.array([7, 8, 9])] | |
conditions = [np.array([False, False, False]), | |
np.array([False, True, False]), | |
np.array([False, False, True])] | |
def _select(self, cond, values, default=0): | |
output = [] | |
for m in range(len(cond)): | |
output += [V[m] for V, C in zip(values, cond) if C[m]] or [default] | |
return output | |
def test_basic(self): | |
choices = self.choices | |
conditions = self.conditions | |
assert_array_equal(select(conditions, choices, default=15), | |
self._select(conditions, choices, default=15)) | |
assert_equal(len(choices), 3) | |
assert_equal(len(conditions), 3) | |
def test_broadcasting(self): | |
conditions = [np.array(True), np.array([False, True, False])] | |
choices = [1, np.arange(12).reshape(4, 3)] | |
assert_array_equal(select(conditions, choices), np.ones((4, 3))) | |
# default can broadcast too: | |
assert_equal(select([True], [0], default=[0]).shape, (1,)) | |
def test_return_dtype(self): | |
assert_equal(select(self.conditions, self.choices, 1j).dtype, | |
np.complex_) | |
# But the conditions need to be stronger then the scalar default | |
# if it is scalar. | |
choices = [choice.astype(np.int8) for choice in self.choices] | |
assert_equal(select(self.conditions, choices).dtype, np.int8) | |
d = np.array([1, 2, 3, np.nan, 5, 7]) | |
m = np.isnan(d) | |
assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0]) | |
def test_deprecated_empty(self): | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter("always") | |
assert_equal(select([], [], 3j), 3j) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("always") | |
assert_warns(DeprecationWarning, select, [], []) | |
warnings.simplefilter("error") | |
assert_raises(DeprecationWarning, select, [], []) | |
def test_non_bool_deprecation(self): | |
choices = self.choices | |
conditions = self.conditions[:] | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("always") | |
conditions[0] = conditions[0].astype(np.int_) | |
assert_warns(DeprecationWarning, select, conditions, choices) | |
conditions[0] = conditions[0].astype(np.uint8) | |
assert_warns(DeprecationWarning, select, conditions, choices) | |
warnings.filterwarnings("error") | |
assert_raises(DeprecationWarning, select, conditions, choices) | |
def test_many_arguments(self): | |
# This used to be limited by NPY_MAXARGS == 32 | |
conditions = [np.array([False])] * 100 | |
choices = [np.array([1])] * 100 | |
select(conditions, choices) | |
class TestInsert(TestCase): | |
def test_basic(self): | |
a = [1, 2, 3] | |
assert_equal(insert(a, 0, 1), [1, 1, 2, 3]) | |
assert_equal(insert(a, 3, 1), [1, 2, 3, 1]) | |
assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3]) | |
assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3]) | |
assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9]) | |
assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3]) | |
assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9]) | |
b = np.array([0, 1], dtype=np.float64) | |
assert_equal(insert(b, 0, b[0]), [0., 0., 1.]) | |
assert_equal(insert(b, [], []), b) | |
# Bools will be treated differently in the future: | |
#assert_equal(insert(a, np.array([True]*4), 9), [9,1,9,2,9,3,9]) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', FutureWarning) | |
assert_equal( | |
insert(a, np.array([True]*4), 9), [1, 9, 9, 9, 9, 2, 3]) | |
assert_(w[0].category is FutureWarning) | |
def test_multidim(self): | |
a = [[1, 1, 1]] | |
r = [[2, 2, 2], | |
[1, 1, 1]] | |
assert_equal(insert(a, 0, [1]), [1, 1, 1, 1]) | |
assert_equal(insert(a, 0, [2, 2, 2], axis=0), r) | |
assert_equal(insert(a, 0, 2, axis=0), r) | |
assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]]) | |
a = np.array([[1, 1], [2, 2], [3, 3]]) | |
b = np.arange(1, 4).repeat(3).reshape(3, 3) | |
c = np.concatenate( | |
(a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T, | |
a[:, 1:2]), axis=1) | |
assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b) | |
assert_equal(insert(a, [1], [1, 2, 3], axis=1), c) | |
# scalars behave differently, in this case exactly opposite: | |
assert_equal(insert(a, 1, [1, 2, 3], axis=1), b) | |
assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c) | |
a = np.arange(4).reshape(2, 2) | |
assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a) | |
assert_equal(insert(a[:1, :], 1, a[1, :], axis=0), a) | |
# negative axis value | |
a = np.arange(24).reshape((2, 3, 4)) | |
assert_equal(insert(a, 1, a[:, :, 3], axis=-1), | |
insert(a, 1, a[:, :, 3], axis=2)) | |
assert_equal(insert(a, 1, a[:, 2, :], axis=-2), | |
insert(a, 1, a[:, 2, :], axis=1)) | |
# invalid axis value | |
assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=3) | |
assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=-4) | |
# negative axis value | |
a = np.arange(24).reshape((2,3,4)) | |
assert_equal(insert(a, 1, a[:,:,3], axis=-1), | |
insert(a, 1, a[:,:,3], axis=2)) | |
assert_equal(insert(a, 1, a[:,2,:], axis=-2), | |
insert(a, 1, a[:,2,:], axis=1)) | |
def test_0d(self): | |
# This is an error in the future | |
a = np.array(1) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', DeprecationWarning) | |
assert_equal(insert(a, [], 2, axis=0), np.array(2)) | |
assert_(w[0].category is DeprecationWarning) | |
def test_subclass(self): | |
class SubClass(np.ndarray): | |
pass | |
a = np.arange(10).view(SubClass) | |
assert_(isinstance(np.insert(a, 0, [0]), SubClass)) | |
assert_(isinstance(np.insert(a, [], []), SubClass)) | |
assert_(isinstance(np.insert(a, [0, 1], [1, 2]), SubClass)) | |
assert_(isinstance(np.insert(a, slice(1, 2), [1, 2]), SubClass)) | |
assert_(isinstance(np.insert(a, slice(1, -2, -1), []), SubClass)) | |
# This is an error in the future: | |
a = np.array(1).view(SubClass) | |
assert_(isinstance(np.insert(a, 0, [0]), SubClass)) | |
def test_index_array_copied(self): | |
x = np.array([1, 1, 1]) | |
np.insert([0, 1, 2], x, [3, 4, 5]) | |
assert_equal(x, np.array([1, 1, 1])) | |
def test_structured_array(self): | |
a = np.array([(1, 'a'), (2, 'b'), (3, 'c')], | |
dtype=[('foo', 'i'), ('bar', 'a1')]) | |
val = (4, 'd') | |
b = np.insert(a, 0, val) | |
assert_array_equal(b[0], np.array(val, dtype=b.dtype)) | |
val = [(4, 'd')] * 2 | |
b = np.insert(a, [0, 2], val) | |
assert_array_equal(b[[0, 3]], np.array(val, dtype=b.dtype)) | |
class TestAmax(TestCase): | |
def test_basic(self): | |
a = [3, 4, 5, 10, -3, -5, 6.0] | |
assert_equal(np.amax(a), 10.0) | |
b = [[3, 6.0, 9.0], | |
[4, 10.0, 5.0], | |
[8, 3.0, 2.0]] | |
assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) | |
assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) | |
class TestAmin(TestCase): | |
def test_basic(self): | |
a = [3, 4, 5, 10, -3, -5, 6.0] | |
assert_equal(np.amin(a), -5.0) | |
b = [[3, 6.0, 9.0], | |
[4, 10.0, 5.0], | |
[8, 3.0, 2.0]] | |
assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0]) | |
assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0]) | |
class TestPtp(TestCase): | |
def test_basic(self): | |
a = [3, 4, 5, 10, -3, -5, 6.0] | |
assert_equal(np.ptp(a, axis=0), 15.0) | |
b = [[3, 6.0, 9.0], | |
[4, 10.0, 5.0], | |
[8, 3.0, 2.0]] | |
assert_equal(np.ptp(b, axis=0), [5.0, 7.0, 7.0]) | |
assert_equal(np.ptp(b, axis=-1), [6.0, 6.0, 6.0]) | |
class TestCumsum(TestCase): | |
def test_basic(self): | |
ba = [1, 2, 10, 11, 6, 5, 4] | |
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] | |
for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, | |
np.uint32, np.float32, np.float64, np.complex64, np.complex128]: | |
a = np.array(ba, ctype) | |
a2 = np.array(ba2, ctype) | |
tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) | |
assert_array_equal(np.cumsum(a, axis=0), tgt) | |
tgt = np.array( | |
[[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) | |
assert_array_equal(np.cumsum(a2, axis=0), tgt) | |
tgt = np.array( | |
[[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) | |
assert_array_equal(np.cumsum(a2, axis=1), tgt) | |
class TestProd(TestCase): | |
def test_basic(self): | |
ba = [1, 2, 10, 11, 6, 5, 4] | |
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] | |
