tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/doc
/source
/reference
/arrays.datetime.rst
.. currentmodule:: numpy | |
.. _arrays.datetime: | |
************************ | |
Datetimes and Timedeltas | |
************************ | |
.. versionadded:: 1.7.0 | |
Starting in NumPy 1.7, there are core array data types which natively | |
support datetime functionality. The data type is called "datetime64", | |
so named because "datetime" is already taken by the datetime library | |
included in Python. | |
.. note:: The datetime API is *experimental* in 1.7.0, and may undergo changes | |
in future versions of NumPy. | |
Basic Datetimes | |
=============== | |
The most basic way to create datetimes is from strings in | |
ISO 8601 date or datetime format. The unit for internal storage | |
is automatically selected from the form of the string, and can | |
be either a :ref:`date unit <arrays.dtypes.dateunits>` or a | |
:ref:`time unit <arrays.dtypes.timeunits>`. The date units are years ('Y'), | |
months ('M'), weeks ('W'), and days ('D'), while the time units are | |
hours ('h'), minutes ('m'), seconds ('s'), milliseconds ('ms'), and | |
some additional SI-prefix seconds-based units. | |
.. admonition:: Example | |
A simple ISO date: | |
>>> np.datetime64('2005-02-25') | |
numpy.datetime64('2005-02-25') | |
Using months for the unit: | |
>>> np.datetime64('2005-02') | |
numpy.datetime64('2005-02') | |
Specifying just the month, but forcing a 'days' unit: | |
>>> np.datetime64('2005-02', 'D') | |
numpy.datetime64('2005-02-01') | |
Using UTC "Zulu" time: | |
>>> np.datetime64('2005-02-25T03:30Z') | |
numpy.datetime64('2005-02-24T21:30-0600') | |
ISO 8601 specifies to use the local time zone | |
if none is explicitly given: | |
>>> np.datetime64('2005-02-25T03:30') | |
numpy.datetime64('2005-02-25T03:30-0600') | |
When creating an array of datetimes from a string, it is still possible | |
to automatically select the unit from the inputs, by using the | |
datetime type with generic units. | |
.. admonition:: Example | |
>>> np.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64') | |
array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]') | |
>>> np.array(['2001-01-01T12:00', '2002-02-03T13:56:03.172'], dtype='datetime64') | |
array(['2001-01-01T12:00:00.000-0600', '2002-02-03T13:56:03.172-0600'], dtype='datetime64[ms]') | |
The datetime type works with many common NumPy functions, for | |
example :func:`arange` can be used to generate ranges of dates. | |
.. admonition:: Example | |
All the dates for one month: | |
>>> np.arange('2005-02', '2005-03', dtype='datetime64[D]') | |
array(['2005-02-01', '2005-02-02', '2005-02-03', '2005-02-04', | |
'2005-02-05', '2005-02-06', '2005-02-07', '2005-02-08', | |
'2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12', | |
'2005-02-13', '2005-02-14', '2005-02-15', '2005-02-16', | |
'2005-02-17', '2005-02-18', '2005-02-19', '2005-02-20', | |
'2005-02-21', '2005-02-22', '2005-02-23', '2005-02-24', | |
'2005-02-25', '2005-02-26', '2005-02-27', '2005-02-28'], | |
dtype='datetime64[D]') | |
The datetime object represents a single moment in time. If two | |
datetimes have different units, they may still be representing | |
the same moment of time, and converting from a bigger unit like | |
months to a smaller unit like days is considered a 'safe' cast | |
because the moment of time is still being represented exactly. | |
.. admonition:: Example | |
>>> np.datetime64('2005') == np.datetime64('2005-01-01') | |
True | |
>>> np.datetime64('2010-03-14T15Z') == np.datetime64('2010-03-14T15:00:00.00Z') | |
True | |
An important exception to this rule is between datetimes with | |
:ref:`date units <arrays.dtypes.dateunits>` and datetimes with | |
:ref:`time units <arrays.dtypes.timeunits>`. This is because this kind | |
of conversion generally requires a choice of timezone and | |
particular time of day on the given date. | |
.. admonition:: Example | |
>>> np.datetime64('2003-12-25', 's') | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
TypeError: Cannot parse "2003-12-25" as unit 's' using casting rule 'same_kind' | |
>>> np.datetime64('2003-12-25') == np.datetime64('2003-12-25T00Z') | |
False | |
Datetime and Timedelta Arithmetic | |
================================= | |
NumPy allows the subtraction of two Datetime values, an operation which | |
produces a number with a time unit. Because NumPy doesn't have a physical | |
quantities system in its core, the timedelta64 data type was created | |
