tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/build
/lib.linux-x86_64-cpython-310
/numpy
/lib
/function_base.py
from __future__ import division, absolute_import, print_function | |
import warnings | |
import sys | |
import collections | |
import operator | |
import numpy as np | |
import numpy.core.numeric as _nx | |
from numpy.core import linspace, atleast_1d, atleast_2d | |
from numpy.core.numeric import ( | |
ones, zeros, arange, concatenate, array, asarray, asanyarray, empty, | |
empty_like, ndarray, around, floor, ceil, take, dot, where, intp, | |
integer, isscalar | |
) | |
from numpy.core.umath import ( | |
pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, | |
mod, exp, log10 | |
) | |
from numpy.core.fromnumeric import ( | |
ravel, nonzero, sort, partition, mean | |
) | |
from numpy.core.numerictypes import typecodes, number | |
from numpy.lib.twodim_base import diag | |
from .utils import deprecate | |
from ._compiled_base import _insert, add_docstring | |
from ._compiled_base import digitize, bincount, interp as compiled_interp | |
from ._compiled_base import add_newdoc_ufunc | |
from numpy.compat import long | |
# Force range to be a generator, for np.delete's usage. | |
if sys.version_info[0] < 3: | |
range = xrange | |
__all__ = [ | |
'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', | |
'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', | |
'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', | |
'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', | |
'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', | |
'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', | |
'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc' | |
] | |
def iterable(y): | |
""" | |
Check whether or not an object can be iterated over. | |
Parameters | |
---------- | |
y : object | |
Input object. | |
Returns | |
------- | |
b : {0, 1} | |
Return 1 if the object has an iterator method or is a sequence, | |
and 0 otherwise. | |
Examples | |
-------- | |
>>> np.iterable([1, 2, 3]) | |
1 | |
>>> np.iterable(2) | |
0 | |
""" | |
try: | |
iter(y) | |
except: | |
return 0 | |
return 1 | |
def histogram(a, bins=10, range=None, normed=False, weights=None, | |
density=None): | |
""" | |
Compute the histogram of a set of data. | |
Parameters | |
---------- | |
a : array_like | |
Input data. The histogram is computed over the flattened array. | |
bins : int or sequence of scalars, optional | |
If `bins` is an int, it defines the number of equal-width | |
bins in the given range (10, by default). If `bins` is a sequence, | |
it defines the bin edges, including the rightmost edge, allowing | |
for non-uniform bin widths. | |
range : (float, float), optional | |
The lower and upper range of the bins. If not provided, range | |
is simply ``(a.min(), a.max())``. Values outside the range are | |
ignored. | |
normed : bool, optional | |
This keyword is deprecated in Numpy 1.6 due to confusing/buggy | |
behavior. It will be removed in Numpy 2.0. Use the density keyword | |
instead. | |
If False, the result will contain the number of samples | |
in each bin. If True, the result is the value of the | |
probability *density* function at the bin, normalized such that | |
the *integral* over the range is 1. Note that this latter behavior is | |
known to be buggy with unequal bin widths; use `density` instead. | |
weights : array_like, optional | |
An array of weights, of the same shape as `a`. Each value in `a` | |
only contributes its associated weight towards the bin count | |
(instead of 1). If `normed` is True, the weights are normalized, | |
so that the integral of the density over the range remains 1 | |
density : bool, optional | |
If False, the result will contain the number of samples | |
in each bin. If True, the result is the value of the | |
probability *density* function at the bin, normalized such that | |
the *integral* over the range is 1. Note that the sum of the | |
histogram values will not be equal to 1 unless bins of unity | |
width are chosen; it is not a probability *mass* function. | |
Overrides the `normed` keyword if given. | |
Returns | |
------- | |
hist : array | |
The values of the histogram. See `normed` and `weights` for a | |
description of the possible semantics. | |
bin_edges : array of dtype float | |
Return the bin edges ``(length(hist)+1)``. | |
See Also | |
-------- | |
histogramdd, bincount, searchsorted, digitize | |
Notes | |
----- | |
All but the last (righthand-most) bin is half-open. In other words, if | |
`bins` is:: | |
[1, 2, 3, 4] | |
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the | |
second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* | |
4. | |
Examples | |
-------- | |
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) | |
(array([0, 2, 1]), array([0, 1, 2, 3])) | |
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True) | |
(array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) | |
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) | |
(array([1, 4, 1]), array([0, 1, 2, 3])) | |
>>> a = np.arange(5) | |