for ctype in [np.int16, np.uint16, np.int32, np.uint32, | |
np.float32, np.float64, np.complex64, np.complex128]: | |
a = np.array(ba, ctype) | |
a2 = np.array(ba2, ctype) | |
if ctype in ['1', 'b']: | |
self.assertRaises(ArithmeticError, prod, a) | |
self.assertRaises(ArithmeticError, prod, a2, 1) | |
self.assertRaises(ArithmeticError, prod, a) | |
else: | |
assert_equal(np.prod(a, axis=0), 26400) | |
assert_array_equal(np.prod(a2, axis=0), | |
np.array([50, 36, 84, 180], ctype)) | |
assert_array_equal(np.prod(a2, axis=-1), | |
np.array([24, 1890, 600], ctype)) | |
class TestCumprod(TestCase): | |
def test_basic(self): | |
ba = [1, 2, 10, 11, 6, 5, 4] | |
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] | |
for ctype in [np.int16, np.uint16, np.int32, np.uint32, | |
np.float32, np.float64, np.complex64, np.complex128]: | |
a = np.array(ba, ctype) | |
a2 = np.array(ba2, ctype) | |
if ctype in ['1', 'b']: | |
self.assertRaises(ArithmeticError, cumprod, a) | |
self.assertRaises(ArithmeticError, cumprod, a2, 1) | |
self.assertRaises(ArithmeticError, cumprod, a) | |
else: | |
assert_array_equal(np.cumprod(a, axis=-1), | |
np.array([1, 2, 20, 220, | |
1320, 6600, 26400], ctype)) | |
assert_array_equal(np.cumprod(a2, axis=0), | |
np.array([[1, 2, 3, 4], | |
[5, 12, 21, 36], | |
[50, 36, 84, 180]], ctype)) | |
assert_array_equal(np.cumprod(a2, axis=-1), | |
np.array([[1, 2, 6, 24], | |
[5, 30, 210, 1890], | |
[10, 30, 120, 600]], ctype)) | |
class TestDiff(TestCase): | |
def test_basic(self): | |
x = [1, 4, 6, 7, 12] | |
out = np.array([3, 2, 1, 5]) | |
out2 = np.array([-1, -1, 4]) | |
out3 = np.array([0, 5]) | |
assert_array_equal(diff(x), out) | |
assert_array_equal(diff(x, n=2), out2) | |
assert_array_equal(diff(x, n=3), out3) | |
def test_nd(self): | |
x = 20 * rand(10, 20, 30) | |
out1 = x[:, :, 1:] - x[:, :, :-1] | |
out2 = out1[:, :, 1:] - out1[:, :, :-1] | |
out3 = x[1:, :, :] - x[:-1, :, :] | |
out4 = out3[1:, :, :] - out3[:-1, :, :] | |
assert_array_equal(diff(x), out1) | |
assert_array_equal(diff(x, n=2), out2) | |
assert_array_equal(diff(x, axis=0), out3) | |
assert_array_equal(diff(x, n=2, axis=0), out4) | |
class TestDelete(TestCase): | |
def setUp(self): | |
self.a = np.arange(5) | |
self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2) | |
def _check_inverse_of_slicing(self, indices): | |
a_del = delete(self.a, indices) | |
nd_a_del = delete(self.nd_a, indices, axis=1) | |
msg = 'Delete failed for obj: %r' % indices | |
# NOTE: The cast should be removed after warning phase for bools | |
if not isinstance(indices, (slice, int, long, np.integer)): | |
indices = np.asarray(indices, dtype=np.intp) | |
indices = indices[(indices >= 0) & (indices < 5)] | |
assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a, | |
err_msg=msg) | |
xor = setxor1d(nd_a_del[0, :, 0], self.nd_a[0, indices, 0]) | |
assert_array_equal(xor, self.nd_a[0, :, 0], err_msg=msg) | |
def test_slices(self): | |
lims = [-6, -2, 0, 1, 2, 4, 5] | |
steps = [-3, -1, 1, 3] | |
for start in lims: | |
for stop in lims: | |
for step in steps: | |
s = slice(start, stop, step) | |
self._check_inverse_of_slicing(s) | |
def test_fancy(self): | |
# Deprecation/FutureWarning tests should be kept after change. | |
self._check_inverse_of_slicing(np.array([[0, 1], [2, 1]])) | |
with warnings.catch_warnings(): | |
warnings.filterwarnings('error', category=DeprecationWarning) | |
assert_raises(DeprecationWarning, delete, self.a, [100]) | |
assert_raises(DeprecationWarning, delete, self.a, [-100]) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', category=FutureWarning) | |
self._check_inverse_of_slicing([0, -1, 2, 2]) | |
obj = np.array([True, False, False], dtype=bool) | |
self._check_inverse_of_slicing(obj) | |
assert_(w[0].category is FutureWarning) | |
assert_(w[1].category is FutureWarning) | |
def test_single(self): | |
self._check_inverse_of_slicing(0) | |
self._check_inverse_of_slicing(-4) | |
def test_0d(self): | |
a = np.array(1) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', DeprecationWarning) | |
assert_equal(delete(a, [], axis=0), a) | |
assert_(w[0].category is DeprecationWarning) | |
def test_subclass(self): | |
class SubClass(np.ndarray): | |
pass | |
a = self.a.view(SubClass) | |
assert_(isinstance(delete(a, 0), SubClass)) | |
assert_(isinstance(delete(a, []), SubClass)) | |
assert_(isinstance(delete(a, [0, 1]), SubClass)) | |
assert_(isinstance(delete(a, slice(1, 2)), SubClass)) | |
assert_(isinstance(delete(a, slice(1, -2)), SubClass)) | |
class TestGradient(TestCase): | |
def test_basic(self): | |
v = [[1, 1], [3, 4]] | |
x = np.array(v) | |
dx = [np.array([[2., 3.], [2., 3.]]), | |
np.array([[0., 0.], [1., 1.]])] | |
assert_array_equal(gradient(x), dx) | |
assert_array_equal(gradient(v), dx) | |
def test_badargs(self): | |
# for 2D array, gradient can take 0, 1, or 2 extra args | |
x = np.array([[1, 1], [3, 4]]) | |
assert_raises(SyntaxError, gradient, x, np.array([1., 1.]), | |
np.array([1., 1.]), np.array([1., 1.])) | |
def test_masked(self): | |
# Make sure that gradient supports subclasses like masked arrays | |
x = np.ma.array([[1, 1], [3, 4]]) | |
assert_equal(type(gradient(x)[0]), type(x)) | |
def test_datetime64(self): | |
# Make sure gradient() can handle special types like datetime64 | |
x = np.array( | |
['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', | |
'1910-10-12', '1910-12-12', '1912-12-12'], | |
dtype='datetime64[D]') | |
dx = np.array( | |
[-7, -3, 0, 31, 61, 396, 1066], | |
dtype='timedelta64[D]') | |
assert_array_equal(gradient(x), dx) | |
assert_(dx.dtype == np.dtype('timedelta64[D]')) | |
def test_timedelta64(self): | |
# Make sure gradient() can handle special types like timedelta64 | |
x = np.array( | |
[-5, -3, 10, 12, 61, 321, 300], | |
dtype='timedelta64[D]') | |
dx = np.array( | |
[-3, 7, 7, 25, 154, 119, -161], | |
dtype='timedelta64[D]') | |
assert_array_equal(gradient(x), dx) | |
assert_(dx.dtype == np.dtype('timedelta64[D]')) | |
def test_second_order_accurate(self): | |
# Testing that the relative numerical error is less that 3% for | |
# this example problem. This corresponds to second order | |
# accurate finite differences for all interior and boundary | |
# points. | |
x = np.linspace(0, 1, 10) | |
dx = x[1] - x[0] | |
y = 2 * x ** 3 + 4 * x ** 2 + 2 * x | |
analytical = 6 * x ** 2 + 8 * x + 2 | |
num_error = np.abs((np.gradient(y, dx) / analytical) - 1) | |
assert_(np.all(num_error < 0.03) == True) | |
class TestAngle(TestCase): | |
def test_basic(self): | |
x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2, | |
1, 1j, -1, -1j, 1 - 3j, -1 + 3j] | |
y = angle(x) | |
yo = [ | |
np.arctan(3.0 / 1.0), | |
np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0, | |
-np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)] | |
z = angle(x, deg=1) | |
zo = np.array(yo) * 180 / np.pi | |
assert_array_almost_equal(y, yo, 11) | |
assert_array_almost_equal(z, zo, 11) | |
class TestTrimZeros(TestCase): | |
""" only testing for integer splits. | |
""" | |
def test_basic(self): | |
a = np.array([0, 0, 1, 2, 3, 4, 0]) | |
res = trim_zeros(a) | |
assert_array_equal(res, np.array([1, 2, 3, 4])) | |
def test_leading_skip(self): | |
a = np.array([0, 0, 1, 0, 2, 3, 4, 0]) | |
res = trim_zeros(a) | |
assert_array_equal(res, np.array([1, 0, 2, 3, 4])) | |
def test_trailing_skip(self): | |
a = np.array([0, 0, 1, 0, 2, 3, 0, 4, 0]) | |
res = trim_zeros(a) | |
assert_array_equal(res, np.array([1, 0, 2, 3, 0, 4])) | |
class TestExtins(TestCase): | |
def test_basic(self): | |
a = np.array([1, 3, 2, 1, 2, 3, 3]) | |
b = extract(a > 1, a) | |
assert_array_equal(b, [3, 2, 2, 3, 3]) | |
def test_place(self): | |
a = np.array([1, 4, 3, 2, 5, 8, 7]) | |
place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) | |
assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) | |
def test_both(self): | |
a = rand(10) | |
mask = a > 0.5 | |
ac = a.copy() | |
c = extract(mask, a) | |
place(a, mask, 0) | |
place(a, mask, c) | |
assert_array_equal(a, ac) | |
