|
""" |
|
Wrapper functions to more user-friendly calling of certain math functions |
|
whose output data-type is different than the input data-type in certain |
|
domains of the input. |
|
|
|
For example, for functions like `log` with branch cuts, the versions in this |
|
module provide the mathematically valid answers in the complex plane:: |
|
|
|
>>> import math |
|
>>> from numpy.lib import scimath |
|
>>> scimath.log(-math.exp(1)) == (1+1j*math.pi) |
|
True |
|
|
|
Similarly, `sqrt`, other base logarithms, `power` and trig functions are |
|
correctly handled. See their respective docstrings for specific examples. |
|
|
|
""" |
|
from __future__ import division, absolute_import, print_function |
|
|
|
import numpy.core.numeric as nx |
|
import numpy.core.numerictypes as nt |
|
from numpy.core.numeric import asarray, any |
|
from numpy.lib.type_check import isreal |
|
|
|
|
|
__all__ = [ |
|
'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin', |
|
'arctanh' |
|
] |
|
|
|
|
|
_ln2 = nx.log(2.0) |
|
|
|
|
|
def _tocomplex(arr): |
|
"""Convert its input `arr` to a complex array. |
|
|
|
The input is returned as a complex array of the smallest type that will fit |
|
the original data: types like single, byte, short, etc. become csingle, |
|
while others become cdouble. |
|
|
|
A copy of the input is always made. |
|
|
|
Parameters |
|
---------- |
|
arr : array |
|
|
|
Returns |
|
------- |
|
array |
|
An array with the same input data as the input but in complex form. |
|
|
|
Examples |
|
-------- |
|
|
|
First, consider an input of type short: |
|
|
|
>>> a = np.array([1,2,3],np.short) |
|
|
|
>>> ac = np.lib.scimath._tocomplex(a); ac |
|
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) |
|
|
|
>>> ac.dtype |
|
dtype('complex64') |
|
|
|
If the input is of type double, the output is correspondingly of the |
|
complex double type as well: |
|
|
|
>>> b = np.array([1,2,3],np.double) |
|
|
|
>>> bc = np.lib.scimath._tocomplex(b); bc |
|
array([ 1.+0.j, 2.+0.j, 3.+0.j]) |
|
|
|
>>> bc.dtype |
|
dtype('complex128') |
|
|
|
Note that even if the input was complex to begin with, a copy is still |
|
made, since the astype() method always copies: |
|
|
|
>>> c = np.array([1,2,3],np.csingle) |
|
|
|
>>> cc = np.lib.scimath._tocomplex(c); cc |
|
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) |
|
|
|
>>> c *= 2; c |
|
array([ 2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64) |
|
|
|
>>> cc |
|
array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) |
|
""" |
|
if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte, |
|
nt.ushort, nt.csingle)): |
|
return arr.astype(nt.csingle) |
|
else: |
|
return arr.astype(nt.cdouble) |
|
|
|
def _fix_real_lt_zero(x): |
|
"""Convert `x` to complex if it has real, negative components. |
|
|
|
Otherwise, output is just the array version of the input (via asarray). |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
|
|
Returns |
|
------- |
|
array |
|
|
|
Examples |
|
-------- |
|
>>> np.lib.scimath._fix_real_lt_zero([1,2]) |
|
array([1, 2]) |
|
|
|
>>> np.lib.scimath._fix_real_lt_zero([-1,2]) |
|
array([-1.+0.j, 2.+0.j]) |
|
|
|
""" |
|
x = asarray(x) |
|
if any(isreal(x) & (x < 0)): |
|
x = _tocomplex(x) |
|
return x |
|
|
|
def _fix_int_lt_zero(x): |
|
"""Convert `x` to double if it has real, negative components. |
|
|
|
Otherwise, output is just the array version of the input (via asarray). |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
|
|
Returns |
|
------- |
|
array |
