tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/f2py
/src
/fortranobject.c
extern "C" { | |
/* | |
This file implements: FortranObject, array_from_pyobj, copy_ND_array | |
Author: Pearu Peterson <[email protected]> | |
$Revision: 1.52 $ | |
$Date: 2005/07/11 07:44:20 $ | |
*/ | |
int | |
F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj) | |
{ | |
if (obj==NULL) { | |
fprintf(stderr, "Error loading %s\n", name); | |
if (PyErr_Occurred()) { | |
PyErr_Print(); | |
PyErr_Clear(); | |
} | |
return -1; | |
} | |
return PyDict_SetItemString(dict, name, obj); | |
} | |
/************************* FortranObject *******************************/ | |
typedef PyObject *(*fortranfunc)(PyObject *,PyObject *,PyObject *,void *); | |
PyObject * | |
PyFortranObject_New(FortranDataDef* defs, f2py_void_func init) { | |
int i; | |
PyFortranObject *fp = NULL; | |
PyObject *v = NULL; | |
if (init!=NULL) /* Initialize F90 module objects */ | |
(*(init))(); | |
if ((fp = PyObject_New(PyFortranObject, &PyFortran_Type))==NULL) return NULL; | |
if ((fp->dict = PyDict_New())==NULL) return NULL; | |
fp->len = 0; | |
while (defs[fp->len].name != NULL) fp->len++; | |
if (fp->len == 0) goto fail; | |
fp->defs = defs; | |
for (i=0;i<fp->len;i++) | |
if (fp->defs[i].rank == -1) { /* Is Fortran routine */ | |
v = PyFortranObject_NewAsAttr(&(fp->defs[i])); | |
if (v==NULL) return NULL; | |
PyDict_SetItemString(fp->dict,fp->defs[i].name,v); | |
} else | |
if ((fp->defs[i].data)!=NULL) { /* Is Fortran variable or array (not allocatable) */ | |
if (fp->defs[i].type == NPY_STRING) { | |
int n = fp->defs[i].rank-1; | |
v = PyArray_New(&PyArray_Type, n, fp->defs[i].dims.d, | |
NPY_STRING, NULL, fp->defs[i].data, fp->defs[i].dims.d[n], | |
NPY_FARRAY, NULL); | |
} | |
else { | |
v = PyArray_New(&PyArray_Type, fp->defs[i].rank, fp->defs[i].dims.d, | |
fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_FARRAY, | |
NULL); | |
} | |
if (v==NULL) return NULL; | |
PyDict_SetItemString(fp->dict,fp->defs[i].name,v); | |
} | |
Py_XDECREF(v); | |
return (PyObject *)fp; | |
fail: | |
Py_XDECREF(v); | |
return NULL; | |
} | |
PyObject * | |
PyFortranObject_NewAsAttr(FortranDataDef* defs) { /* used for calling F90 module routines */ | |
PyFortranObject *fp = NULL; | |
fp = PyObject_New(PyFortranObject, &PyFortran_Type); | |
if (fp == NULL) return NULL; | |
if ((fp->dict = PyDict_New())==NULL) return NULL; | |
fp->len = 1; | |
fp->defs = defs; | |
return (PyObject *)fp; | |
} | |
/* Fortran methods */ | |
static void | |
fortran_dealloc(PyFortranObject *fp) { | |
Py_XDECREF(fp->dict); | |
PyMem_Del(fp); | |
} | |
static PyMethodDef fortran_methods[] = { | |
{NULL, NULL} /* sentinel */ | |
}; | |
static PyObject * | |
fortran_doc (FortranDataDef def) { | |
char *p; | |
/* | |
p is used as a buffer to hold generated documentation strings. | |
A common operation in generating the documentation strings, is | |
appending a string to the buffer p. Earlier, the following | |
idiom was: | |
sprintf(p, "%s<string to be appended>", p); | |
but this does not work when _FORTIFY_SOURCE=2 is enabled: instead | |
of appending the string, the string is inserted. | |
As a fix, the following idiom should be used for appending | |
strings to a buffer p: | |
sprintf(p + strlen(p), "<string to be appended>"); | |
*/ | |
PyObject *s = NULL; | |
int i; | |
unsigned size=100; | |
if (def.doc!=NULL) | |
size += strlen(def.doc); | |
p = (char*)malloc (size); | |