class TestVectorize(TestCase): | |
def test_simple(self): | |
def addsubtract(a, b): | |
if a > b: | |
return a - b | |
else: | |
return a + b | |
f = vectorize(addsubtract) | |
r = f([0, 3, 6, 9], [1, 3, 5, 7]) | |
assert_array_equal(r, [1, 6, 1, 2]) | |
def test_scalar(self): | |
def addsubtract(a, b): | |
if a > b: | |
return a - b | |
else: | |
return a + b | |
f = vectorize(addsubtract) | |
r = f([0, 3, 6, 9], 5) | |
assert_array_equal(r, [5, 8, 1, 4]) | |
def test_large(self): | |
x = np.linspace(-3, 2, 10000) | |
f = vectorize(lambda x: x) | |
y = f(x) | |
assert_array_equal(y, x) | |
def test_ufunc(self): | |
import math | |
f = vectorize(math.cos) | |
args = np.array([0, 0.5*np.pi, np.pi, 1.5*np.pi, 2*np.pi]) | |
r1 = f(args) | |
r2 = np.cos(args) | |
assert_array_equal(r1, r2) | |
def test_keywords(self): | |
import math | |
def foo(a, b=1): | |
return a + b | |
f = vectorize(foo) | |
args = np.array([1, 2, 3]) | |
r1 = f(args) | |
r2 = np.array([2, 3, 4]) | |
assert_array_equal(r1, r2) | |
r1 = f(args, 2) | |
r2 = np.array([3, 4, 5]) | |
assert_array_equal(r1, r2) | |
def test_keywords_no_func_code(self): | |
# This needs to test a function that has keywords but | |
# no func_code attribute, since otherwise vectorize will | |
# inspect the func_code. | |
import random | |
try: | |
f = vectorize(random.randrange) | |
except: | |
raise AssertionError() | |
def test_keywords2_ticket_2100(self): | |
r"""Test kwarg support: enhancement ticket 2100""" | |
import math | |
def foo(a, b=1): | |
return a + b | |
f = vectorize(foo) | |
args = np.array([1, 2, 3]) | |
r1 = f(a=args) | |
r2 = np.array([2, 3, 4]) | |
assert_array_equal(r1, r2) | |
r1 = f(b=1, a=args) | |
assert_array_equal(r1, r2) | |
r1 = f(args, b=2) | |
r2 = np.array([3, 4, 5]) | |
assert_array_equal(r1, r2) | |
def test_keywords3_ticket_2100(self): | |
"""Test excluded with mixed positional and kwargs: ticket 2100""" | |
def mypolyval(x, p): | |
_p = list(p) | |
res = _p.pop(0) | |
while _p: | |
res = res*x + _p.pop(0) | |
return res | |
vpolyval = np.vectorize(mypolyval, excluded=['p', 1]) | |
ans = [3, 6] | |
assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3])) | |
assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3])) | |
assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3])) | |
def test_keywords4_ticket_2100(self): | |
"""Test vectorizing function with no positional args.""" | |
def f(**kw): | |
res = 1.0 | |
for _k in kw: | |
res *= kw[_k] | |
return res | |
assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8]) | |
def test_keywords5_ticket_2100(self): | |
"""Test vectorizing function with no kwargs args.""" | |
def f(*v): | |
return np.prod(v) | |
assert_array_equal(f([1, 2], [3, 4]), [3, 8]) | |
def test_coverage1_ticket_2100(self): | |
def foo(): | |
return 1 | |
f = vectorize(foo) | |
assert_array_equal(f(), 1) | |
def test_assigning_docstring(self): | |
def foo(x): | |
return x | |
doc = "Provided documentation" | |
f = vectorize(foo, doc=doc) | |
assert_equal(f.__doc__, doc) | |
def test_UnboundMethod_ticket_1156(self): | |
"""Regression test for issue 1156""" | |
class Foo: | |
b = 2 | |
def bar(self, a): | |
return a**self.b | |
assert_array_equal(vectorize(Foo().bar)(np.arange(9)), | |
np.arange(9)**2) | |
assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), | |
np.arange(9)**2) | |
def test_execution_order_ticket_1487(self): | |
"""Regression test for dependence on execution order: issue 1487""" | |
f1 = vectorize(lambda x: x) | |
res1a = f1(np.arange(3)) | |
res1b = f1(np.arange(0.1, 3)) | |
f2 = vectorize(lambda x: x) | |
res2b = f2(np.arange(0.1, 3)) | |
res2a = f2(np.arange(3)) | |
assert_equal(res1a, res2a) | |
assert_equal(res1b, res2b) | |
def test_string_ticket_1892(self): | |
"""Test vectorization over strings: issue 1892.""" | |
f = np.vectorize(lambda x: x) | |
s = '0123456789'*10 | |
assert_equal(s, f(s)) | |
#z = f(np.array([s,s])) | |
#assert_array_equal([s,s], f(s)) | |
def test_cache(self): | |
"""Ensure that vectorized func called exactly once per argument.""" | |
_calls = [0] | |
def f(x): | |
_calls[0] += 1 | |
return x**2 | |
f.cache = True | |
x = np.arange(5) | |
assert_array_equal(f(x), x*x) | |
assert_equal(_calls[0], len(x)) | |
def test_otypes(self): | |
f = np.vectorize(lambda x: x) | |
f.otypes = 'i' | |
x = np.arange(5) | |
assert_array_equal(f(x), x) | |
class TestDigitize(TestCase): | |
def test_forward(self): | |
x = np.arange(-6, 5) | |
bins = np.arange(-5, 5) | |
assert_array_equal(digitize(x, bins), np.arange(11)) | |
def test_reverse(self): | |
x = np.arange(5, -6, -1) | |
bins = np.arange(5, -5, -1) | |
assert_array_equal(digitize(x, bins), np.arange(11)) | |
def test_random(self): | |
x = rand(10) | |
bin = np.linspace(x.min(), x.max(), 10) | |
assert_(np.all(digitize(x, bin) != 0)) | |
def test_right_basic(self): | |
x = [1, 5, 4, 10, 8, 11, 0] | |
bins = [1, 5, 10] | |
default_answer = [1, 2, 1, 3, 2, 3, 0] | |
assert_array_equal(digitize(x, bins), default_answer) | |
right_answer = [0, 1, 1, 2, 2, 3, 0] | |
assert_array_equal(digitize(x, bins, True), right_answer) | |
def test_right_open(self): | |
x = np.arange(-6, 5) | |
bins = np.arange(-6, 4) | |
assert_array_equal(digitize(x, bins, True), np.arange(11)) | |
def test_right_open_reverse(self): | |
x = np.arange(5, -6, -1) | |
bins = np.arange(4, -6, -1) | |
assert_array_equal(digitize(x, bins, True), np.arange(11)) | |
def test_right_open_random(self): | |
x = rand(10) | |
bins = np.linspace(x.min(), x.max(), 10) | |
assert_(np.all(digitize(x, bins, True) != 10)) | |
def test_monotonic(self): | |
x = [-1, 0, 1, 2] | |
bins = [0, 0, 1] | |
assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3]) | |
assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3]) | |
bins = [1, 1, 0] | |
assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0]) | |
assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0]) | |
bins = [1, 1, 1, 1] | |
assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4]) | |
assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4]) | |
bins = [0, 0, 1, 0] | |
assert_raises(ValueError, digitize, x, bins) | |
bins = [1, 1, 0, 1] | |
assert_raises(ValueError, digitize, x, bins) | |
class TestUnwrap(TestCase): | |
def test_simple(self): | |
#check that unwrap removes jumps greather that 2*pi | |
assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1]) | |
#check that unwrap maintans continuity | |
assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi)) | |
class TestFilterwindows(TestCase): | |
def test_hanning(self): | |
#check symmetry | |
w = hanning(10) | |
assert_array_almost_equal(w, flipud(w), 7) | |
#check known value | |
assert_almost_equal(np.sum(w, axis=0), 4.500, 4) | |
def test_hamming(self): | |
#check symmetry | |
w = hamming(10) | |
assert_array_almost_equal(w, flipud(w), 7) | |
#check known value | |
assert_almost_equal(np.sum(w, axis=0), 4.9400, 4) | |
def test_bartlett(self): | |
#check symmetry | |
w = bartlett(10) | |
assert_array_almost_equal(w, flipud(w), 7) | |
#check known value | |
assert_almost_equal(np.sum(w, axis=0), 4.4444, 4) | |
def test_blackman(self): | |
#check symmetry | |
w = blackman(10) | |
assert_array_almost_equal(w, flipud(w), 7) | |
#check known value | |
assert_almost_equal(np.sum(w, axis=0), 3.7800, 4) | |
class TestTrapz(TestCase): | |
def test_simple(self): | |
x = np.arange(-10, 10, .1) | |
r = trapz(np.exp(-.5*x**2) / np.sqrt(2*np.pi), dx=0.1) | |
#check integral of normal equals 1 | |
assert_almost_equal(r, 1, 7) | |
def test_ndim(self): | |
x = np.linspace(0, 1, 3) | |
y = np.linspace(0, 2, 8) | |
z = np.linspace(0, 3, 13) | |
wx = np.ones_like(x) * (x[1] - x[0]) | |
wx[0] /= 2 | |
wx[-1] /= 2 | |
wy = np.ones_like(y) * (y[1] - y[0]) | |
wy[0] /= 2 | |
wy[-1] /= 2 | |
wz = np.ones_like(z) * (z[1] - z[0]) | |
wz[0] /= 2 | |
wz[-1] /= 2 | |
q = x[:, None, None] + y[None, :, None] + z[None, None, :] | |
qx = (q * wx[:, None, None]).sum(axis=0) | |
qy = (q * wy[None, :, None]).sum(axis=1) | |
qz = (q * wz[None, None, :]).sum(axis=2) | |