>>> hist, bin_edges = np.histogram(a, density=True) | |
>>> hist | |
array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) | |
>>> hist.sum() | |
2.4999999999999996 | |
>>> np.sum(hist*np.diff(bin_edges)) | |
1.0 | |
""" | |
a = asarray(a) | |
if weights is not None: | |
weights = asarray(weights) | |
if np.any(weights.shape != a.shape): | |
raise ValueError( | |
'weights should have the same shape as a.') | |
weights = weights.ravel() | |
a = a.ravel() | |
if (range is not None): | |
mn, mx = range | |
if (mn > mx): | |
raise AttributeError( | |
'max must be larger than min in range parameter.') | |
if not iterable(bins): | |
if np.isscalar(bins) and bins < 1: | |
raise ValueError( | |
'`bins` should be a positive integer.') | |
if range is None: | |
if a.size == 0: | |
# handle empty arrays. Can't determine range, so use 0-1. | |
range = (0, 1) | |
else: | |
range = (a.min(), a.max()) | |
mn, mx = [mi + 0.0 for mi in range] | |
if mn == mx: | |
mn -= 0.5 | |
mx += 0.5 | |
bins = linspace(mn, mx, bins + 1, endpoint=True) | |
else: | |
bins = asarray(bins) | |
if (np.diff(bins) < 0).any(): | |
raise AttributeError( | |
'bins must increase monotonically.') | |
# Histogram is an integer or a float array depending on the weights. | |
if weights is None: | |
ntype = int | |
else: | |
ntype = weights.dtype | |
n = np.zeros(bins.shape, ntype) | |
block = 65536 | |
if weights is None: | |
for i in arange(0, len(a), block): | |
sa = sort(a[i:i+block]) | |
n += np.r_[sa.searchsorted(bins[:-1], 'left'), | |
sa.searchsorted(bins[-1], 'right')] | |
else: | |
zero = array(0, dtype=ntype) | |
for i in arange(0, len(a), block): | |
tmp_a = a[i:i+block] | |
tmp_w = weights[i:i+block] | |
sorting_index = np.argsort(tmp_a) | |
sa = tmp_a[sorting_index] | |
sw = tmp_w[sorting_index] | |
cw = np.concatenate(([zero, ], sw.cumsum())) | |
bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), | |
sa.searchsorted(bins[-1], 'right')] | |
n += cw[bin_index] | |
n = np.diff(n) | |
if density is not None: | |
if density: | |
db = array(np.diff(bins), float) | |
return n/db/n.sum(), bins | |
else: | |
return n, bins | |
else: | |
# deprecated, buggy behavior. Remove for Numpy 2.0 | |
if normed: | |
db = array(np.diff(bins), float) | |
return n/(n*db).sum(), bins | |
else: | |
return n, bins | |
def histogramdd(sample, bins=10, range=None, normed=False, weights=None): | |
""" | |
Compute the multidimensional histogram of some data. | |
Parameters | |
---------- | |
sample : array_like | |
The data to be histogrammed. It must be an (N,D) array or data | |
that can be converted to such. The rows of the resulting array | |
are the coordinates of points in a D dimensional polytope. | |
bins : sequence or int, optional | |
The bin specification: | |
* A sequence of arrays describing the bin edges along each dimension. | |
* The number of bins for each dimension (nx, ny, ... =bins) | |
* The number of bins for all dimensions (nx=ny=...=bins). | |
range : sequence, optional | |
A sequence of lower and upper bin edges to be used if the edges are | |
not given explicitly in `bins`. Defaults to the minimum and maximum | |
values along each dimension. | |
normed : bool, optional | |
If False, returns the number of samples in each bin. If True, | |
returns the bin density ``bin_count / sample_count / bin_volume``. | |
weights : array_like (N,), optional | |
An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. | |
Weights are normalized to 1 if normed is True. If normed is False, | |
the values of the returned histogram are equal to the sum of the | |
weights belonging to the samples falling into each bin. | |
Returns | |
------- | |
H : ndarray | |
The multidimensional histogram of sample x. See normed and weights | |
for the different possible semantics. | |
edges : list | |
A list of D arrays describing the bin edges for each dimension. | |
See Also | |
-------- | |
histogram: 1-D histogram | |
histogram2d: 2-D histogram | |
Examples | |
-------- | |
>>> r = np.random.randn(100,3) | |
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) | |
>>> H.shape, edges[0].size, edges[1].size, edges[2].size | |
((5, 8, 4), 6, 9, 5) | |
""" | |
try: | |
# Sample is an ND-array. | |
N, D = sample.shape | |
except (AttributeError, ValueError): | |
# Sample is a sequence of 1D arrays. | |
sample = atleast_2d(sample).T | |
N, D = sample.shape | |
nbin = empty(D, int) | |
edges = D*[None] | |
dedges = D*[None] | |
if weights is not None: | |
weights = asarray(weights) | |
try: | |
M = len(bins) | |
if M != D: | |
raise AttributeError( | |
'The dimension of bins must be equal to the dimension of the ' | |
' sample x.') | |
except TypeError: | |
# bins is an integer | |
bins = D*[bins] | |
# Select range for each dimension | |
# Used only if number of bins is given. | |
if range is None: | |
# Handle empty input. Range can't be determined in that case, use 0-1. | |
if N == 0: | |
smin = zeros(D) | |
smax = ones(D) | |
else: | |
smin = atleast_1d(array(sample.min(0), float)) | |
smax = atleast_1d(array(sample.max(0), float)) | |
else: | |
smin = zeros(D) | |