to complement datetime64. | |
Datetimes and Timedeltas work together to provide ways for | |
simple datetime calculations. | |
.. admonition:: Example | |
>>> np.datetime64('2009-01-01') - np.datetime64('2008-01-01') | |
numpy.timedelta64(366,'D') | |
>>> np.datetime64('2009') + np.timedelta64(20, 'D') | |
numpy.datetime64('2009-01-21') | |
>>> np.datetime64('2011-06-15T00:00') + np.timedelta64(12, 'h') | |
numpy.datetime64('2011-06-15T12:00-0500') | |
>>> np.timedelta64(1,'W') / np.timedelta64(1,'D') | |
7.0 | |
There are two Timedelta units ('Y', years and 'M', months) which are treated | |
specially, because how much time they represent changes depending | |
on when they are used. While a timedelta day unit is equivalent to | |
24 hours, there is no way to convert a month unit into days, because | |
different months have different numbers of days. | |
.. admonition:: Example | |
>>> a = np.timedelta64(1, 'Y') | |
>>> np.timedelta64(a, 'M') | |
numpy.timedelta64(12,'M') | |
>>> np.timedelta64(a, 'D') | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
TypeError: Cannot cast NumPy timedelta64 scalar from metadata [Y] to [D] according to the rule 'same_kind' | |
Datetime Units | |
============== | |
The Datetime and Timedelta data types support a large number of time | |
units, as well as generic units which can be coerced into any of the | |
other units based on input data. | |
Datetimes are always stored based on POSIX time (though having a TAI | |
mode which allows for accounting of leap-seconds is proposed), with | |
a epoch of 1970-01-01T00:00Z. This means the supported dates are | |
always a symmetric interval around the epoch, called "time span" in the | |
table below. | |
The length of the span is the range of a 64-bit integer times the length | |
of the date or unit. For example, the time span for 'W' (week) is exactly | |
7 times longer than the time span for 'D' (day), and the time span for | |
'D' (day) is exactly 24 times longer than the time span for 'h' (hour). | |
Here are the date units: | |
.. _arrays.dtypes.dateunits: | |
======== ================ ======================= ========================== | |
Code Meaning Time span (relative) Time span (absolute) | |
======== ================ ======================= ========================== | |
Y year +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD] | |
M month +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD] | |
W week +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD] | |
D day +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD] | |
======== ================ ======================= ========================== | |
And here are the time units: | |
.. _arrays.dtypes.timeunits: | |
======== ================ ======================= ========================== | |
Code Meaning Time span (relative) Time span (absolute) | |
======== ================ ======================= ========================== | |
h hour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD] | |
m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD] | |
s second +/- 2.9e12 years [ 2.9e9 BC, 2.9e9 AD] | |
ms millisecond +/- 2.9e9 years [ 2.9e6 BC, 2.9e6 AD] | |
us microsecond +/- 2.9e6 years [290301 BC, 294241 AD] | |
ns nanosecond +/- 292 years [ 1678 AD, 2262 AD] | |
ps picosecond +/- 106 days [ 1969 AD, 1970 AD] | |
fs femtosecond +/- 2.6 hours [ 1969 AD, 1970 AD] | |
as attosecond +/- 9.2 seconds [ 1969 AD, 1970 AD] | |
======== ================ ======================= ========================== | |
Business Day Functionality | |
========================== | |
To allow the datetime to be used in contexts where only certain days of | |
the week are valid, NumPy includes a set of "busday" (business day) | |
functions. | |
The default for busday functions is that the only valid days are Monday | |
through Friday (the usual business days). The implementation is based on | |
a "weekmask" containing 7 Boolean flags to indicate valid days; custom | |
weekmasks are possible that specify other sets of valid days. | |
The "busday" functions can additionally check a list of "holiday" dates, | |
specific dates that are not valid days. | |
The function :func:`busday_offset` allows you to apply offsets | |
specified in business days to datetimes with a unit of 'D' (day). | |
.. admonition:: Example | |
>>> np.busday_offset('2011-06-23', 1) | |
numpy.datetime64('2011-06-24') | |
>>> np.busday_offset('2011-06-23', 2) | |
numpy.datetime64('2011-06-27') | |