# n-d `x` | |
r = trapz(q, x=x[:, None, None], axis=0) | |
assert_almost_equal(r, qx) | |
r = trapz(q, x=y[None, :, None], axis=1) | |
assert_almost_equal(r, qy) | |
r = trapz(q, x=z[None, None, :], axis=2) | |
assert_almost_equal(r, qz) | |
# 1-d `x` | |
r = trapz(q, x=x, axis=0) | |
assert_almost_equal(r, qx) | |
r = trapz(q, x=y, axis=1) | |
assert_almost_equal(r, qy) | |
r = trapz(q, x=z, axis=2) | |
assert_almost_equal(r, qz) | |
def test_masked(self): | |
#Testing that masked arrays behave as if the function is 0 where | |
#masked | |
x = np.arange(5) | |
y = x * x | |
mask = x == 2 | |
ym = np.ma.array(y, mask=mask) | |
r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16)) | |
assert_almost_equal(trapz(ym, x), r) | |
xm = np.ma.array(x, mask=mask) | |
assert_almost_equal(trapz(ym, xm), r) | |
xm = np.ma.array(x, mask=mask) | |
assert_almost_equal(trapz(y, xm), r) | |
def test_matrix(self): | |
#Test to make sure matrices give the same answer as ndarrays | |
x = np.linspace(0, 5) | |
y = x * x | |
r = trapz(y, x) | |
mx = np.matrix(x) | |
my = np.matrix(y) | |
mr = trapz(my, mx) | |
assert_almost_equal(mr, r) | |
class TestSinc(TestCase): | |
def test_simple(self): | |
assert_(sinc(0) == 1) | |
w = sinc(np.linspace(-1, 1, 100)) | |
#check symmetry | |
assert_array_almost_equal(w, flipud(w), 7) | |
def test_array_like(self): | |
x = [0, 0.5] | |
y1 = sinc(np.array(x)) | |
y2 = sinc(list(x)) | |
y3 = sinc(tuple(x)) | |
assert_array_equal(y1, y2) | |
assert_array_equal(y1, y3) | |
class TestHistogram(TestCase): | |
def setUp(self): | |
pass | |
def tearDown(self): | |
pass | |
def test_simple(self): | |
n = 100 | |
v = rand(n) | |
(a, b) = histogram(v) | |
#check if the sum of the bins equals the number of samples | |
assert_equal(np.sum(a, axis=0), n) | |
#check that the bin counts are evenly spaced when the data is from a | |
# linear function | |
(a, b) = histogram(np.linspace(0, 10, 100)) | |
assert_array_equal(a, 10) | |
def test_one_bin(self): | |
# Ticket 632 | |
hist, edges = histogram([1, 2, 3, 4], [1, 2]) | |
assert_array_equal(hist, [2, ]) | |
assert_array_equal(edges, [1, 2]) | |
assert_raises(ValueError, histogram, [1, 2], bins=0) | |
h, e = histogram([1, 2], bins=1) | |
assert_equal(h, np.array([2])) | |
assert_allclose(e, np.array([1., 2.])) | |
def test_normed(self): | |
# Check that the integral of the density equals 1. | |
n = 100 | |
v = rand(n) | |
a, b = histogram(v, normed=True) | |
area = np.sum(a * diff(b)) | |
assert_almost_equal(area, 1) | |
# Check with non-constant bin widths (buggy but backwards compatible) | |
v = np.arange(10) | |
bins = [0, 1, 5, 9, 10] | |
a, b = histogram(v, bins, normed=True) | |
area = np.sum(a * diff(b)) | |
assert_almost_equal(area, 1) | |
def test_density(self): | |
# Check that the integral of the density equals 1. | |
n = 100 | |
v = rand(n) | |
a, b = histogram(v, density=True) | |
area = np.sum(a * diff(b)) | |
assert_almost_equal(area, 1) | |
# Check with non-constant bin widths | |
v = np.arange(10) | |
bins = [0, 1, 3, 6, 10] | |
a, b = histogram(v, bins, density=True) | |
assert_array_equal(a, .1) | |
assert_equal(np.sum(a*diff(b)), 1) | |
# Variale bin widths are especially useful to deal with | |
# infinities. | |
v = np.arange(10) | |
bins = [0, 1, 3, 6, np.inf] | |
a, b = histogram(v, bins, density=True) | |
assert_array_equal(a, [.1, .1, .1, 0.]) | |
# Taken from a bug report from N. Becker on the numpy-discussion | |
# mailing list Aug. 6, 2010. | |
counts, dmy = np.histogram( | |
[1, 2, 3, 4], [0.5, 1.5, np.inf], density=True) | |
assert_equal(counts, [.25, 0]) | |
def test_outliers(self): | |
# Check that outliers are not tallied | |
a = np.arange(10) + .5 | |
# Lower outliers | |
h, b = histogram(a, range=[0, 9]) | |
assert_equal(h.sum(), 9) | |
# Upper outliers | |
h, b = histogram(a, range=[1, 10]) | |
assert_equal(h.sum(), 9) | |
# Normalization | |
h, b = histogram(a, range=[1, 9], normed=True) | |
assert_almost_equal((h * diff(b)).sum(), 1, decimal=15) | |
# Weights | |
w = np.arange(10) + .5 | |
h, b = histogram(a, range=[1, 9], weights=w, normed=True) | |
assert_equal((h * diff(b)).sum(), 1) | |
h, b = histogram(a, bins=8, range=[1, 9], weights=w) | |
assert_equal(h, w[1:-1]) | |
def test_type(self): | |
# Check the type of the returned histogram | |
a = np.arange(10) + .5 | |
h, b = histogram(a) | |
assert_(issubdtype(h.dtype, int)) | |
h, b = histogram(a, normed=True) | |
assert_(issubdtype(h.dtype, float)) | |
h, b = histogram(a, weights=np.ones(10, int)) | |
assert_(issubdtype(h.dtype, int)) | |
h, b = histogram(a, weights=np.ones(10, float)) | |
assert_(issubdtype(h.dtype, float)) | |
def test_f32_rounding(self): | |
# gh-4799, check that the rounding of the edges works with float32 | |
x = np.array([276.318359 , -69.593948 , 21.329449], dtype=np.float32) | |
y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32) | |
counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100) | |
assert_equal(counts_hist.sum(), 3.) | |
def test_weights(self): | |
v = rand(100) | |
w = np.ones(100) * 5 | |
a, b = histogram(v) | |
na, nb = histogram(v, normed=True) | |
wa, wb = histogram(v, weights=w) | |
nwa, nwb = histogram(v, weights=w, normed=True) | |
assert_array_almost_equal(a * 5, wa) | |
assert_array_almost_equal(na, nwa) | |
# Check weights are properly applied. | |
v = np.linspace(0, 10, 10) | |
w = np.concatenate((np.zeros(5), np.ones(5))) | |
wa, wb = histogram(v, bins=np.arange(11), weights=w) | |
assert_array_almost_equal(wa, w) | |
# Check with integer weights | |
wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1]) | |
assert_array_equal(wa, [4, 5, 0, 1]) | |
wa, wb = histogram( | |
[1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True) | |
assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4) | |
# Check weights with non-uniform bin widths | |
a, b = histogram( | |
np.arange(9), [0, 1, 3, 6, 10], | |
weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True) | |
assert_almost_equal(a, [.2, .1, .1, .075]) | |
def test_empty(self): | |
a, b = histogram([], bins=([0, 1])) | |
assert_array_equal(a, np.array([0])) | |
assert_array_equal(b, np.array([0, 1])) | |
class TestHistogramdd(TestCase): | |
def test_simple(self): | |
x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], | |
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]]) | |
H, edges = histogramdd(x, (2, 3, 3), | |
range=[[-1, 1], [0, 3], [0, 3]]) | |
answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], | |
[[0, 1, 0], [0, 0, 1], [0, 0, 1]]]) | |
assert_array_equal(H, answer) | |
# Check normalization | |
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]] | |
H, edges = histogramdd(x, bins=ed, normed=True) | |
assert_(np.all(H == answer / 12.)) | |
# Check that H has the correct shape. | |
H, edges = histogramdd(x, (2, 3, 4), | |
range=[[-1, 1], [0, 3], [0, 4]], | |
normed=True) | |
answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], | |
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]]) | |
assert_array_almost_equal(H, answer / 6., 4) | |
# Check that a sequence of arrays is accepted and H has the correct | |
# shape. | |
z = [np.squeeze(y) for y in split(x, 3, axis=1)] | |
H, edges = histogramdd( | |
z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]]) | |
answer = np.array([[[0, 0], [0, 0], [0, 0]], | |
[[0, 1], [0, 0], [1, 0]], | |
[[0, 1], [0, 0], [0, 0]], | |
[[0, 0], [0, 0], [0, 0]]]) | |
assert_array_equal(H, answer) | |
Z = np.zeros((5, 5, 5)) | |
Z[list(range(5)), list(range(5)), list(range(5))] = 1. | |
H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5) | |
assert_array_equal(H, Z) | |
def test_shape_3d(self): | |
# All possible permutations for bins of different lengths in 3D. | |
bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4), | |
(4, 5, 6)) | |
r = rand(10, 3) | |
for b in bins: | |
H, edges = histogramdd(r, b) | |
assert_(H.shape == b) | |
def test_shape_4d(self): | |
# All possible permutations for bins of different lengths in 4D. | |
bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4), | |