p[0] = '\0'; /* make sure that the buffer has zero length */ | |
if (def.rank==-1) { | |
if (def.doc==NULL) { | |
if (sprintf(p,"%s - ",def.name)==0) goto fail; | |
if (sprintf(p+strlen(p),"no docs available")==0) | |
goto fail; | |
} else { | |
if (sprintf(p+strlen(p),"%s",def.doc)==0) | |
goto fail; | |
} | |
} else { | |
PyArray_Descr *d = PyArray_DescrFromType(def.type); | |
if (sprintf(p+strlen(p),"'%c'-",d->type)==0) { | |
Py_DECREF(d); | |
goto fail; | |
} | |
Py_DECREF(d); | |
if (def.data==NULL) { | |
if (sprintf(p+strlen(p),"array(%" NPY_INTP_FMT,def.dims.d[0])==0) | |
goto fail; | |
for(i=1;i<def.rank;++i) | |
if (sprintf(p+strlen(p),",%" NPY_INTP_FMT,def.dims.d[i])==0) | |
goto fail; | |
if (sprintf(p+strlen(p),"), not allocated")==0) | |
goto fail; | |
} else { | |
if (def.rank>0) { | |
if (sprintf(p+strlen(p),"array(%"NPY_INTP_FMT,def.dims.d[0])==0) | |
goto fail; | |
for(i=1;i<def.rank;i++) | |
if (sprintf(p+strlen(p),",%" NPY_INTP_FMT,def.dims.d[i])==0) | |
goto fail; | |
if (sprintf(p+strlen(p),")")==0) goto fail; | |
} else { | |
if (sprintf(p+strlen(p),"scalar")==0) goto fail; | |
} | |
} | |
} | |
if (sprintf(p+strlen(p),"\n")==0) goto fail; | |
if (strlen(p)>size) { | |
fprintf(stderr,"fortranobject.c:fortran_doc:len(p)=%zd>%d(size):"\ | |
" too long doc string required, increase size\n",\ | |
strlen(p),size); | |
goto fail; | |
} | |
s = PyUnicode_FromString(p); | |
s = PyString_FromString(p); | |
fail: | |
free(p); | |
return s; | |
} | |
static FortranDataDef *save_def; /* save pointer of an allocatable array */ | |
static void set_data(char *d,npy_intp *f) { /* callback from Fortran */ | |
if (*f) /* In fortran f=allocated(d) */ | |
save_def->data = d; | |
else | |
save_def->data = NULL; | |
/* printf("set_data: d=%p,f=%d\n",d,*f); */ | |
} | |
static PyObject * | |
fortran_getattr(PyFortranObject *fp, char *name) { | |
int i,j,k,flag; | |
if (fp->dict != NULL) { | |
PyObject *v = PyDict_GetItemString(fp->dict, name); | |
if (v != NULL) { | |
Py_INCREF(v); | |
return v; | |
} | |
} | |
for (i=0,j=1;i<fp->len && (j=strcmp(name,fp->defs[i].name));i++); | |
if (j==0) | |
if (fp->defs[i].rank!=-1) { /* F90 allocatable array */ | |
if (fp->defs[i].func==NULL) return NULL; | |
for(k=0;k<fp->defs[i].rank;++k) | |
fp->defs[i].dims.d[k]=-1; | |
save_def = &fp->defs[i]; | |
(*(fp->defs[i].func))(&fp->defs[i].rank,fp->defs[i].dims.d,set_data,&flag); | |
if (flag==2) | |
k = fp->defs[i].rank + 1; | |
else | |
k = fp->defs[i].rank; | |
if (fp->defs[i].data !=NULL) { /* array is allocated */ | |
PyObject *v = PyArray_New(&PyArray_Type, k, fp->defs[i].dims.d, | |
fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_FARRAY, | |
NULL); | |
if (v==NULL) return NULL; | |
/* Py_INCREF(v); */ | |
return v; | |
} else { /* array is not allocated */ | |
Py_INCREF(Py_None); | |
return Py_None; | |
} | |
} | |
if (strcmp(name,"__dict__")==0) { | |
Py_INCREF(fp->dict); | |
return fp->dict; | |
} | |
if (strcmp(name,"__doc__")==0) { | |
PyObject *s = PyUnicode_FromString(""), *s2, *s3; | |
for (i=0;i<fp->len;i++) { | |
s2 = fortran_doc(fp->defs[i]); | |
s3 = PyUnicode_Concat(s, s2); | |
Py_DECREF(s2); | |
Py_DECREF(s); | |
s = s3; | |
} | |
PyObject *s = PyString_FromString(""); | |
for (i=0;i<fp->len;i++) | |
PyString_ConcatAndDel(&s,fortran_doc(fp->defs[i])); | |
if (PyDict_SetItemString(fp->dict, name, s)) | |
return NULL; | |
return s; | |
} | |
if ((strcmp(name,"_cpointer")==0) && (fp->len==1)) { | |