|
|
|
Examples |
|
-------- |
|
>>> np.lib.scimath._fix_int_lt_zero([1,2]) |
|
array([1, 2]) |
|
|
|
>>> np.lib.scimath._fix_int_lt_zero([-1,2]) |
|
array([-1., 2.]) |
|
""" |
|
x = asarray(x) |
|
if any(isreal(x) & (x < 0)): |
|
x = x * 1.0 |
|
return x |
|
|
|
def _fix_real_abs_gt_1(x): |
|
"""Convert `x` to complex if it has real components x_i with abs(x_i)>1. |
|
|
|
Otherwise, output is just the array version of the input (via asarray). |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
|
|
Returns |
|
------- |
|
array |
|
|
|
Examples |
|
-------- |
|
>>> np.lib.scimath._fix_real_abs_gt_1([0,1]) |
|
array([0, 1]) |
|
|
|
>>> np.lib.scimath._fix_real_abs_gt_1([0,2]) |
|
array([ 0.+0.j, 2.+0.j]) |
|
""" |
|
x = asarray(x) |
|
if any(isreal(x) & (abs(x) > 1)): |
|
x = _tocomplex(x) |
|
return x |
|
|
|
def sqrt(x): |
|
""" |
|
Compute the square root of x. |
|
|
|
For negative input elements, a complex value is returned |
|
(unlike `numpy.sqrt` which returns NaN). |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The input value(s). |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The square root of `x`. If `x` was a scalar, so is `out`, |
|
otherwise an array is returned. |
|
|
|
See Also |
|
-------- |
|
numpy.sqrt |
|
|
|
Examples |
|
-------- |
|
For real, non-negative inputs this works just like `numpy.sqrt`: |
|
|
|
>>> np.lib.scimath.sqrt(1) |
|
1.0 |
|
>>> np.lib.scimath.sqrt([1, 4]) |
|
array([ 1., 2.]) |
|
|
|
But it automatically handles negative inputs: |
|
|
|
>>> np.lib.scimath.sqrt(-1) |
|
(0.0+1.0j) |
|
>>> np.lib.scimath.sqrt([-1,4]) |
|
array([ 0.+1.j, 2.+0.j]) |
|
|
|
""" |
|
x = _fix_real_lt_zero(x) |
|
return nx.sqrt(x) |
|
|
|
def log(x): |
|
""" |
|
Compute the natural logarithm of `x`. |
|
|
|
Return the "principal value" (for a description of this, see `numpy.log`) |
|
of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)`` |
|
returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the |
|
complex principle value is returned. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The value(s) whose log is (are) required. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The log of the `x` value(s). If `x` was a scalar, so is `out`, |
|
otherwise an array is returned. |
|
|
|
See Also |
|
-------- |
|
numpy.log |
|
|
|
Notes |
|
----- |
|
For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log` |
|
(note, however, that otherwise `numpy.log` and this `log` are identical, |
|
i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and, |
|
notably, the complex principle value if ``x.imag != 0``). |
|
|
|
Examples |
|
-------- |
|
>>> np.emath.log(np.exp(1)) |
|
1.0 |
|
|
|
Negative arguments are handled "correctly" (recall that |
|
``exp(log(x)) == x`` does *not* hold for real ``x < 0``): |
|
|
|
>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j) |
|
True |
|
|
|
""" |
|
x = _fix_real_lt_zero(x) |
|
return nx.log(x) |
|
|
|
def log10(x): |
|
""" |
|
Compute the logarithm base 10 of `x`. |
|
|
|
Return the "principal value" (for a description of this, see |
|
`numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this |
|
is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)`` |
|
returns ``inf``). Otherwise, the complex principle value is returned. |
|
|
|
Parameters |
|
---------- |
|
x : array_like or scalar |
|
The value(s) whose log base 10 is (are) required. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`, |
|
otherwise an array object is returned. |
|
|
|
See Also |
|
-------- |