(5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6), | |
(7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7), | |
(4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5), | |
(6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5), | |
(5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4)) | |
r = rand(10, 4) | |
for b in bins: | |
H, edges = histogramdd(r, b) | |
assert_(H.shape == b) | |
def test_weights(self): | |
v = rand(100, 2) | |
hist, edges = histogramdd(v) | |
n_hist, edges = histogramdd(v, normed=True) | |
w_hist, edges = histogramdd(v, weights=np.ones(100)) | |
assert_array_equal(w_hist, hist) | |
w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, normed=True) | |
assert_array_equal(w_hist, n_hist) | |
w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2) | |
assert_array_equal(w_hist, 2 * hist) | |
def test_identical_samples(self): | |
x = np.zeros((10, 2), int) | |
hist, edges = histogramdd(x, bins=2) | |
assert_array_equal(edges[0], np.array([-0.5, 0., 0.5])) | |
def test_empty(self): | |
a, b = histogramdd([[], []], bins=([0, 1], [0, 1])) | |
assert_array_max_ulp(a, np.array([[0.]])) | |
a, b = np.histogramdd([[], [], []], bins=2) | |
assert_array_max_ulp(a, np.zeros((2, 2, 2))) | |
def test_bins_errors(self): | |
"""There are two ways to specify bins. Check for the right errors when | |
mixing those.""" | |
x = np.arange(8).reshape(2, 4) | |
assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5]) | |
assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1]) | |
assert_raises( | |
ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 2, 3]]) | |
assert_raises( | |
ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]]) | |
assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]])) | |
def test_inf_edges(self): | |
"""Test using +/-inf bin edges works. See #1788.""" | |
with np.errstate(invalid='ignore'): | |
x = np.arange(6).reshape(3, 2) | |
expected = np.array([[1, 0], [0, 1], [0, 1]]) | |
h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]]) | |
assert_allclose(h, expected) | |
h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])]) | |
assert_allclose(h, expected) | |
h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]]) | |
assert_allclose(h, expected) | |
def test_rightmost_binedge(self): | |
"""Test event very close to rightmost binedge. | |
See Github issue #4266""" | |
x = [0.9999999995] | |
bins = [[0.,0.5,1.0]] | |
hist, _ = histogramdd(x, bins=bins) | |
assert_(hist[0] == 0.0) | |
assert_(hist[1] == 1.) | |
x = [1.0] | |
bins = [[0.,0.5,1.0]] | |
hist, _ = histogramdd(x, bins=bins) | |
assert_(hist[0] == 0.0) | |
assert_(hist[1] == 1.) | |
x = [1.0000000001] | |
bins = [[0.,0.5,1.0]] | |
hist, _ = histogramdd(x, bins=bins) | |
assert_(hist[0] == 0.0) | |
assert_(hist[1] == 1.) | |
x = [1.0001] | |
bins = [[0.,0.5,1.0]] | |
hist, _ = histogramdd(x, bins=bins) | |
assert_(hist[0] == 0.0) | |
assert_(hist[1] == 0.0) | |
class TestUnique(TestCase): | |
def test_simple(self): | |
x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0]) | |
assert_(np.all(unique(x) == [0, 1, 2, 3, 4])) | |
assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1])) | |
x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham'] | |
assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget'])) | |
x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j]) | |
assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10])) | |
class TestCheckFinite(TestCase): | |
def test_simple(self): | |
a = [1, 2, 3] | |
b = [1, 2, np.inf] | |
c = [1, 2, np.nan] | |
np.lib.asarray_chkfinite(a) | |
assert_raises(ValueError, np.lib.asarray_chkfinite, b) | |
assert_raises(ValueError, np.lib.asarray_chkfinite, c) | |
def test_dtype_order(self): | |
"""Regression test for missing dtype and order arguments""" | |
a = [1, 2, 3] | |
a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64) | |
assert_(a.dtype == np.float64) | |
class TestCorrCoef(TestCase): | |
A = np.array( | |
[[0.15391142, 0.18045767, 0.14197213], | |
[0.70461506, 0.96474128, 0.27906989], | |
[0.9297531, 0.32296769, 0.19267156]]) | |
B = np.array( | |
[[0.10377691, 0.5417086, 0.49807457], | |
[0.82872117, 0.77801674, 0.39226705], | |
[0.9314666, 0.66800209, 0.03538394]]) | |
res1 = np.array( | |
[[1., 0.9379533, -0.04931983], | |
[0.9379533, 1., 0.30007991], | |
[-0.04931983, 0.30007991, 1.]]) | |
res2 = np.array( | |
[[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523], | |
[0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386], | |
[-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601], | |
[0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113], | |
[0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823], | |
[0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]]) | |
def test_non_array(self): | |
assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]), | |
[[1., -1.], [-1., 1.]]) | |
def test_simple(self): | |
assert_almost_equal(corrcoef(self.A), self.res1) | |
assert_almost_equal(corrcoef(self.A, self.B), self.res2) | |
def test_ddof(self): | |
assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1) | |
assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2) | |
def test_complex(self): | |
x = np.array([[1, 2, 3], [1j, 2j, 3j]]) | |
assert_allclose(corrcoef(x), np.array([[1., -1.j], [1.j, 1.]])) | |
def test_xy(self): | |
x = np.array([[1, 2, 3]]) | |
y = np.array([[1j, 2j, 3j]]) | |
assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]])) | |
def test_empty(self): | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter('always', RuntimeWarning) | |
assert_array_equal(corrcoef(np.array([])), np.nan) | |
assert_array_equal(corrcoef(np.array([]).reshape(0, 2)), | |
np.array([]).reshape(0, 0)) | |
assert_array_equal(corrcoef(np.array([]).reshape(2, 0)), | |
np.array([[np.nan, np.nan], [np.nan, np.nan]])) | |
def test_wrong_ddof(self): | |
x = np.array([[0, 2], [1, 1], [2, 0]]).T | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter('always', RuntimeWarning) | |
assert_array_equal(corrcoef(x, ddof=5), | |
np.array([[np.nan, np.nan], [np.nan, np.nan]])) | |
class TestCov(TestCase): | |
def test_basic(self): | |
x = np.array([[0, 2], [1, 1], [2, 0]]).T | |
assert_allclose(cov(x), np.array([[1., -1.], [-1., 1.]])) | |
def test_complex(self): | |
x = np.array([[1, 2, 3], [1j, 2j, 3j]]) | |
assert_allclose(cov(x), np.array([[1., -1.j], [1.j, 1.]])) | |
def test_xy(self): | |
x = np.array([[1, 2, 3]]) | |
y = np.array([[1j, 2j, 3j]]) | |
assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]])) | |
def test_empty(self): | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter('always', RuntimeWarning) | |
assert_array_equal(cov(np.array([])), np.nan) | |
assert_array_equal(cov(np.array([]).reshape(0, 2)), | |
np.array([]).reshape(0, 0)) | |
assert_array_equal(cov(np.array([]).reshape(2, 0)), | |
np.array([[np.nan, np.nan], [np.nan, np.nan]])) | |
def test_wrong_ddof(self): | |
x = np.array([[0, 2], [1, 1], [2, 0]]).T | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter('always', RuntimeWarning) | |
assert_array_equal(cov(x, ddof=5), | |
np.array([[np.inf, -np.inf], [-np.inf, np.inf]])) | |
class Test_I0(TestCase): | |
def test_simple(self): | |
assert_almost_equal( | |
i0(0.5), | |
np.array(1.0634833707413234)) | |
A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549]) | |
assert_almost_equal( | |
i0(A), | |
np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049])) | |
B = np.array([[0.827002, 0.99959078], | |
[0.89694769, 0.39298162], | |
[0.37954418, 0.05206293], | |
[0.36465447, 0.72446427], | |
[0.48164949, 0.50324519]]) | |
assert_almost_equal( | |
i0(B), | |
np.array([[1.17843223, 1.26583466], | |
[1.21147086, 1.03898290], | |
[1.03633899, 1.00067775], | |
[1.03352052, 1.13557954], | |
[1.05884290, 1.06432317]])) | |
class TestKaiser(TestCase): | |
def test_simple(self): | |
assert_(np.isfinite(kaiser(1, 1.0))) | |
assert_almost_equal(kaiser(0, 1.0), | |
np.array([])) | |