PyObject *cobj = F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data),NULL); | |
if (PyDict_SetItemString(fp->dict, name, cobj)) | |
return NULL; | |
return cobj; | |
} | |
if (1) { | |
PyObject *str, *ret; | |
str = PyUnicode_FromString(name); | |
ret = PyObject_GenericGetAttr((PyObject *)fp, str); | |
Py_DECREF(str); | |
return ret; | |
} | |
return Py_FindMethod(fortran_methods, (PyObject *)fp, name); | |
} | |
static int | |
fortran_setattr(PyFortranObject *fp, char *name, PyObject *v) { | |
int i,j,flag; | |
PyArrayObject *arr = NULL; | |
for (i=0,j=1;i<fp->len && (j=strcmp(name,fp->defs[i].name));i++); | |
if (j==0) { | |
if (fp->defs[i].rank==-1) { | |
PyErr_SetString(PyExc_AttributeError,"over-writing fortran routine"); | |
return -1; | |
} | |
if (fp->defs[i].func!=NULL) { /* is allocatable array */ | |
npy_intp dims[F2PY_MAX_DIMS]; | |
int k; | |
save_def = &fp->defs[i]; | |
if (v!=Py_None) { /* set new value (reallocate if needed -- | |
see f2py generated code for more | |
details ) */ | |
for(k=0;k<fp->defs[i].rank;k++) dims[k]=-1; | |
if ((arr = array_from_pyobj(fp->defs[i].type,dims,fp->defs[i].rank,F2PY_INTENT_IN,v))==NULL) | |
return -1; | |
(*(fp->defs[i].func))(&fp->defs[i].rank,arr->dimensions,set_data,&flag); | |
} else { /* deallocate */ | |
for(k=0;k<fp->defs[i].rank;k++) dims[k]=0; | |
(*(fp->defs[i].func))(&fp->defs[i].rank,dims,set_data,&flag); | |
for(k=0;k<fp->defs[i].rank;k++) dims[k]=-1; | |
} | |
memcpy(fp->defs[i].dims.d,dims,fp->defs[i].rank*sizeof(npy_intp)); | |
} else { /* not allocatable array */ | |
if ((arr = array_from_pyobj(fp->defs[i].type,fp->defs[i].dims.d,fp->defs[i].rank,F2PY_INTENT_IN,v))==NULL) | |
return -1; | |
} | |
if (fp->defs[i].data!=NULL) { /* copy Python object to Fortran array */ | |
npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d,arr->nd); | |
if (s==-1) | |
s = PyArray_MultiplyList(arr->dimensions,arr->nd); | |
if (s<0 || | |
(memcpy(fp->defs[i].data,arr->data,s*PyArray_ITEMSIZE(arr)))==NULL) { | |
if ((PyObject*)arr!=v) { | |
Py_DECREF(arr); | |
} | |
return -1; | |
} | |
if ((PyObject*)arr!=v) { | |
Py_DECREF(arr); | |
} | |
} else return (fp->defs[i].func==NULL?-1:0); | |
return 0; /* succesful */ | |
} | |
if (fp->dict == NULL) { | |
fp->dict = PyDict_New(); | |
if (fp->dict == NULL) | |
return -1; | |
} | |
if (v == NULL) { | |
int rv = PyDict_DelItemString(fp->dict, name); | |
if (rv < 0) | |
PyErr_SetString(PyExc_AttributeError,"delete non-existing fortran attribute"); | |
return rv; | |
} | |
else | |
return PyDict_SetItemString(fp->dict, name, v); | |
} | |
static PyObject* | |
fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw) { | |
int i = 0; | |
/* printf("fortran call | |
name=%s,func=%p,data=%p,%p\n",fp->defs[i].name, | |
fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */ | |
if (fp->defs[i].rank==-1) {/* is Fortran routine */ | |
if (fp->defs[i].func==NULL) { | |
PyErr_Format(PyExc_RuntimeError, "no function to call"); | |
return NULL; | |
} | |
else if (fp->defs[i].data==NULL) | |
/* dummy routine */ | |
return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp,arg,kw,NULL); | |
else | |
return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp,arg,kw, | |
(void *)fp->defs[i].data); | |
} | |
PyErr_Format(PyExc_TypeError, "this fortran object is not callable"); | |
return NULL; | |
} | |
static PyObject * | |
fortran_repr(PyFortranObject *fp) | |
{ | |
PyObject *name = NULL, *repr = NULL; | |
name = PyObject_GetAttrString((PyObject *)fp, "__name__"); | |