smax = zeros(D) | |
for i in arange(D): | |
smin[i], smax[i] = range[i] | |
# Make sure the bins have a finite width. | |
for i in arange(len(smin)): | |
if smin[i] == smax[i]: | |
smin[i] = smin[i] - .5 | |
smax[i] = smax[i] + .5 | |
# avoid rounding issues for comparisons when dealing with inexact types | |
if np.issubdtype(sample.dtype, np.inexact): | |
edge_dt = sample.dtype | |
else: | |
edge_dt = float | |
# Create edge arrays | |
for i in arange(D): | |
if isscalar(bins[i]): | |
if bins[i] < 1: | |
raise ValueError( | |
"Element at index %s in `bins` should be a positive " | |
"integer." % i) | |
nbin[i] = bins[i] + 2 # +2 for outlier bins | |
edges[i] = linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt) | |
else: | |
edges[i] = asarray(bins[i], edge_dt) | |
nbin[i] = len(edges[i]) + 1 # +1 for outlier bins | |
dedges[i] = diff(edges[i]) | |
if np.any(np.asarray(dedges[i]) <= 0): | |
raise ValueError( | |
"Found bin edge of size <= 0. Did you specify `bins` with" | |
"non-monotonic sequence?") | |
nbin = asarray(nbin) | |
# Handle empty input. | |
if N == 0: | |
return np.zeros(nbin-2), edges | |
# Compute the bin number each sample falls into. | |
Ncount = {} | |
for i in arange(D): | |
Ncount[i] = digitize(sample[:, i], edges[i]) | |
# Using digitize, values that fall on an edge are put in the right bin. | |
# For the rightmost bin, we want values equal to the right edge to be | |
# counted in the last bin, and not as an outlier. | |
for i in arange(D): | |
# Rounding precision | |
mindiff = dedges[i].min() | |
if not np.isinf(mindiff): | |
decimal = int(-log10(mindiff)) + 6 | |
# Find which points are on the rightmost edge. | |
not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) | |
on_edge = (around(sample[:, i], decimal) == | |
around(edges[i][-1], decimal)) | |
# Shift these points one bin to the left. | |
Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1 | |
# Flattened histogram matrix (1D) | |
# Reshape is used so that overlarge arrays | |
# will raise an error. | |
hist = zeros(nbin, float).reshape(-1) | |
# Compute the sample indices in the flattened histogram matrix. | |
ni = nbin.argsort() | |
xy = zeros(N, int) | |
for i in arange(0, D-1): | |
xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() | |
xy += Ncount[ni[-1]] | |
# Compute the number of repetitions in xy and assign it to the | |
# flattened histmat. | |
if len(xy) == 0: | |
return zeros(nbin-2, int), edges | |
flatcount = bincount(xy, weights) | |
a = arange(len(flatcount)) | |
hist[a] = flatcount | |
# Shape into a proper matrix | |
hist = hist.reshape(sort(nbin)) | |
for i in arange(nbin.size): | |
j = ni.argsort()[i] | |
hist = hist.swapaxes(i, j) | |
ni[i], ni[j] = ni[j], ni[i] | |
# Remove outliers (indices 0 and -1 for each dimension). | |
core = D*[slice(1, -1)] | |
hist = hist[core] | |
# Normalize if normed is True | |
if normed: | |
s = hist.sum() | |
for i in arange(D): | |
shape = ones(D, int) | |
shape[i] = nbin[i] - 2 | |
hist = hist / dedges[i].reshape(shape) | |
hist /= s | |
if (hist.shape != nbin - 2).any(): | |
raise RuntimeError( | |
"Internal Shape Error") | |
return hist, edges | |
def average(a, axis=None, weights=None, returned=False): | |
""" | |
Compute the weighted average along the specified axis. | |
Parameters | |
---------- | |
a : array_like | |
Array containing data to be averaged. If `a` is not an array, a | |
conversion is attempted. | |
axis : int, optional | |
Axis along which to average `a`. If `None`, averaging is done over | |
the flattened array. | |
weights : array_like, optional | |
An array of weights associated with the values in `a`. Each value in | |
`a` contributes to the average according to its associated weight. | |
The weights array can either be 1-D (in which case its length must be | |
the size of `a` along the given axis) or of the same shape as `a`. | |
If `weights=None`, then all data in `a` are assumed to have a | |
weight equal to one. | |
returned : bool, optional | |
Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) | |
is returned, otherwise only the average is returned. | |
If `weights=None`, `sum_of_weights` is equivalent to the number of | |
elements over which the average is taken. | |
Returns | |
------- | |
average, [sum_of_weights] : {array_type, double} | |
Return the average along the specified axis. When returned is `True`, | |
return a tuple with the average as the first element and the sum | |
of the weights as the second element. The return type is `Float` | |
if `a` is of integer type, otherwise it is of the same type as `a`. | |
`sum_of_weights` is of the same type as `average`. | |
Raises | |
------ | |
ZeroDivisionError | |
When all weights along axis are zero. See `numpy.ma.average` for a | |
version robust to this type of error. | |
TypeError | |
When the length of 1D `weights` is not the same as the shape of `a` | |
along axis. | |
See Also | |
-------- | |
mean | |
ma.average : average for masked arrays -- useful if your data contains | |
"missing" values | |
Examples | |
-------- | |
>>> data = range(1,5) | |
>>> data | |