assert_almost_equal(kaiser(2, 1.0), | |
np.array([0.78984831, 0.78984831])) | |
assert_almost_equal(kaiser(5, 1.0), | |
np.array([0.78984831, 0.94503323, 1., | |
0.94503323, 0.78984831])) | |
assert_almost_equal(kaiser(5, 1.56789), | |
np.array([0.58285404, 0.88409679, 1., | |
0.88409679, 0.58285404])) | |
def test_int_beta(self): | |
kaiser(3, 4) | |
class TestMsort(TestCase): | |
def test_simple(self): | |
A = np.array([[0.44567325, 0.79115165, 0.54900530], | |
[0.36844147, 0.37325583, 0.96098397], | |
[0.64864341, 0.52929049, 0.39172155]]) | |
assert_almost_equal( | |
msort(A), | |
np.array([[0.36844147, 0.37325583, 0.39172155], | |
[0.44567325, 0.52929049, 0.54900530], | |
[0.64864341, 0.79115165, 0.96098397]])) | |
class TestMeshgrid(TestCase): | |
def test_simple(self): | |
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7]) | |
assert_array_equal(X, np.array([[1, 2, 3], | |
[1, 2, 3], | |
[1, 2, 3], | |
[1, 2, 3]])) | |
assert_array_equal(Y, np.array([[4, 4, 4], | |
[5, 5, 5], | |
[6, 6, 6], | |
[7, 7, 7]])) | |
def test_single_input(self): | |
[X] = meshgrid([1, 2, 3, 4]) | |
assert_array_equal(X, np.array([1, 2, 3, 4])) | |
def test_no_input(self): | |
args = [] | |
assert_array_equal([], meshgrid(*args)) | |
def test_indexing(self): | |
x = [1, 2, 3] | |
y = [4, 5, 6, 7] | |
[X, Y] = meshgrid(x, y, indexing='ij') | |
assert_array_equal(X, np.array([[1, 1, 1, 1], | |
[2, 2, 2, 2], | |
[3, 3, 3, 3]])) | |
assert_array_equal(Y, np.array([[4, 5, 6, 7], | |
[4, 5, 6, 7], | |
[4, 5, 6, 7]])) | |
# Test expected shapes: | |
z = [8, 9] | |
assert_(meshgrid(x, y)[0].shape == (4, 3)) | |
assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4)) | |
assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2)) | |
assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2)) | |
assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') | |
def test_sparse(self): | |
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True) | |
assert_array_equal(X, np.array([[1, 2, 3]])) | |
assert_array_equal(Y, np.array([[4], [5], [6], [7]])) | |
def test_invalid_arguments(self): | |
# Test that meshgrid complains about invalid arguments | |
# Regression test for issue #4755: | |
# https://github.com/numpy/numpy/issues/4755 | |
assert_raises(TypeError, meshgrid, | |
[1, 2, 3], [4, 5, 6, 7], indices='ij') | |
class TestPiecewise(TestCase): | |
def test_simple(self): | |
# Condition is single bool list | |
x = piecewise([0, 0], [True, False], [1]) | |
assert_array_equal(x, [1, 0]) | |
# List of conditions: single bool list | |
x = piecewise([0, 0], [[True, False]], [1]) | |
assert_array_equal(x, [1, 0]) | |
# Conditions is single bool array | |
x = piecewise([0, 0], np.array([True, False]), [1]) | |
assert_array_equal(x, [1, 0]) | |
# Condition is single int array | |
x = piecewise([0, 0], np.array([1, 0]), [1]) | |
assert_array_equal(x, [1, 0]) | |
# List of conditions: int array | |
x = piecewise([0, 0], [np.array([1, 0])], [1]) | |
assert_array_equal(x, [1, 0]) | |
x = piecewise([0, 0], [[False, True]], [lambda x:-1]) | |
assert_array_equal(x, [0, -1]) | |
def test_two_conditions(self): | |
x = piecewise([1, 2], [[True, False], [False, True]], [3, 4]) | |
assert_array_equal(x, [3, 4]) | |
def test_default(self): | |
# No value specified for x[1], should be 0 | |
x = piecewise([1, 2], [True, False], [2]) | |
assert_array_equal(x, [2, 0]) | |
# Should set x[1] to 3 | |
x = piecewise([1, 2], [True, False], [2, 3]) | |
assert_array_equal(x, [2, 3]) | |
def test_0d(self): | |
x = np.array(3) | |
y = piecewise(x, x > 3, [4, 0]) | |
assert_(y.ndim == 0) | |
assert_(y == 0) | |
x = 5 | |
y = piecewise(x, [[True], [False]], [1, 0]) | |
assert_(y.ndim == 0) | |
assert_(y == 1) | |
def test_0d_comparison(self): | |
x = 3 | |
y = piecewise(x, [x <= 3, x > 3], [4, 0]) | |
class TestBincount(TestCase): | |
def test_simple(self): | |
y = np.bincount(np.arange(4)) | |
assert_array_equal(y, np.ones(4)) | |
def test_simple2(self): | |
y = np.bincount(np.array([1, 5, 2, 4, 1])) | |
assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1])) | |
def test_simple_weight(self): | |
x = np.arange(4) | |
w = np.array([0.2, 0.3, 0.5, 0.1]) | |
y = np.bincount(x, w) | |
assert_array_equal(y, w) | |
def test_simple_weight2(self): | |
x = np.array([1, 2, 4, 5, 2]) | |
w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) | |
y = np.bincount(x, w) | |
assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1])) | |
def test_with_minlength(self): | |
x = np.array([0, 1, 0, 1, 1]) | |
y = np.bincount(x, minlength=3) | |
assert_array_equal(y, np.array([2, 3, 0])) | |
def test_with_minlength_smaller_than_maxvalue(self): | |
x = np.array([0, 1, 1, 2, 2, 3, 3]) | |
y = np.bincount(x, minlength=2) | |
assert_array_equal(y, np.array([1, 2, 2, 2])) | |
def test_with_minlength_and_weights(self): | |
x = np.array([1, 2, 4, 5, 2]) | |
w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) | |
y = np.bincount(x, w, 8) | |
assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0])) | |
def test_empty(self): | |
x = np.array([], dtype=int) | |
y = np.bincount(x) | |
assert_array_equal(x, y) | |
def test_empty_with_minlength(self): | |
x = np.array([], dtype=int) | |
y = np.bincount(x, minlength=5) | |
assert_array_equal(y, np.zeros(5, dtype=int)) | |
def test_with_incorrect_minlength(self): | |
x = np.array([], dtype=int) | |
assert_raises_regex(TypeError, "an integer is required", | |
lambda: np.bincount(x, minlength="foobar")) | |
assert_raises_regex(ValueError, "must be positive", | |
lambda: np.bincount(x, minlength=-1)) | |
assert_raises_regex(ValueError, "must be positive", | |
lambda: np.bincount(x, minlength=0)) | |
x = np.arange(5) | |
assert_raises_regex(TypeError, "an integer is required", | |
lambda: np.bincount(x, minlength="foobar")) | |
assert_raises_regex(ValueError, "minlength must be positive", | |
lambda: np.bincount(x, minlength=-1)) | |
assert_raises_regex(ValueError, "minlength must be positive", | |
lambda: np.bincount(x, minlength=0)) | |
class TestInterp(TestCase): | |
def test_exceptions(self): | |
assert_raises(ValueError, interp, 0, [], []) | |
assert_raises(ValueError, interp, 0, [0], [1, 2]) | |
def test_basic(self): | |
x = np.linspace(0, 1, 5) | |
y = np.linspace(0, 1, 5) | |
x0 = np.linspace(0, 1, 50) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
def test_right_left_behavior(self): | |
assert_equal(interp([-1, 0, 1], [0], [1]), [1, 1, 1]) | |
assert_equal(interp([-1, 0, 1], [0], [1], left=0), [0, 1, 1]) | |
assert_equal(interp([-1, 0, 1], [0], [1], right=0), [1, 1, 0]) | |
assert_equal(interp([-1, 0, 1], [0], [1], left=0, right=0), [0, 1, 0]) | |
def test_scalar_interpolation_point(self): | |
x = np.linspace(0, 1, 5) | |
y = np.linspace(0, 1, 5) | |
x0 = 0 | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = .3 | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = np.float32(.3) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = np.float64(.3) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = np.nan | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
def test_zero_dimensional_interpolation_point(self): | |
x = np.linspace(0, 1, 5) | |
y = np.linspace(0, 1, 5) | |
x0 = np.array(.3) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = np.array(.3, dtype=object) | |
assert_almost_equal(np.interp(x0, x, y), .3) | |
def test_if_len_x_is_small(self): | |
xp = np.arange(0, 10, 0.0001) | |
fp = np.sin(xp) | |
assert_almost_equal(np.interp(np.pi, xp, fp), 0.0) | |
def compare_results(res, desired): | |
for i in range(len(desired)): | |
assert_array_equal(res[i], desired[i]) | |
class TestScoreatpercentile(TestCase): | |
def test_basic(self): | |
x = np.arange(8) * 0.5 | |
assert_equal(np.percentile(x, 0), 0.) | |
assert_equal(np.percentile(x, 100), 3.5) | |
assert_equal(np.percentile(x, 50), 1.75) | |
def test_api(self): | |
d = np.ones(5) | |
np.percentile(d, 5, None, None, False) | |
np.percentile(d, 5, None, None, False, 'linear') | |
o = np.ones((1,)) | |
np.percentile(d, 5, None, o, False, 'linear') | |
def test_2D(self): | |