PyErr_Clear(); | |
if (name != NULL && PyUnicode_Check(name)) { | |
repr = PyUnicode_FromFormat("<fortran %U>", name); | |
} | |
else { | |
repr = PyUnicode_FromString("<fortran object>"); | |
} | |
if (name != NULL && PyString_Check(name)) { | |
repr = PyString_FromFormat("<fortran %s>", PyString_AsString(name)); | |
} | |
else { | |
repr = PyString_FromString("<fortran object>"); | |
} | |
Py_XDECREF(name); | |
return repr; | |
} | |
PyTypeObject PyFortran_Type = { | |
PyVarObject_HEAD_INIT(NULL, 0) | |
PyObject_HEAD_INIT(0) | |
0, /*ob_size*/ | |
"fortran", /*tp_name*/ | |
sizeof(PyFortranObject), /*tp_basicsize*/ | |
0, /*tp_itemsize*/ | |
/* methods */ | |
(destructor)fortran_dealloc, /*tp_dealloc*/ | |
0, /*tp_print*/ | |
(getattrfunc)fortran_getattr, /*tp_getattr*/ | |
(setattrfunc)fortran_setattr, /*tp_setattr*/ | |
0, /*tp_compare/tp_reserved*/ | |
(reprfunc)fortran_repr, /*tp_repr*/ | |
0, /*tp_as_number*/ | |
0, /*tp_as_sequence*/ | |
0, /*tp_as_mapping*/ | |
0, /*tp_hash*/ | |
(ternaryfunc)fortran_call, /*tp_call*/ | |
}; | |
/************************* f2py_report_atexit *******************************/ | |
static int passed_time = 0; | |
static int passed_counter = 0; | |
static int passed_call_time = 0; | |
static struct timeb start_time; | |
static struct timeb stop_time; | |
static struct timeb start_call_time; | |
static struct timeb stop_call_time; | |
static int cb_passed_time = 0; | |
static int cb_passed_counter = 0; | |
static int cb_passed_call_time = 0; | |
static struct timeb cb_start_time; | |
static struct timeb cb_stop_time; | |
static struct timeb cb_start_call_time; | |
static struct timeb cb_stop_call_time; | |
extern void f2py_start_clock(void) { ftime(&start_time); } | |
extern | |
void f2py_start_call_clock(void) { | |
f2py_stop_clock(); | |
ftime(&start_call_time); | |
} | |
extern | |
void f2py_stop_clock(void) { | |
ftime(&stop_time); | |
passed_time += 1000*(stop_time.time - start_time.time); | |
passed_time += stop_time.millitm - start_time.millitm; | |
} | |
extern | |
void f2py_stop_call_clock(void) { | |
ftime(&stop_call_time); | |
passed_call_time += 1000*(stop_call_time.time - start_call_time.time); | |
passed_call_time += stop_call_time.millitm - start_call_time.millitm; | |
passed_counter += 1; | |
f2py_start_clock(); | |
} | |
extern void f2py_cb_start_clock(void) { ftime(&cb_start_time); } | |
extern | |
void f2py_cb_start_call_clock(void) { | |
f2py_cb_stop_clock(); | |
ftime(&cb_start_call_time); | |
} | |
extern | |
void f2py_cb_stop_clock(void) { | |
ftime(&cb_stop_time); | |
cb_passed_time += 1000*(cb_stop_time.time - cb_start_time.time); | |
cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm; | |
} | |
extern | |
void f2py_cb_stop_call_clock(void) { | |
ftime(&cb_stop_call_time); | |
cb_passed_call_time += 1000*(cb_stop_call_time.time - cb_start_call_time.time); | |
cb_passed_call_time += cb_stop_call_time.millitm - cb_start_call_time.millitm; | |
cb_passed_counter += 1; | |
f2py_cb_start_clock(); | |
} | |
static int f2py_report_on_exit_been_here = 0; | |
extern | |
void f2py_report_on_exit(int exit_flag,void *name) { | |
if (f2py_report_on_exit_been_here) { | |
fprintf(stderr," %s\n",(char*)name); | |
return; | |
} | |
f2py_report_on_exit_been_here = 1; | |
fprintf(stderr," /-----------------------\\\n"); | |
fprintf(stderr," < F2PY performance report >\n"); | |
fprintf(stderr," \\-----------------------/\n"); | |
fprintf(stderr,"Overall time spent in ...\n"); | |