When an input date falls on the weekend or a holiday, | |
:func:`busday_offset` first applies a rule to roll the | |
date to a valid business day, then applies the offset. The | |
default rule is 'raise', which simply raises an exception. | |
The rules most typically used are 'forward' and 'backward'. | |
.. admonition:: Example | |
>>> np.busday_offset('2011-06-25', 2) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
ValueError: Non-business day date in busday_offset | |
>>> np.busday_offset('2011-06-25', 0, roll='forward') | |
numpy.datetime64('2011-06-27') | |
>>> np.busday_offset('2011-06-25', 2, roll='forward') | |
numpy.datetime64('2011-06-29') | |
>>> np.busday_offset('2011-06-25', 0, roll='backward') | |
numpy.datetime64('2011-06-24') | |
>>> np.busday_offset('2011-06-25', 2, roll='backward') | |
numpy.datetime64('2011-06-28') | |
In some cases, an appropriate use of the roll and the offset | |
is necessary to get a desired answer. | |
.. admonition:: Example | |
The first business day on or after a date: | |
>>> np.busday_offset('2011-03-20', 0, roll='forward') | |
numpy.datetime64('2011-03-21','D') | |
>>> np.busday_offset('2011-03-22', 0, roll='forward') | |
numpy.datetime64('2011-03-22','D') | |
The first business day strictly after a date: | |
>>> np.busday_offset('2011-03-20', 1, roll='backward') | |
numpy.datetime64('2011-03-21','D') | |
>>> np.busday_offset('2011-03-22', 1, roll='backward') | |
numpy.datetime64('2011-03-23','D') | |
The function is also useful for computing some kinds of days | |
like holidays. In Canada and the U.S., Mother's day is on | |
the second Sunday in May, which can be computed with a custom | |
weekmask. | |
.. admonition:: Example | |
>>> np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') | |
numpy.datetime64('2012-05-13','D') | |
When performance is important for manipulating many business dates | |
with one particular choice of weekmask and holidays, there is | |
an object :class:`busdaycalendar` which stores the data necessary | |
in an optimized form. | |
np.is_busday(): | |
``````````````` | |
To test a datetime64 value to see if it is a valid day, use :func:`is_busday`. | |
.. admonition:: Example | |
>>> np.is_busday(np.datetime64('2011-07-15')) # a Friday | |
True | |
>>> np.is_busday(np.datetime64('2011-07-16')) # a Saturday | |
False | |
>>> np.is_busday(np.datetime64('2011-07-16'), weekmask="Sat Sun") | |
True | |
>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18')) | |
>>> np.is_busday(a) | |
array([ True, True, True, True, True, False, False], dtype='bool') | |
np.busday_count(): | |
`````````````````` | |
To find how many valid days there are in a specified range of datetime64 | |
dates, use :func:`busday_count`: | |
.. admonition:: Example | |
>>> np.busday_count(np.datetime64('2011-07-11'), np.datetime64('2011-07-18')) | |
5 | |
>>> np.busday_count(np.datetime64('2011-07-18'), np.datetime64('2011-07-11')) | |
-5 | |
If you have an array of datetime64 day values, and you want a count of | |
how many of them are valid dates, you can do this: | |
.. admonition:: Example | |
>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18')) | |
>>> np.count_nonzero(np.is_busday(a)) | |
5 | |
Custom Weekmasks | |
---------------- | |
Here are several examples of custom weekmask values. These examples | |
specify the "busday" default of Monday through Friday being valid days. | |
Some examples:: | |
# Positional sequences; positions are Monday through Sunday. | |
# Length of the sequence must be exactly 7. | |
weekmask = [1, 1, 1, 1, 1, 0, 0] | |
# list or other sequence; 0 == invalid day, 1 == valid day | |
weekmask = "1111100" | |
# string '0' == invalid day, '1' == valid day | |
# string abbreviations from this list: Mon Tue Wed Thu Fri Sat Sun | |
weekmask = "Mon Tue Wed Thu Fri" | |
# any amount of whitespace is allowed; abbreviations are case-sensitive. | |
weekmask = "MonTue Wed Thu\tFri" | |
Differences Between 1.6 and 1.7 Datetimes | |
========================================= | |
The NumPy 1.6 release includes a more primitive datetime data type | |
than 1.7. This section documents many of the changes that have taken | |
place. | |
String Parsing | |
`````````````` | |
The datetime string parser in NumPy 1.6 is very liberal in what it accepts, | |
and silently allows invalid input without raising errors. The parser in | |
NumPy 1.7 is quite strict about only accepting ISO 8601 dates, with a few | |