x = np.array([[1, 1, 1], | |
[1, 1, 1], | |
[4, 4, 3], | |
[1, 1, 1], | |
[1, 1, 1]]) | |
assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) | |
def test_linear(self): | |
# Test defaults | |
assert_equal(np.percentile(range(10), 50), 4.5) | |
# explicitly specify interpolation_method 'fraction' (the default) | |
assert_equal(np.percentile(range(10), 50, | |
interpolation='linear'), 4.5) | |
def test_lower_higher(self): | |
# interpolation_method 'lower'/'higher' | |
assert_equal(np.percentile(range(10), 50, | |
interpolation='lower'), 4) | |
assert_equal(np.percentile(range(10), 50, | |
interpolation='higher'), 5) | |
def test_midpoint(self): | |
assert_equal(np.percentile(range(10), 51, | |
interpolation='midpoint'), 4.5) | |
def test_nearest(self): | |
assert_equal(np.percentile(range(10), 51, | |
interpolation='nearest'), 5) | |
assert_equal(np.percentile(range(10), 49, | |
interpolation='nearest'), 4) | |
def test_sequence(self): | |
x = np.arange(8) * 0.5 | |
assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75]) | |
def test_axis(self): | |
x = np.arange(12).reshape(3, 4) | |
assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0]) | |
r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] | |
assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0) | |
r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]] | |
assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T) | |
# ensure qth axis is always first as with np.array(old_percentile(..)) | |
x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) | |
assert_equal(np.percentile(x, (25, 50)).shape, (2,)) | |
assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,)) | |
assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5)) | |
assert_equal(np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), | |
interpolation="higher").shape, (2,)) | |
assert_equal(np.percentile(x, (25, 50, 75), | |
interpolation="higher").shape, (3,)) | |
assert_equal(np.percentile(x, (25, 50), axis=0, | |
interpolation="higher").shape, (2, 4, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=1, | |
interpolation="higher").shape, (2, 3, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=2, | |
interpolation="higher").shape, (2, 3, 4, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=3, | |
interpolation="higher").shape, (2, 3, 4, 5)) | |
assert_equal(np.percentile(x, (25, 50, 75), axis=1, | |
interpolation="higher").shape, (3, 3, 5, 6)) | |
def test_scalar_q(self): | |
# test for no empty dimensions for compatiblity with old percentile | |
x = np.arange(12).reshape(3, 4) | |
assert_equal(np.percentile(x, 50), 5.5) | |
self.assertTrue(np.isscalar(np.percentile(x, 50))) | |
r0 = np.array([ 4., 5., 6., 7.]) | |
assert_equal(np.percentile(x, 50, axis=0), r0) | |
assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape) | |
r1 = np.array([ 1.5, 5.5, 9.5]) | |
assert_almost_equal(np.percentile(x, 50, axis=1), r1) | |
assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape) | |
out = np.empty(1) | |
assert_equal(np.percentile(x, 50, out=out), 5.5) | |
assert_equal(out, 5.5) | |
out = np.empty(4) | |
assert_equal(np.percentile(x, 50, axis=0, out=out), r0) | |
assert_equal(out, r0) | |
out = np.empty(3) | |
assert_equal(np.percentile(x, 50, axis=1, out=out), r1) | |
assert_equal(out, r1) | |
# test for no empty dimensions for compatiblity with old percentile | |
x = np.arange(12).reshape(3, 4) | |
assert_equal(np.percentile(x, 50, interpolation='lower'), 5.) | |
self.assertTrue(np.isscalar(np.percentile(x, 50))) | |
r0 = np.array([ 4., 5., 6., 7.]) | |
c0 = np.percentile(x, 50, interpolation='lower', axis=0) | |
assert_equal(c0, r0) | |
assert_equal(c0.shape, r0.shape) | |
r1 = np.array([ 1., 5., 9.]) | |
c1 = np.percentile(x, 50, interpolation='lower', axis=1) | |
assert_almost_equal(c1, r1) | |
assert_equal(c1.shape, r1.shape) | |
out = np.empty((), dtype=x.dtype) | |
c = np.percentile(x, 50, interpolation='lower', out=out) | |
assert_equal(c, 5) | |
assert_equal(out, 5) | |
out = np.empty(4, dtype=x.dtype) | |
c = np.percentile(x, 50, interpolation='lower', axis=0, out=out) | |
assert_equal(c, r0) | |
assert_equal(out, r0) | |
out = np.empty(3, dtype=x.dtype) | |
c = np.percentile(x, 50, interpolation='lower', axis=1, out=out) | |
assert_equal(c, r1) | |
assert_equal(out, r1) | |
def test_exception(self): | |
assert_raises(ValueError, np.percentile, [1, 2], 56, | |
interpolation='foobar') | |
assert_raises(ValueError, np.percentile, [1], 101) | |
assert_raises(ValueError, np.percentile, [1], -1) | |
assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101]) | |
assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1]) | |
def test_percentile_list(self): | |
assert_equal(np.percentile([1, 2, 3], 0), 1) | |
def test_percentile_out(self): | |
x = np.array([1, 2, 3]) | |
y = np.zeros((3,)) | |
p = (1, 2, 3) | |
np.percentile(x, p, out=y) | |
assert_equal(y, np.percentile(x, p)) | |
x = np.array([[1, 2, 3], | |
[4, 5, 6]]) | |
y = np.zeros((3, 3)) | |
np.percentile(x, p, axis=0, out=y) | |
assert_equal(y, np.percentile(x, p, axis=0)) | |
y = np.zeros((3, 2)) | |
np.percentile(x, p, axis=1, out=y) | |
assert_equal(y, np.percentile(x, p, axis=1)) | |
x = np.arange(12).reshape(3, 4) | |
# q.dim > 1, float | |
r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]]) | |
out = np.empty((2, 4)) | |
assert_equal(np.percentile(x, (25, 50), axis=0, out=out), r0) | |
assert_equal(out, r0) | |
r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]]) | |
out = np.empty((2, 3)) | |
assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1) | |
assert_equal(out, r1) | |
# q.dim > 1, int | |
r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) | |
out = np.empty((2, 4), dtype=x.dtype) | |
c = np.percentile(x, (25, 50), interpolation='lower', axis=0, out=out) | |
assert_equal(c, r0) | |
assert_equal(out, r0) | |
r1 = np.array([[0, 4, 8], [1, 5, 9]]) | |
out = np.empty((2, 3), dtype=x.dtype) | |
c = np.percentile(x, (25, 50), interpolation='lower', axis=1, out=out) | |
assert_equal(c, r1) | |
assert_equal(out, r1) | |
def test_percentile_empty_dim(self): | |
# empty dims are preserved | |
d = np.arange(11*2).reshape(11, 1, 2, 1) | |
assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2)) | |
assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2)) | |
assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=2, | |
interpolation='midpoint').shape, | |
(11, 1, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=-2, | |
interpolation='midpoint').shape, | |
(11, 1, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape, | |
(2, 1, 2, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape, | |
(2, 11, 2, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape, | |
(2, 11, 1, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape, | |
(2, 11, 1, 2)) | |
def test_percentile_no_overwrite(self): | |
a = np.array([2, 3, 4, 1]) | |
np.percentile(a, [50], overwrite_input=False) | |
assert_equal(a, np.array([2, 3, 4, 1])) | |
a = np.array([2, 3, 4, 1]) | |
np.percentile(a, [50]) | |
assert_equal(a, np.array([2, 3, 4, 1])) | |
def test_no_p_overwrite(self): | |
p = np.linspace(0., 100., num=5) | |
np.percentile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, np.linspace(0., 100., num=5)) | |
p = np.linspace(0., 100., num=5).tolist() | |
np.percentile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, np.linspace(0., 100., num=5).tolist()) | |
def test_percentile_overwrite(self): | |
a = np.array([2, 3, 4, 1]) | |
b = np.percentile(a, [50], overwrite_input=True) | |
assert_equal(b, np.array([2.5])) | |
b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True) | |
assert_equal(b, np.array([2.5])) | |
def test_extended_axis(self): | |
o = np.random.normal(size=(71, 23)) | |
x = np.dstack([o] * 10) | |
assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30)) | |
x = np.rollaxis(x, -1, 0) | |
assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30)) | |
x = x.swapaxes(0, 1).copy() | |
assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30)) | |