fprintf(stderr,"(a) wrapped (Fortran/C) functions : %8d msec\n", | |
passed_call_time); | |
fprintf(stderr,"(b) f2py interface, %6d calls : %8d msec\n", | |
passed_counter,passed_time); | |
fprintf(stderr,"(c) call-back (Python) functions : %8d msec\n", | |
cb_passed_call_time); | |
fprintf(stderr,"(d) f2py call-back interface, %6d calls : %8d msec\n", | |
cb_passed_counter,cb_passed_time); | |
fprintf(stderr,"(e) wrapped (Fortran/C) functions (acctual) : %8d msec\n\n", | |
passed_call_time-cb_passed_call_time-cb_passed_time); | |
fprintf(stderr,"Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n"); | |
fprintf(stderr,"Exit status: %d\n",exit_flag); | |
fprintf(stderr,"Modules : %s\n",(char*)name); | |
} | |
/********************** report on array copy ****************************/ | |
static void f2py_report_on_array_copy(PyArrayObject* arr) { | |
const long arr_size = PyArray_Size((PyObject *)arr); | |
if (arr_size>F2PY_REPORT_ON_ARRAY_COPY) { | |
fprintf(stderr,"copied an array: size=%ld, elsize=%d\n", | |
arr_size, PyArray_ITEMSIZE(arr)); | |
} | |
} | |
static void f2py_report_on_array_copy_fromany(void) { | |
fprintf(stderr,"created an array from object\n"); | |
} | |
/************************* array_from_obj *******************************/ | |
/* | |
* File: array_from_pyobj.c | |
* | |
* Description: | |
* ------------ | |
* Provides array_from_pyobj function that returns a contigious array | |
* object with the given dimensions and required storage order, either | |
* in row-major (C) or column-major (Fortran) order. The function | |
* array_from_pyobj is very flexible about its Python object argument | |
* that can be any number, list, tuple, or array. | |
* | |
* array_from_pyobj is used in f2py generated Python extension | |
* modules. | |
* | |
* Author: Pearu Peterson <[email protected]> | |
* Created: 13-16 January 2002 | |
* $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $ | |
*/ | |
static int | |
count_nonpos(const int rank, | |
const npy_intp *dims) { | |
int i=0,r=0; | |
while (i<rank) { | |
if (dims[i] <= 0) ++r; | |
++i; | |
} | |
return r; | |
} | |
static int check_and_fix_dimensions(const PyArrayObject* arr, | |
const int rank, | |
npy_intp *dims); | |
void dump_dims(int rank, npy_intp* dims) { | |
int i; | |
printf("["); | |
for(i=0;i<rank;++i) { | |
printf("%3" NPY_INTP_FMT, dims[i]); | |
} | |
printf("]\n"); | |
} | |
void dump_attrs(const PyArrayObject* arr) { | |
int rank = arr->nd; | |
npy_intp size = PyArray_Size((PyObject *)arr); | |
printf("\trank = %d, flags = %d, size = %" NPY_INTP_FMT "\n", | |
rank,arr->flags,size); | |
printf("\tstrides = "); | |
dump_dims(rank,arr->strides); | |
printf("\tdimensions = "); | |
dump_dims(rank,arr->dimensions); | |
} | |
static int swap_arrays(PyArrayObject* arr1, PyArrayObject* arr2) { | |
SWAPTYPE(arr1->data,arr2->data,char*); | |
SWAPTYPE(arr1->nd,arr2->nd,int); | |
SWAPTYPE(arr1->dimensions,arr2->dimensions,npy_intp*); | |
SWAPTYPE(arr1->strides,arr2->strides,npy_intp*); | |
SWAPTYPE(arr1->base,arr2->base,PyObject*); | |
SWAPTYPE(arr1->descr,arr2->descr,PyArray_Descr*); | |
SWAPTYPE(arr1->flags,arr2->flags,int); | |
/* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */ | |
return 0; | |
} | |
extern | |
PyArrayObject* array_from_pyobj(const int type_num, | |
npy_intp *dims, | |
const int rank, | |
const int intent, | |
PyObject *obj) { | |
/* Note about reference counting | |
----------------------------- | |