[1, 2, 3, 4] | |
>>> np.average(data) | |
2.5 | |
>>> np.average(range(1,11), weights=range(10,0,-1)) | |
4.0 | |
>>> data = np.arange(6).reshape((3,2)) | |
>>> data | |
array([[0, 1], | |
[2, 3], | |
[4, 5]]) | |
>>> np.average(data, axis=1, weights=[1./4, 3./4]) | |
array([ 0.75, 2.75, 4.75]) | |
>>> np.average(data, weights=[1./4, 3./4]) | |
Traceback (most recent call last): | |
... | |
TypeError: Axis must be specified when shapes of a and weights differ. | |
""" | |
if not isinstance(a, np.matrix): | |
a = np.asarray(a) | |
if weights is None: | |
avg = a.mean(axis) | |
scl = avg.dtype.type(a.size/avg.size) | |
else: | |
a = a + 0.0 | |
wgt = np.array(weights, dtype=a.dtype, copy=0) | |
# Sanity checks | |
if a.shape != wgt.shape: | |
if axis is None: | |
raise TypeError( | |
"Axis must be specified when shapes of a and weights " | |
"differ.") | |
if wgt.ndim != 1: | |
raise TypeError( | |
"1D weights expected when shapes of a and weights differ.") | |
if wgt.shape[0] != a.shape[axis]: | |
raise ValueError( | |
"Length of weights not compatible with specified axis.") | |
# setup wgt to broadcast along axis | |
wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) | |
scl = wgt.sum(axis=axis) | |
if (scl == 0.0).any(): | |
raise ZeroDivisionError( | |
"Weights sum to zero, can't be normalized") | |
avg = np.multiply(a, wgt).sum(axis)/scl | |
if returned: | |
scl = np.multiply(avg, 0) + scl | |
return avg, scl | |
else: | |
return avg | |
def asarray_chkfinite(a, dtype=None, order=None): | |
""" | |
Convert the input to an array, checking for NaNs or Infs. | |
Parameters | |
---------- | |
a : array_like | |
Input data, in any form that can be converted to an array. This | |
includes lists, lists of tuples, tuples, tuples of tuples, tuples | |
of lists and ndarrays. Success requires no NaNs or Infs. | |
dtype : data-type, optional | |
By default, the data-type is inferred from the input data. | |
order : {'C', 'F'}, optional | |
Whether to use row-major ('C') or column-major ('FORTRAN') memory | |
representation. Defaults to 'C'. | |
Returns | |
------- | |
out : ndarray | |
Array interpretation of `a`. No copy is performed if the input | |
is already an ndarray. If `a` is a subclass of ndarray, a base | |
class ndarray is returned. | |
Raises | |
------ | |
ValueError | |
Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). | |
See Also | |
-------- | |
asarray : Create and array. | |
asanyarray : Similar function which passes through subclasses. | |
ascontiguousarray : Convert input to a contiguous array. | |
asfarray : Convert input to a floating point ndarray. | |
asfortranarray : Convert input to an ndarray with column-major | |
memory order. | |
fromiter : Create an array from an iterator. | |
fromfunction : Construct an array by executing a function on grid | |
positions. | |
Examples | |
-------- | |
Convert a list into an array. If all elements are finite | |
``asarray_chkfinite`` is identical to ``asarray``. | |
>>> a = [1, 2] | |
>>> np.asarray_chkfinite(a, dtype=float) | |
array([1., 2.]) | |
Raises ValueError if array_like contains Nans or Infs. | |
>>> a = [1, 2, np.inf] | |
>>> try: | |
... np.asarray_chkfinite(a) | |
... except ValueError: | |
... print 'ValueError' | |
... | |
ValueError | |
""" | |
a = asarray(a, dtype=dtype, order=order) | |
if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): | |
raise ValueError( | |
"array must not contain infs or NaNs") | |
return a | |
def piecewise(x, condlist, funclist, *args, **kw): | |
""" | |
Evaluate a piecewise-defined function. | |
Given a set of conditions and corresponding functions, evaluate each | |
function on the input data wherever its condition is true. | |
Parameters | |
---------- | |
x : ndarray | |
The input domain. | |
condlist : list of bool arrays | |
Each boolean array corresponds to a function in `funclist`. Wherever | |
`condlist[i]` is True, `funclist[i](x)` is used as the output value. | |
Each boolean array in `condlist` selects a piece of `x`, | |
and should therefore be of the same shape as `x`. | |
The length of `condlist` must correspond to that of `funclist`. | |
If one extra function is given, i.e. if | |
``len(funclist) - len(condlist) == 1``, then that extra function | |
is the default value, used wherever all conditions are false. | |
funclist : list of callables, f(x,*args,**kw), or scalars | |
Each function is evaluated over `x` wherever its corresponding | |
condition is True. It should take an array as input and give an array | |
or a scalar value as output. If, instead of a callable, | |
a scalar is provided then a constant function (``lambda x: scalar``) is | |
assumed. | |
args : tuple, optional | |
Any further arguments given to `piecewise` are passed to the functions | |
upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then | |
each function is called as ``f(x, 1, 'a')``. | |
kw : dict, optional | |
Keyword arguments used in calling `piecewise` are passed to the | |
functions upon execution, i.e., if called | |
``piecewise(..., ..., lambda=1)``, then each function is called as | |