x = x.swapaxes(0, 1).copy() | |
assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)), | |
np.percentile(x, [25, 60], axis=None)) | |
assert_equal(np.percentile(x, [25, 60], axis=(0,)), | |
np.percentile(x, [25, 60], axis=0)) | |
d = np.arange(3 * 5 * 7 * 11).reshape(3, 5, 7, 11) | |
np.random.shuffle(d) | |
assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0], | |
np.percentile(d[:, :, :, 0].flatten(), 25)) | |
assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1], | |
np.percentile(d[:, :, 1, :].flatten(), [10, 90])) | |
assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2], | |
np.percentile(d[:, :, 2, :].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2], | |
np.percentile(d[2, :, :, :].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1], | |
np.percentile(d[2, 1, :, :].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1], | |
np.percentile(d[2, :, :, 1].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2], | |
np.percentile(d[2, :, 2, :].flatten(), 25)) | |
def test_extended_axis_invalid(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_raises(IndexError, np.percentile, d, axis=-5, q=25) | |
assert_raises(IndexError, np.percentile, d, axis=(0, -5), q=25) | |
assert_raises(IndexError, np.percentile, d, axis=4, q=25) | |
assert_raises(IndexError, np.percentile, d, axis=(0, 4), q=25) | |
assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25) | |
def test_keepdims(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, | |
(1, 1, 7, 11)) | |
assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, | |
(1, 5, 7, 1)) | |
assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, | |
(3, 1, 7, 11)) | |
assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, | |
(1, 1, 7, 1)) | |
assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), | |
keepdims=True).shape, (2, 1, 1, 7, 1)) | |
assert_equal(np.percentile(d, [1, 7], axis=(0, 3), | |
keepdims=True).shape, (2, 1, 5, 7, 1)) | |
class TestMedian(TestCase): | |
def test_basic(self): | |
a0 = np.array(1) | |
a1 = np.arange(2) | |
a2 = np.arange(6).reshape(2, 3) | |
assert_equal(np.median(a0), 1) | |
assert_allclose(np.median(a1), 0.5) | |
assert_allclose(np.median(a2), 2.5) | |
assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5]) | |
assert_equal(np.median(a2, axis=1), [1, 4]) | |
assert_allclose(np.median(a2, axis=None), 2.5) | |
a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775]) | |
assert_almost_equal((a[1] + a[3]) / 2., np.median(a)) | |
a = np.array([0.0463301, 0.0444502, 0.141249]) | |
assert_equal(a[0], np.median(a)) | |
a = np.array([0.0444502, 0.141249, 0.0463301]) | |
assert_equal(a[-1], np.median(a)) | |
# check array scalar result | |
assert_equal(np.median(a).ndim, 0) | |
a[1] = np.nan | |
assert_equal(np.median(a).ndim, 0) | |
def test_axis_keyword(self): | |
a3 = np.array([[2, 3], | |
[0, 1], | |
[6, 7], | |
[4, 5]]) | |
for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]: | |
orig = a.copy() | |
np.median(a, axis=None) | |
for ax in range(a.ndim): | |
np.median(a, axis=ax) | |
assert_array_equal(a, orig) | |
assert_allclose(np.median(a3, axis=0), [3, 4]) | |
assert_allclose(np.median(a3.T, axis=1), [3, 4]) | |
assert_allclose(np.median(a3), 3.5) | |
assert_allclose(np.median(a3, axis=None), 3.5) | |
assert_allclose(np.median(a3.T), 3.5) | |
def test_overwrite_keyword(self): | |
a3 = np.array([[2, 3], | |
[0, 1], | |
[6, 7], | |
[4, 5]]) | |
a0 = np.array(1) | |
a1 = np.arange(2) | |
a2 = np.arange(6).reshape(2, 3) | |
assert_allclose(np.median(a0.copy(), overwrite_input=True), 1) | |
assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5) | |
assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5) | |
assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=0), | |
[1.5, 2.5, 3.5]) | |
assert_allclose( | |
np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4]) | |
assert_allclose( | |
np.median(a2.copy(), overwrite_input=True, axis=None), 2.5) | |
assert_allclose( | |
np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4]) | |
assert_allclose(np.median(a3.T.copy(), overwrite_input=True, axis=1), | |
[3, 4]) | |
a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5)) | |
map(np.random.shuffle, a4) | |
assert_allclose(np.median(a4, axis=None), | |
np.median(a4.copy(), axis=None, overwrite_input=True)) | |
assert_allclose(np.median(a4, axis=0), | |
np.median(a4.copy(), axis=0, overwrite_input=True)) | |
assert_allclose(np.median(a4, axis=1), | |
np.median(a4.copy(), axis=1, overwrite_input=True)) | |
assert_allclose(np.median(a4, axis=2), | |
np.median(a4.copy(), axis=2, overwrite_input=True)) | |
def test_array_like(self): | |
x = [1, 2, 3] | |
assert_almost_equal(np.median(x), 2) | |
x2 = [x] | |
assert_almost_equal(np.median(x2), 2) | |
assert_allclose(np.median(x2, axis=0), x) | |
def test_subclass(self): | |
# gh-3846 | |
class MySubClass(np.ndarray): | |
def __new__(cls, input_array, info=None): | |
obj = np.asarray(input_array).view(cls) | |
obj.info = info | |
return obj | |
def mean(self, axis=None, dtype=None, out=None): | |
return -7 | |
a = MySubClass([1,2,3]) | |
assert_equal(np.median(a), -7) | |
def test_object(self): | |
o = np.arange(7.); | |
assert_(type(np.median(o.astype(object))), float) | |
o[2] = np.nan | |
assert_(type(np.median(o.astype(object))), float) | |
def test_extended_axis(self): | |
o = np.random.normal(size=(71, 23)) | |
x = np.dstack([o] * 10) | |
assert_equal(np.median(x, axis=(0, 1)), np.median(o)) | |
x = np.rollaxis(x, -1, 0) | |
assert_equal(np.median(x, axis=(-2, -1)), np.median(o)) | |
x = x.swapaxes(0, 1).copy() | |
assert_equal(np.median(x, axis=(0, -1)), np.median(o)) | |
assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None)) | |
assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0)) | |
assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1)) | |
d = np.arange(3 * 5 * 7 * 11).reshape(3, 5, 7, 11) | |
np.random.shuffle(d) | |
assert_equal(np.median(d, axis=(0, 1, 2))[0], | |
np.median(d[:, :, :, 0].flatten())) | |
assert_equal(np.median(d, axis=(0, 1, 3))[1], | |
np.median(d[:, :, 1, :].flatten())) | |
assert_equal(np.median(d, axis=(3, 1, -4))[2], | |
np.median(d[:, :, 2, :].flatten())) | |
assert_equal(np.median(d, axis=(3, 1, 2))[2], | |
np.median(d[2, :, :, :].flatten())) | |
assert_equal(np.median(d, axis=(3, 2))[2, 1], | |
np.median(d[2, 1, :, :].flatten())) | |
assert_equal(np.median(d, axis=(1, -2))[2, 1], | |
np.median(d[2, :, :, 1].flatten())) | |
assert_equal(np.median(d, axis=(1, 3))[2, 2], | |
np.median(d[2, :, 2, :].flatten())) | |
def test_extended_axis_invalid(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_raises(IndexError, np.median, d, axis=-5) | |
assert_raises(IndexError, np.median, d, axis=(0, -5)) | |
assert_raises(IndexError, np.median, d, axis=4) | |
assert_raises(IndexError, np.median, d, axis=(0, 4)) | |
assert_raises(ValueError, np.median, d, axis=(1, 1)) | |
def test_keepdims(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_equal(np.median(d, axis=None, keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape, | |
(1, 1, 7, 11)) | |
assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape, | |
(1, 5, 7, 1)) | |
assert_equal(np.median(d, axis=(1,), keepdims=True).shape, | |
(3, 1, 7, 11)) | |
assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape, | |
(1, 1, 7, 1)) | |
class TestAdd_newdoc_ufunc(TestCase): | |
def test_ufunc_arg(self): | |
assert_raises(TypeError, add_newdoc_ufunc, 2, "blah") | |
assert_raises(ValueError, add_newdoc_ufunc, np.add, "blah") | |
def test_string_arg(self): | |
assert_raises(TypeError, add_newdoc_ufunc, np.add, 3) | |
class TestAdd_newdoc(TestCase): | |
def test_add_doc(self): | |
# test np.add_newdoc | |
tgt = "Current flat index into the array." | |
self.assertEqual(np.core.flatiter.index.__doc__[:len(tgt)], tgt) | |
self.assertTrue(len(np.core.ufunc.identity.__doc__) > 300) | |
self.assertTrue(len(np.lib.index_tricks.mgrid.__doc__) > 300) | |
if __name__ == "__main__": | |
run_module_suite() | |