If the caller returns the array to Python, it must be done with | |
Py_BuildValue("N",arr). | |
Otherwise, if obj!=arr then the caller must call Py_DECREF(arr). | |
Note on intent(cache,out,..) | |
--------------------- | |
Don't expect correct data when returning intent(cache) array. | |
*/ | |
char mess[200]; | |
PyArrayObject *arr = NULL; | |
PyArray_Descr *descr; | |
char typechar; | |
int elsize; | |
if ((intent & F2PY_INTENT_HIDE) | |
|| ((intent & F2PY_INTENT_CACHE) && (obj==Py_None)) | |
|| ((intent & F2PY_OPTIONAL) && (obj==Py_None)) | |
) { | |
/* intent(cache), optional, intent(hide) */ | |
if (count_nonpos(rank,dims)) { | |
int i; | |
sprintf(mess,"failed to create intent(cache|hide)|optional array" | |
"-- must have defined dimensions but got ("); | |
for(i=0;i<rank;++i) | |
sprintf(mess+strlen(mess),"%" NPY_INTP_FMT ",",dims[i]); | |
sprintf(mess+strlen(mess),")"); | |
PyErr_SetString(PyExc_ValueError,mess); | |
return NULL; | |
} | |
arr = (PyArrayObject *) | |
PyArray_New(&PyArray_Type, rank, dims, type_num, | |
NULL,NULL,0, | |
!(intent&F2PY_INTENT_C), | |
NULL); | |
if (arr==NULL) return NULL; | |
if (!(intent & F2PY_INTENT_CACHE)) | |
PyArray_FILLWBYTE(arr, 0); | |
return arr; | |
} | |
descr = PyArray_DescrFromType(type_num); | |
elsize = descr->elsize; | |
typechar = descr->type; | |
Py_DECREF(descr); | |
if (PyArray_Check(obj)) { | |
arr = (PyArrayObject *)obj; | |
if (intent & F2PY_INTENT_CACHE) { | |
/* intent(cache) */ | |
if (PyArray_ISONESEGMENT(obj) | |
&& PyArray_ITEMSIZE((PyArrayObject *)obj)>=elsize) { | |
if (check_and_fix_dimensions((PyArrayObject *)obj,rank,dims)) { | |
return NULL; /*XXX: set exception */ | |
} | |
if (intent & F2PY_INTENT_OUT) | |
Py_INCREF(obj); | |
return (PyArrayObject *)obj; | |
} | |
sprintf(mess,"failed to initialize intent(cache) array"); | |
if (!PyArray_ISONESEGMENT(obj)) | |
sprintf(mess+strlen(mess)," -- input must be in one segment"); | |
if (PyArray_ITEMSIZE(arr)<elsize) | |
sprintf(mess+strlen(mess)," -- expected at least elsize=%d but got %d", | |
elsize,PyArray_ITEMSIZE(arr) | |
); | |
PyErr_SetString(PyExc_ValueError,mess); | |
return NULL; | |
} | |
/* here we have always intent(in) or intent(inout) or intent(inplace) */ | |
if (check_and_fix_dimensions(arr,rank,dims)) { | |
return NULL; /*XXX: set exception */ | |
} | |
/* | |
printf("intent alignement=%d\n", F2PY_GET_ALIGNMENT(intent)); | |
printf("alignement check=%d\n", F2PY_CHECK_ALIGNMENT(arr, intent)); | |
int i; | |
for (i=1;i<=16;i++) | |
printf("i=%d isaligned=%d\n", i, ARRAY_ISALIGNED(arr, i)); | |
*/ | |
if ((! (intent & F2PY_INTENT_COPY)) | |
&& PyArray_ITEMSIZE(arr)==elsize | |
&& ARRAY_ISCOMPATIBLE(arr,type_num) | |
&& F2PY_CHECK_ALIGNMENT(arr, intent) | |
) { | |
if ((intent & F2PY_INTENT_C)?PyArray_ISCARRAY(arr):PyArray_ISFARRAY(arr)) { | |
if ((intent & F2PY_INTENT_OUT)) { | |
Py_INCREF(arr); | |
} | |
/* Returning input array */ | |
return arr; | |
} | |
} | |
if (intent & F2PY_INTENT_INOUT) { | |
sprintf(mess,"failed to initialize intent(inout) array"); | |
if ((intent & F2PY_INTENT_C) && !PyArray_ISCARRAY(arr)) | |
sprintf(mess+strlen(mess)," -- input not contiguous"); | |
if (!(intent & F2PY_INTENT_C) && !PyArray_ISFARRAY(arr)) | |
sprintf(mess+strlen(mess)," -- input not fortran contiguous"); | |
if (PyArray_ITEMSIZE(arr)!=elsize) | |
sprintf(mess+strlen(mess)," -- expected elsize=%d but got %d", | |
elsize, | |
PyArray_ITEMSIZE(arr) | |
); | |
if (!(ARRAY_ISCOMPATIBLE(arr,type_num))) | |