``f(x, lambda=1)``. | |
Returns | |
------- | |
out : ndarray | |
The output is the same shape and type as x and is found by | |
calling the functions in `funclist` on the appropriate portions of `x`, | |
as defined by the boolean arrays in `condlist`. Portions not covered | |
by any condition have a default value of 0. | |
See Also | |
-------- | |
choose, select, where | |
Notes | |
----- | |
This is similar to choose or select, except that functions are | |
evaluated on elements of `x` that satisfy the corresponding condition from | |
`condlist`. | |
The result is:: | |
|-- | |
|funclist[0](x[condlist[0]]) | |
out = |funclist[1](x[condlist[1]]) | |
|... | |
|funclist[n2](x[condlist[n2]]) | |
|-- | |
Examples | |
-------- | |
Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. | |
>>> x = np.linspace(-2.5, 2.5, 6) | |
>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) | |
array([-1., -1., -1., 1., 1., 1.]) | |
Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for | |
``x >= 0``. | |
>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) | |
array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) | |
""" | |
x = asanyarray(x) | |
n2 = len(funclist) | |
if (isscalar(condlist) or not (isinstance(condlist[0], list) or | |
isinstance(condlist[0], ndarray))): | |
condlist = [condlist] | |
condlist = array(condlist, dtype=bool) | |
n = len(condlist) | |
# This is a hack to work around problems with NumPy's | |
# handling of 0-d arrays and boolean indexing with | |
# numpy.bool_ scalars | |
zerod = False | |
if x.ndim == 0: | |
x = x[None] | |
zerod = True | |
if condlist.shape[-1] != 1: | |
condlist = condlist.T | |
if n == n2 - 1: # compute the "otherwise" condition. | |
totlist = np.logical_or.reduce(condlist, axis=0) | |
condlist = np.vstack([condlist, ~totlist]) | |
n += 1 | |
if (n != n2): | |
raise ValueError( | |
"function list and condition list must be the same") | |
y = zeros(x.shape, x.dtype) | |
for k in range(n): | |
item = funclist[k] | |
if not isinstance(item, collections.Callable): | |
y[condlist[k]] = item | |
else: | |
vals = x[condlist[k]] | |
if vals.size > 0: | |
y[condlist[k]] = item(vals, *args, **kw) | |
if zerod: | |
y = y.squeeze() | |
return y | |
def select(condlist, choicelist, default=0): | |
""" | |
Return an array drawn from elements in choicelist, depending on conditions. | |
Parameters | |
---------- | |
condlist : list of bool ndarrays | |
The list of conditions which determine from which array in `choicelist` | |
the output elements are taken. When multiple conditions are satisfied, | |
the first one encountered in `condlist` is used. | |
choicelist : list of ndarrays | |
The list of arrays from which the output elements are taken. It has | |
to be of the same length as `condlist`. | |
default : scalar, optional | |
The element inserted in `output` when all conditions evaluate to False. | |
Returns | |
------- | |
output : ndarray | |
The output at position m is the m-th element of the array in | |
`choicelist` where the m-th element of the corresponding array in | |
`condlist` is True. | |
See Also | |
-------- | |
where : Return elements from one of two arrays depending on condition. | |
take, choose, compress, diag, diagonal | |
Examples | |
-------- | |
>>> x = np.arange(10) | |
>>> condlist = [x<3, x>5] | |
>>> choicelist = [x, x**2] | |
>>> np.select(condlist, choicelist) | |
array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) | |
""" | |
# Check the size of condlist and choicelist are the same, or abort. | |
if len(condlist) != len(choicelist): | |
raise ValueError( | |
'list of cases must be same length as list of conditions') | |
# Now that the dtype is known, handle the deprecated select([], []) case | |
if len(condlist) == 0: | |
warnings.warn("select with an empty condition list is not possible" | |
"and will be deprecated", | |
DeprecationWarning) | |
return np.asarray(default)[()] | |
choicelist = [np.asarray(choice) for choice in choicelist] | |
choicelist.append(np.asarray(default)) | |
# need to get the result type before broadcasting for correct scalar | |
# behaviour | |
dtype = np.result_type(*choicelist) | |
# Convert conditions to arrays and broadcast conditions and choices | |
# as the shape is needed for the result. Doing it seperatly optimizes | |
# for example when all choices are scalars. | |
condlist = np.broadcast_arrays(*condlist) | |
choicelist = np.broadcast_arrays(*choicelist) | |
# If cond array is not an ndarray in boolean format or scalar bool, abort. | |
deprecated_ints = False | |
for i in range(len(condlist)): | |
cond = condlist[i] | |
if cond.dtype.type is not np.bool_: | |
if np.issubdtype(cond.dtype, np.integer): | |
# A previous implementation accepted int ndarrays accidentally. | |
# Supported here deliberately, but deprecated. | |
condlist[i] = condlist[i].astype(bool) | |
deprecated_ints = True | |
else: | |
raise ValueError( | |
'invalid entry in choicelist: should be boolean ndarray') | |
if deprecated_ints: | |
msg = "select condlists containing integer ndarrays is deprecated " \ | |