|
numpy.log10 |
|
|
|
Notes |
|
----- |
|
For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10` |
|
(note, however, that otherwise `numpy.log10` and this `log10` are |
|
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, |
|
and, notably, the complex principle value if ``x.imag != 0``). |
|
|
|
Examples |
|
-------- |
|
|
|
(We set the printing precision so the example can be auto-tested) |
|
|
|
>>> np.set_printoptions(precision=4) |
|
|
|
>>> np.emath.log10(10**1) |
|
1.0 |
|
|
|
>>> np.emath.log10([-10**1, -10**2, 10**2]) |
|
array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ]) |
|
|
|
""" |
|
x = _fix_real_lt_zero(x) |
|
return nx.log10(x) |
|
|
|
def logn(n, x): |
|
""" |
|
Take log base n of x. |
|
|
|
If `x` contains negative inputs, the answer is computed and returned in the |
|
complex domain. |
|
|
|
Parameters |
|
---------- |
|
n : int |
|
The base in which the log is taken. |
|
x : array_like |
|
The value(s) whose log base `n` is (are) required. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The log base `n` of the `x` value(s). If `x` was a scalar, so is |
|
`out`, otherwise an array is returned. |
|
|
|
Examples |
|
-------- |
|
>>> np.set_printoptions(precision=4) |
|
|
|
>>> np.lib.scimath.logn(2, [4, 8]) |
|
array([ 2., 3.]) |
|
>>> np.lib.scimath.logn(2, [-4, -8, 8]) |
|
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) |
|
|
|
""" |
|
x = _fix_real_lt_zero(x) |
|
n = _fix_real_lt_zero(n) |
|
return nx.log(x)/nx.log(n) |
|
|
|
def log2(x): |
|
""" |
|
Compute the logarithm base 2 of `x`. |
|
|
|
Return the "principal value" (for a description of this, see |
|
`numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is |
|
a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns |
|
``inf``). Otherwise, the complex principle value is returned. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The value(s) whose log base 2 is (are) required. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`, |
|
otherwise an array is returned. |
|
|
|
See Also |
|
-------- |
|
numpy.log2 |
|
|
|
Notes |
|
----- |
|
For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2` |
|
(note, however, that otherwise `numpy.log2` and this `log2` are |
|
identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, |
|
and, notably, the complex principle value if ``x.imag != 0``). |
|
|
|
Examples |
|
-------- |
|
We set the printing precision so the example can be auto-tested: |
|
|
|
>>> np.set_printoptions(precision=4) |
|
|
|
>>> np.emath.log2(8) |
|
3.0 |
|
>>> np.emath.log2([-4, -8, 8]) |
|
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) |
|
|
|
""" |
|
x = _fix_real_lt_zero(x) |
|
return nx.log2(x) |
|
|
|
def power(x, p): |
|
""" |
|
Return x to the power p, (x**p). |
|
|
|
If `x` contains negative values, the output is converted to the |
|
complex domain. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The input value(s). |
|
p : array_like of ints |
|
The power(s) to which `x` is raised. If `x` contains multiple values, |
|
`p` has to either be a scalar, or contain the same number of values |
|
as `x`. In the latter case, the result is |
|
``x[0]**p[0], x[1]**p[1], ...``. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The result of ``x**p``. If `x` and `p` are scalars, so is `out`, |
|
otherwise an array is returned. |
|
|
|
See Also |
|
-------- |
|
numpy.power |
|
|
|
Examples |
|
-------- |
|
>>> np.set_printoptions(precision=4) |
|
|
|
>>> np.lib.scimath.power([2, 4], 2) |
|
array([ 4, 16]) |