sprintf(mess+strlen(mess)," -- input '%c' not compatible to '%c'", | |
arr->descr->type,typechar); | |
if (!(F2PY_CHECK_ALIGNMENT(arr, intent))) | |
sprintf(mess+strlen(mess)," -- input not %d-aligned", F2PY_GET_ALIGNMENT(intent)); | |
PyErr_SetString(PyExc_ValueError,mess); | |
return NULL; | |
} | |
/* here we have always intent(in) or intent(inplace) */ | |
{ | |
PyArrayObject *retarr = (PyArrayObject *) \ | |
PyArray_New(&PyArray_Type, arr->nd, arr->dimensions, type_num, | |
NULL,NULL,0, | |
!(intent&F2PY_INTENT_C), | |
NULL); | |
if (retarr==NULL) | |
return NULL; | |
F2PY_REPORT_ON_ARRAY_COPY_FROMARR; | |
if (PyArray_CopyInto(retarr, arr)) { | |
Py_DECREF(retarr); | |
return NULL; | |
} | |
if (intent & F2PY_INTENT_INPLACE) { | |
if (swap_arrays(arr,retarr)) | |
return NULL; /* XXX: set exception */ | |
Py_XDECREF(retarr); | |
if (intent & F2PY_INTENT_OUT) | |
Py_INCREF(arr); | |
} else { | |
arr = retarr; | |
} | |
} | |
return arr; | |
} | |
if ((intent & F2PY_INTENT_INOUT) || | |
(intent & F2PY_INTENT_INPLACE) || | |
(intent & F2PY_INTENT_CACHE)) { | |
PyErr_SetString(PyExc_TypeError, | |
"failed to initialize intent(inout|inplace|cache) " | |
"array, input not an array"); | |
return NULL; | |
} | |
{ | |
F2PY_REPORT_ON_ARRAY_COPY_FROMANY; | |
arr = (PyArrayObject *) \ | |
PyArray_FromAny(obj,PyArray_DescrFromType(type_num), 0,0, | |
((intent & F2PY_INTENT_C)?NPY_CARRAY:NPY_FARRAY) \ | |
| NPY_FORCECAST, NULL); | |
if (arr==NULL) | |
return NULL; | |
if (check_and_fix_dimensions(arr,rank,dims)) | |
return NULL; /*XXX: set exception */ | |
return arr; | |
} | |
} | |
/*****************************************/ | |
/* Helper functions for array_from_pyobj */ | |
/*****************************************/ | |
static | |
int check_and_fix_dimensions(const PyArrayObject* arr,const int rank,npy_intp *dims) { | |
/* | |
This function fills in blanks (that are -1\'s) in dims list using | |
the dimensions from arr. It also checks that non-blank dims will | |
match with the corresponding values in arr dimensions. | |
*/ | |
const npy_intp arr_size = (arr->nd)?PyArray_Size((PyObject *)arr):1; | |
dump_attrs(arr); | |
printf("check_and_fix_dimensions:init: dims="); | |
dump_dims(rank,dims); | |
if (rank > arr->nd) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */ | |
npy_intp new_size = 1; | |
int free_axe = -1; | |
int i; | |
npy_intp d; | |
/* Fill dims where -1 or 0; check dimensions; calc new_size; */ | |
for(i=0;i<arr->nd;++i) { | |
d = arr->dimensions[i]; | |
if (dims[i] >= 0) { | |
if (d>1 && dims[i]!=d) { | |
fprintf(stderr,"%d-th dimension must be fixed to %" NPY_INTP_FMT | |
" but got %" NPY_INTP_FMT "\n", | |
i,dims[i], d); | |
return 1; | |
} | |
if (!dims[i]) dims[i] = 1; | |
} else { | |
dims[i] = d ? d : 1; | |
} | |
new_size *= dims[i]; | |
} | |
for(i=arr->nd;i<rank;++i) | |
if (dims[i]>1) { | |
fprintf(stderr,"%d-th dimension must be %" NPY_INTP_FMT | |
" but got 0 (not defined).\n", | |
i,dims[i]); | |
return 1; | |
} else if (free_axe<0) | |
free_axe = i; | |
else | |
dims[i] = 1; | |
if (free_axe>=0) { | |
dims[free_axe] = arr_size/new_size; | |
new_size *= dims[free_axe]; | |
} | |
if (new_size != arr_size) { | |
fprintf(stderr,"unexpected array size: new_size=%" NPY_INTP_FMT | |
", got array with arr_size=%" NPY_INTP_FMT " (maybe too many free" | |
" indices)\n", new_size,arr_size); | |
return 1; | |
} | |
} else if (rank==arr->nd) { | |
npy_intp new_size = 1; | |
int i; | |