"and will be removed in the future. Use `.astype(bool)` to " \ | |
"convert to bools." | |
warnings.warn(msg, DeprecationWarning) | |
if choicelist[0].ndim == 0: | |
# This may be common, so avoid the call. | |
result_shape = condlist[0].shape | |
else: | |
result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape | |
result = np.full(result_shape, choicelist[-1], dtype) | |
# Use np.copyto to burn each choicelist array onto result, using the | |
# corresponding condlist as a boolean mask. This is done in reverse | |
# order since the first choice should take precedence. | |
choicelist = choicelist[-2::-1] | |
condlist = condlist[::-1] | |
for choice, cond in zip(choicelist, condlist): | |
np.copyto(result, choice, where=cond) | |
return result | |
def copy(a, order='K'): | |
""" | |
Return an array copy of the given object. | |
Parameters | |
---------- | |
a : array_like | |
Input data. | |
order : {'C', 'F', 'A', 'K'}, optional | |
Controls the memory layout of the copy. 'C' means C-order, | |
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, | |
'C' otherwise. 'K' means match the layout of `a` as closely | |
as possible. (Note that this function and :meth:ndarray.copy are very | |
similar, but have different default values for their order= | |
arguments.) | |
Returns | |
------- | |
arr : ndarray | |
Array interpretation of `a`. | |
Notes | |
----- | |
This is equivalent to | |
>>> np.array(a, copy=True) #doctest: +SKIP | |
Examples | |
-------- | |
Create an array x, with a reference y and a copy z: | |
>>> x = np.array([1, 2, 3]) | |
>>> y = x | |
>>> z = np.copy(x) | |
Note that, when we modify x, y changes, but not z: | |
>>> x[0] = 10 | |
>>> x[0] == y[0] | |
True | |
>>> x[0] == z[0] | |
False | |
""" | |
return array(a, order=order, copy=True) | |
# Basic operations | |
def gradient(f, *varargs): | |
""" | |
Return the gradient of an N-dimensional array. | |
The gradient is computed using second order accurate central differences | |
in the interior and second order accurate one-sides (forward or backwards) | |
differences at the boundaries. The returned gradient hence has the same | |
shape as the input array. | |
Parameters | |
---------- | |
f : array_like | |
An N-dimensional array containing samples of a scalar function. | |
`*varargs` : scalars | |
0, 1, or N scalars specifying the sample distances in each direction, | |
that is: `dx`, `dy`, `dz`, ... The default distance is 1. | |
Returns | |
------- | |
gradient : ndarray | |
N arrays of the same shape as `f` giving the derivative of `f` with | |
respect to each dimension. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) | |
>>> np.gradient(x) | |
array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) | |
>>> np.gradient(x, 2) | |
array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) | |
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) | |
[array([[ 2., 2., -1.], | |
[ 2., 2., -1.]]), | |
array([[ 1. , 2.5, 4. ], | |
[ 1. , 1. , 1. ]])] | |
>>> x = np.array([0,1,2,3,4]) | |
>>> dx = gradient(x) | |
>>> y = x**2 | |
>>> gradient(y,dx) | |
array([0., 2., 4., 6., 8.]) | |
""" | |
f = np.asanyarray(f) | |
N = len(f.shape) # number of dimensions | |
n = len(varargs) | |
if n == 0: | |
dx = [1.0]*N | |
elif n == 1: | |
dx = [varargs[0]]*N | |
elif n == N: | |
dx = list(varargs) | |
else: | |
raise SyntaxError( | |
"invalid number of arguments") | |
# use central differences on interior and one-sided differences on the | |
# endpoints. This preserves second order-accuracy over the full domain. | |
outvals = [] | |
# create slice objects --- initially all are [:, :, ..., :] | |
slice1 = [slice(None)]*N | |
slice2 = [slice(None)]*N | |
slice3 = [slice(None)]*N | |
slice4 = [slice(None)]*N | |
otype = f.dtype.char | |
if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: | |
otype = 'd' | |
# Difference of datetime64 elements results in timedelta64 | |
if otype == 'M': | |
# Need to use the full dtype name because it contains unit information | |
otype = f.dtype.name.replace('datetime', 'timedelta') | |
elif otype == 'm': | |
# Needs to keep the specific units, can't be a general unit | |
otype = f.dtype | |
# Convert datetime64 data into ints. Make dummy variable `y` | |
# that is a view of ints if the data is datetime64, otherwise | |
# just set y equal to the the array `f`. | |
if f.dtype.char in ["M", "m"]: | |
y = f.view('int64') | |
else: | |
y = f | |
for axis in range(N): | |
if y.shape[axis] < 2: | |
raise ValueError( | |
"Shape of array too small to calculate a numerical gradient, " | |
"at least two elements are required.") | |
# Numerical differentiation: 1st order edges, 2nd order interior | |
if y.shape[axis] == 2: | |
# Use first order differences for time data | |
out = np.empty_like(y, dtype=otype) | |
slice1[axis] = slice(1, -1) | |
slice2[axis] = slice(2, None) | |
slice3[axis] = slice(None, -2) | |
# 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 | |
out[slice1] = (y[slice2] - y[slice3])/2.0 | |
slice1[axis] = 0 | |
slice2[axis] = 1 | |
slice3[axis] = 0 | |
# 1D equivalent -- out[0] = (y[1] - y[0]) | |
out[slice1] = (y[slice2] - y[slice3]) | |