|
>>> np.lib.scimath.power([2, 4], -2) |
|
array([ 0.25 , 0.0625]) |
|
>>> np.lib.scimath.power([-2, 4], 2) |
|
array([ 4.+0.j, 16.+0.j]) |
|
|
|
""" |
|
x = _fix_real_lt_zero(x) |
|
p = _fix_int_lt_zero(p) |
|
return nx.power(x, p) |
|
|
|
def arccos(x): |
|
""" |
|
Compute the inverse cosine of x. |
|
|
|
Return the "principal value" (for a description of this, see |
|
`numpy.arccos`) of the inverse cosine of `x`. For real `x` such that |
|
`abs(x) <= 1`, this is a real number in the closed interval |
|
:math:`[0, \\pi]`. Otherwise, the complex principle value is returned. |
|
|
|
Parameters |
|
---------- |
|
x : array_like or scalar |
|
The value(s) whose arccos is (are) required. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so |
|
is `out`, otherwise an array object is returned. |
|
|
|
See Also |
|
-------- |
|
numpy.arccos |
|
|
|
Notes |
|
----- |
|
For an arccos() that returns ``NAN`` when real `x` is not in the |
|
interval ``[-1,1]``, use `numpy.arccos`. |
|
|
|
Examples |
|
-------- |
|
>>> np.set_printoptions(precision=4) |
|
|
|
>>> np.emath.arccos(1) # a scalar is returned |
|
0.0 |
|
|
|
>>> np.emath.arccos([1,2]) |
|
array([ 0.-0.j , 0.+1.317j]) |
|
|
|
""" |
|
x = _fix_real_abs_gt_1(x) |
|
return nx.arccos(x) |
|
|
|
def arcsin(x): |
|
""" |
|
Compute the inverse sine of x. |
|
|
|
Return the "principal value" (for a description of this, see |
|
`numpy.arcsin`) of the inverse sine of `x`. For real `x` such that |
|
`abs(x) <= 1`, this is a real number in the closed interval |
|
:math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is |
|
returned. |
|
|
|
Parameters |
|
---------- |
|
x : array_like or scalar |
|
The value(s) whose arcsin is (are) required. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The inverse sine(s) of the `x` value(s). If `x` was a scalar, so |
|
is `out`, otherwise an array object is returned. |
|
|
|
See Also |
|
-------- |
|
numpy.arcsin |
|
|
|
Notes |
|
----- |
|
For an arcsin() that returns ``NAN`` when real `x` is not in the |
|
interval ``[-1,1]``, use `numpy.arcsin`. |
|
|
|
Examples |
|
-------- |
|
>>> np.set_printoptions(precision=4) |
|
|
|
>>> np.emath.arcsin(0) |
|
0.0 |
|
|
|
>>> np.emath.arcsin([0,1]) |
|
array([ 0. , 1.5708]) |
|
|
|
""" |
|
x = _fix_real_abs_gt_1(x) |
|
return nx.arcsin(x) |
|
|
|
def arctanh(x): |
|
""" |
|
Compute the inverse hyperbolic tangent of `x`. |
|
|
|
Return the "principal value" (for a description of this, see |
|
`numpy.arctanh`) of `arctanh(x)`. For real `x` such that |
|
`abs(x) < 1`, this is a real number. If `abs(x) > 1`, or if `x` is |
|
complex, the result is complex. Finally, `x = 1` returns``inf`` and |
|
`x=-1` returns ``-inf``. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The value(s) whose arctanh is (are) required. |
|
|
|
Returns |
|
------- |
|
out : ndarray or scalar |
|
The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was |
|
a scalar so is `out`, otherwise an array is returned. |
|
|
|
|
|
See Also |
|
-------- |
|
numpy.arctanh |
|
|
|
Notes |
|
----- |
|
For an arctanh() that returns ``NAN`` when real `x` is not in the |
|
interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does |
|
return +/-inf for `x = +/-1`). |
|
|
|
Examples |
|
-------- |
|
>>> np.set_printoptions(precision=4) |
|
|
|
>>> np.emath.arctanh(np.matrix(np.eye(2))) |
|
array([[ Inf, 0.], |
|
[ 0., Inf]]) |
|
>>> np.emath.arctanh([1j]) |
|
array([ 0.+0.7854j]) |
|
|
|
""" |
|
x = _fix_real_abs_gt_1(x) |
|
return nx.arctanh(x) |
|
|