npy_intp d; | |
for (i=0; i<rank; ++i) { | |
d = arr->dimensions[i]; | |
if (dims[i]>=0) { | |
if (d > 1 && d!=dims[i]) { | |
fprintf(stderr,"%d-th dimension must be fixed to %" NPY_INTP_FMT | |
" but got %" NPY_INTP_FMT "\n", | |
i,dims[i],d); | |
return 1; | |
} | |
if (!dims[i]) dims[i] = 1; | |
} else dims[i] = d; | |
new_size *= dims[i]; | |
} | |
if (new_size != arr_size) { | |
fprintf(stderr,"unexpected array size: new_size=%" NPY_INTP_FMT | |
", got array with arr_size=%" NPY_INTP_FMT "\n", new_size,arr_size); | |
return 1; | |
} | |
} else { /* [[1,2]] -> [[1],[2]] */ | |
int i,j; | |
npy_intp d; | |
int effrank; | |
npy_intp size; | |
for (i=0,effrank=0;i<arr->nd;++i) | |
if (arr->dimensions[i]>1) ++effrank; | |
if (dims[rank-1]>=0) | |
if (effrank>rank) { | |
fprintf(stderr,"too many axes: %d (effrank=%d), expected rank=%d\n", | |
arr->nd,effrank,rank); | |
return 1; | |
} | |
for (i=0,j=0;i<rank;++i) { | |
while (j<arr->nd && arr->dimensions[j]<2) ++j; | |
if (j>=arr->nd) d = 1; | |
else d = arr->dimensions[j++]; | |
if (dims[i]>=0) { | |
if (d>1 && d!=dims[i]) { | |
fprintf(stderr,"%d-th dimension must be fixed to %" NPY_INTP_FMT | |
" but got %" NPY_INTP_FMT " (real index=%d)\n", | |
i,dims[i],d,j-1); | |
return 1; | |
} | |
if (!dims[i]) dims[i] = 1; | |
} else | |
dims[i] = d; | |
} | |
for (i=rank;i<arr->nd;++i) { /* [[1,2],[3,4]] -> [1,2,3,4] */ | |
while (j<arr->nd && arr->dimensions[j]<2) ++j; | |
if (j>=arr->nd) d = 1; | |
else d = arr->dimensions[j++]; | |
dims[rank-1] *= d; | |
} | |
for (i=0,size=1;i<rank;++i) size *= dims[i]; | |
if (size != arr_size) { | |
fprintf(stderr,"unexpected array size: size=%" NPY_INTP_FMT ", arr_size=%" NPY_INTP_FMT | |
", rank=%d, effrank=%d, arr.nd=%d, dims=[", | |
size,arr_size,rank,effrank,arr->nd); | |
for (i=0;i<rank;++i) fprintf(stderr," %" NPY_INTP_FMT,dims[i]); | |
fprintf(stderr," ], arr.dims=["); | |
for (i=0;i<arr->nd;++i) fprintf(stderr," %" NPY_INTP_FMT,arr->dimensions[i]); | |
fprintf(stderr," ]\n"); | |
return 1; | |
} | |
} | |
printf("check_and_fix_dimensions:end: dims="); | |
dump_dims(rank,dims); | |
return 0; | |
} | |
/* End of file: array_from_pyobj.c */ | |
/************************* copy_ND_array *******************************/ | |
extern | |
int copy_ND_array(const PyArrayObject *arr, PyArrayObject *out) | |
{ | |
F2PY_REPORT_ON_ARRAY_COPY_FROMARR; | |
return PyArray_CopyInto(out, (PyArrayObject *)arr); | |
} | |
/*********************************************/ | |
/* Compatibility functions for Python >= 3.0 */ | |
/*********************************************/ | |
PyObject * | |
F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *)) | |
{ | |
PyObject *ret = PyCapsule_New(ptr, NULL, dtor); | |
if (ret == NULL) { | |
PyErr_Clear(); | |
} | |
return ret; | |
} | |
void * | |
F2PyCapsule_AsVoidPtr(PyObject *obj) | |
{ | |
void *ret = PyCapsule_GetPointer(obj, NULL); | |
if (ret == NULL) { | |
PyErr_Clear(); | |
} | |
return ret; | |
} | |
int | |
F2PyCapsule_Check(PyObject *ptr) | |
{ | |
return PyCapsule_CheckExact(ptr); | |
} | |
PyObject * | |
F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(void *)) | |
{ | |
return PyCObject_FromVoidPtr(ptr, dtor); | |
} | |
void * | |
F2PyCapsule_AsVoidPtr(PyObject *ptr) | |
{ | |
return PyCObject_AsVoidPtr(ptr); | |
} | |
int | |
F2PyCapsule_Check(PyObject *ptr) | |
{ | |
return PyCObject_Check(ptr); | |
} | |
} | |
/************************* EOF fortranobject.c *******************************/ | |