slice1[axis] = -1 | |
slice2[axis] = -1 | |
slice3[axis] = -2 | |
# 1D equivalent -- out[-1] = (y[-1] - y[-2]) | |
out[slice1] = (y[slice2] - y[slice3]) | |
# Numerical differentiation: 2st order edges, 2nd order interior | |
else: | |
# Use second order differences where possible | |
out = np.empty_like(y, dtype=otype) | |
slice1[axis] = slice(1, -1) | |
slice2[axis] = slice(2, None) | |
slice3[axis] = slice(None, -2) | |
# 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0 | |
out[slice1] = (y[slice2] - y[slice3])/2.0 | |
slice1[axis] = 0 | |
slice2[axis] = 0 | |
slice3[axis] = 1 | |
slice4[axis] = 2 | |
# 1D equivalent -- out[0] = -(3*y[0] - 4*y[1] + y[2]) / 2.0 | |
out[slice1] = -(3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 | |
slice1[axis] = -1 | |
slice2[axis] = -1 | |
slice3[axis] = -2 | |
slice4[axis] = -3 | |
# 1D equivalent -- out[-1] = (3*y[-1] - 4*y[-2] + y[-3]) | |
out[slice1] = (3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0 | |
# divide by step size | |
outvals.append(out / dx[axis]) | |
# reset the slice object in this dimension to ":" | |
slice1[axis] = slice(None) | |
slice2[axis] = slice(None) | |
slice3[axis] = slice(None) | |
slice4[axis] = slice(None) | |
if N == 1: | |
return outvals[0] | |
else: | |
return outvals | |
def diff(a, n=1, axis=-1): | |
""" | |
Calculate the n-th order discrete difference along given axis. | |
The first order difference is given by ``out[n] = a[n+1] - a[n]`` along | |
the given axis, higher order differences are calculated by using `diff` | |
recursively. | |
Parameters | |
---------- | |
a : array_like | |
Input array | |
n : int, optional | |
The number of times values are differenced. | |
axis : int, optional | |
The axis along which the difference is taken, default is the last axis. | |
Returns | |
------- | |
diff : ndarray | |
The `n` order differences. The shape of the output is the same as `a` | |
except along `axis` where the dimension is smaller by `n`. | |
See Also | |
-------- | |
gradient, ediff1d, cumsum | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 4, 7, 0]) | |
>>> np.diff(x) | |
array([ 1, 2, 3, -7]) | |
>>> np.diff(x, n=2) | |
array([ 1, 1, -10]) | |
>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) | |
>>> np.diff(x) | |
array([[2, 3, 4], | |
[5, 1, 2]]) | |
>>> np.diff(x, axis=0) | |
array([[-1, 2, 0, -2]]) | |
""" | |
if n == 0: | |
return a | |
if n < 0: | |
raise ValueError( | |
"order must be non-negative but got " + repr(n)) | |
a = asanyarray(a) | |
nd = len(a.shape) | |
slice1 = [slice(None)]*nd | |
slice2 = [slice(None)]*nd | |
slice1[axis] = slice(1, None) | |
slice2[axis] = slice(None, -1) | |
slice1 = tuple(slice1) | |
slice2 = tuple(slice2) | |
if n > 1: | |
return diff(a[slice1]-a[slice2], n-1, axis=axis) | |
else: | |
return a[slice1]-a[slice2] | |
def interp(x, xp, fp, left=None, right=None): | |
""" | |
One-dimensional linear interpolation. | |
Returns the one-dimensional piecewise linear interpolant to a function | |
with given values at discrete data-points. | |
Parameters | |
---------- | |
x : array_like | |
The x-coordinates of the interpolated values. | |
xp : 1-D sequence of floats | |
The x-coordinates of the data points, must be increasing. | |
fp : 1-D sequence of floats | |
The y-coordinates of the data points, same length as `xp`. | |
left : float, optional | |
Value to return for `x < xp[0]`, default is `fp[0]`. | |
right : float, optional | |
Value to return for `x > xp[-1]`, default is `fp[-1]`. | |
Returns | |
------- | |
y : {float, ndarray} | |
The interpolated values, same shape as `x`. | |
Raises | |
------ | |
ValueError | |
If `xp` and `fp` have different length | |
Notes | |
----- | |
Does not check that the x-coordinate sequence `xp` is increasing. | |
If `xp` is not increasing, the results are nonsense. | |
A simple check for increasing is:: | |
np.all(np.diff(xp) > 0) | |
Examples | |
-------- | |
>>> xp = [1, 2, 3] | |
>>> fp = [3, 2, 0] | |
>>> np.interp(2.5, xp, fp) | |
1.0 | |
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) | |
array([ 3. , 3. , 2.5 , 0.56, 0. ]) | |
>>> UNDEF = -99.0 | |
>>> np.interp(3.14, xp, fp, right=UNDEF) | |
-99.0 | |
Plot an interpolant to the sine function: | |
>>> x = np.linspace(0, 2*np.pi, 10) | |
>>> y = np.sin(x) | |
>>> xvals = np.linspace(0, 2*np.pi, 50) | |
>>> yinterp = np.interp(xvals, x, y) | |
>>> import matplotlib.pyplot as plt | |
>>> plt.plot(x, y, 'o') | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.plot(xvals, yinterp, '-x') | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.show() | |
""" | |
if isinstance(x, (float, int, number)): | |
return compiled_interp([x], xp, fp, left, right).item() | |
elif isinstance(x, np.ndarray) and x.ndim == 0: | |
return compiled_interp([x], xp, fp, left, right).item() | |
else: | |
return compiled_interp(x, xp, fp, left, right) | |
def angle(z, deg=0): | |
""" | |
Return the angle of the complex argument. | |
Parameters | |
---------- | |
z : array_like | |
A complex number or sequence of complex numbers. | |
deg : bool, optional | |