convenience extensions. 1.6 always creates microsecond (us) units by | |
default, whereas 1.7 detects a unit based on the format of the string. | |
Here is a comparison.:: | |
# NumPy 1.6.1 | |
>>> np.datetime64('1979-03-22') | |
1979-03-22 00:00:00 | |
# NumPy 1.7.0 | |
>>> np.datetime64('1979-03-22') | |
numpy.datetime64('1979-03-22') | |
# NumPy 1.6.1, unit default microseconds | |
>>> np.datetime64('1979-03-22').dtype | |
dtype('datetime64[us]') | |
# NumPy 1.7.0, unit of days detected from string | |
>>> np.datetime64('1979-03-22').dtype | |
dtype('<M8[D]') | |
# NumPy 1.6.1, ignores invalid part of string | |
>>> np.datetime64('1979-03-2corruptedstring') | |
1979-03-02 00:00:00 | |
# NumPy 1.7.0, raises error for invalid input | |
>>> np.datetime64('1979-03-2corruptedstring') | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
ValueError: Error parsing datetime string "1979-03-2corruptedstring" at position 8 | |
# NumPy 1.6.1, 'nat' produces today's date | |
>>> np.datetime64('nat') | |
2012-04-30 00:00:00 | |
# NumPy 1.7.0, 'nat' produces not-a-time | |
>>> np.datetime64('nat') | |
numpy.datetime64('NaT') | |
# NumPy 1.6.1, 'garbage' produces today's date | |
>>> np.datetime64('garbage') | |
2012-04-30 00:00:00 | |
# NumPy 1.7.0, 'garbage' raises an exception | |
>>> np.datetime64('garbage') | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
ValueError: Error parsing datetime string "garbage" at position 0 | |
# NumPy 1.6.1, can't specify unit in scalar constructor | |
>>> np.datetime64('1979-03-22T19:00', 'h') | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
TypeError: function takes at most 1 argument (2 given) | |
# NumPy 1.7.0, unit in scalar constructor | |
>>> np.datetime64('1979-03-22T19:00', 'h') | |
numpy.datetime64('1979-03-22T19:00-0500','h') | |
# NumPy 1.6.1, reads ISO 8601 strings w/o TZ as UTC | |
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]') | |
array([1979-03-22 19:00:00], dtype=datetime64[h]) | |
# NumPy 1.7.0, reads ISO 8601 strings w/o TZ as local (ISO specifies this) | |
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]') | |
array(['1979-03-22T19-0500'], dtype='datetime64[h]') | |
# NumPy 1.6.1, doesn't parse all ISO 8601 strings correctly | |
>>> np.array(['1979-03-22T12'], dtype='M8[h]') | |
array([1979-03-22 00:00:00], dtype=datetime64[h]) | |
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]') | |
array([1979-03-22 12:00:00], dtype=datetime64[h]) | |
# NumPy 1.7.0, handles this case correctly | |
>>> np.array(['1979-03-22T12'], dtype='M8[h]') | |
array(['1979-03-22T12-0500'], dtype='datetime64[h]') | |
>>> np.array(['1979-03-22T12:00'], dtype='M8[h]') | |
array(['1979-03-22T12-0500'], dtype='datetime64[h]') | |
Unit Conversion | |
``````````````` | |
The 1.6 implementation of datetime does not convert between units correctly.:: | |
# NumPy 1.6.1, the representation value is untouched | |
>>> np.array(['1979-03-22'], dtype='M8[D]') | |
array([1979-03-22 00:00:00], dtype=datetime64[D]) | |
>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]') | |
array([2250-08-01 00:00:00], dtype=datetime64[M]) | |
# NumPy 1.7.0, the representation is scaled accordingly | |
>>> np.array(['1979-03-22'], dtype='M8[D]') | |
array(['1979-03-22'], dtype='datetime64[D]') | |
>>> np.array(['1979-03-22'], dtype='M8[D]').astype('M8[M]') | |
array(['1979-03'], dtype='datetime64[M]') | |
Datetime Arithmetic | |
``````````````````` | |
The 1.6 implementation of datetime only works correctly for a small subset of | |
arithmetic operations. Here we show some simple cases.:: | |
# NumPy 1.6.1, produces invalid results if units are incompatible | |
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]') | |
>>> b = np.array([3*60], dtype='m8[m]') | |
>>> a + b | |
array([1970-01-01 00:00:00.080988], dtype=datetime64[us]) | |
# NumPy 1.7.0, promotes to higher-resolution unit | |
>>> a = np.array(['1979-03-22T12'], dtype='M8[h]') | |
>>> b = np.array([3*60], dtype='m8[m]') | |
>>> a + b | |
array(['1979-03-22T15:00-0500'], dtype='datetime64[m]') | |
# NumPy 1.6.1, arithmetic works if everything is microseconds | |
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]') | |
>>> b = np.array([3*60*60*1000000], dtype='m8[us]') | |
>>> a + b | |
array([1979-03-22 15:00:00], dtype=datetime64[us]) | |
# NumPy 1.7.0 | |
>>> a = np.array(['1979-03-22T12:00'], dtype='M8[us]') | |
>>> b = np.array([3*60*60*1000000], dtype='m8[us]') | |
>>> a + b | |
array(['1979-03-22T15:00:00.000000-0500'], dtype='datetime64[us]') | |