Return angle in degrees if True, radians if False (default). | |
Returns | |
------- | |
angle : {ndarray, scalar} | |
The counterclockwise angle from the positive real axis on | |
the complex plane, with dtype as numpy.float64. | |
See Also | |
-------- | |
arctan2 | |
absolute | |
Examples | |
-------- | |
>>> np.angle([1.0, 1.0j, 1+1j]) # in radians | |
array([ 0. , 1.57079633, 0.78539816]) | |
>>> np.angle(1+1j, deg=True) # in degrees | |
45.0 | |
""" | |
if deg: | |
fact = 180/pi | |
else: | |
fact = 1.0 | |
z = asarray(z) | |
if (issubclass(z.dtype.type, _nx.complexfloating)): | |
zimag = z.imag | |
zreal = z.real | |
else: | |
zimag = 0 | |
zreal = z | |
return arctan2(zimag, zreal) * fact | |
def unwrap(p, discont=pi, axis=-1): | |
""" | |
Unwrap by changing deltas between values to 2*pi complement. | |
Unwrap radian phase `p` by changing absolute jumps greater than | |
`discont` to their 2*pi complement along the given axis. | |
Parameters | |
---------- | |
p : array_like | |
Input array. | |
discont : float, optional | |
Maximum discontinuity between values, default is ``pi``. | |
axis : int, optional | |
Axis along which unwrap will operate, default is the last axis. | |
Returns | |
------- | |
out : ndarray | |
Output array. | |
See Also | |
-------- | |
rad2deg, deg2rad | |
Notes | |
----- | |
If the discontinuity in `p` is smaller than ``pi``, but larger than | |
`discont`, no unwrapping is done because taking the 2*pi complement | |
would only make the discontinuity larger. | |
Examples | |
-------- | |
>>> phase = np.linspace(0, np.pi, num=5) | |
>>> phase[3:] += np.pi | |
>>> phase | |
array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) | |
>>> np.unwrap(phase) | |
array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) | |
""" | |
p = asarray(p) | |
nd = len(p.shape) | |
dd = diff(p, axis=axis) | |
slice1 = [slice(None, None)]*nd # full slices | |
slice1[axis] = slice(1, None) | |
ddmod = mod(dd + pi, 2*pi) - pi | |
_nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0)) | |
ph_correct = ddmod - dd | |
_nx.copyto(ph_correct, 0, where=abs(dd) < discont) | |
up = array(p, copy=True, dtype='d') | |
up[slice1] = p[slice1] + ph_correct.cumsum(axis) | |
return up | |
def sort_complex(a): | |
""" | |
Sort a complex array using the real part first, then the imaginary part. | |
Parameters | |
---------- | |
a : array_like | |
Input array | |
Returns | |
------- | |
out : complex ndarray | |
Always returns a sorted complex array. | |
Examples | |
-------- | |
>>> np.sort_complex([5, 3, 6, 2, 1]) | |
array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) | |
>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) | |
array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) | |
""" | |
b = array(a, copy=True) | |
b.sort() | |
if not issubclass(b.dtype.type, _nx.complexfloating): | |
if b.dtype.char in 'bhBH': | |
return b.astype('F') | |
elif b.dtype.char == 'g': | |
return b.astype('G') | |
else: | |
return b.astype('D') | |
else: | |
return b | |
def trim_zeros(filt, trim='fb'): | |
""" | |
Trim the leading and/or trailing zeros from a 1-D array or sequence. | |
Parameters | |
---------- | |
filt : 1-D array or sequence | |
Input array. | |
trim : str, optional | |
A string with 'f' representing trim from front and 'b' to trim from | |
back. Default is 'fb', trim zeros from both front and back of the | |
array. | |
Returns | |
------- | |
trimmed : 1-D array or sequence | |
The result of trimming the input. The input data type is preserved. | |
Examples | |
-------- | |
>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) | |
>>> np.trim_zeros(a) | |
array([1, 2, 3, 0, 2, 1]) | |
>>> np.trim_zeros(a, 'b') | |
array([0, 0, 0, 1, 2, 3, 0, 2, 1]) | |
The input data type is preserved, list/tuple in means list/tuple out. | |
>>> np.trim_zeros([0, 1, 2, 0]) | |
[1, 2] | |
""" | |
first = 0 | |
trim = trim.upper() | |
if 'F' in trim: | |
for i in filt: | |
if i != 0.: | |
break | |
else: | |
first = first + 1 | |
last = len(filt) | |
if 'B' in trim: | |
for i in filt[::-1]: | |
if i != 0.: | |
break | |
else: | |
last = last - 1 | |
return filt[first:last] | |
def unique(x): | |
""" | |
This function is deprecated. Use numpy.lib.arraysetops.unique() | |
instead. | |
""" | |
try: | |
tmp = x.flatten() | |
if tmp.size == 0: | |
return tmp | |
tmp.sort() | |
idx = concatenate(([True], tmp[1:] != tmp[:-1])) | |
return tmp[idx] | |
except AttributeError: | |
items = sorted(set(x)) | |
return asarray(items) | |
def extract(condition, arr): | |
""" | |
Return the elements of an array that satisfy some condition. | |
This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If | |
`condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. | |
Parameters | |
---------- | |
condition : array_like | |
An array whose nonzero or True entries indicate the elements of `arr` | |
to extract. | |
arr : array_like | |
Input array of the same size as `condition`. | |
Returns | |
------- | |
extract : ndarray | |
Rank 1 array of values from `arr` where `condition` is True. | |
See Also | |
-------- | |
take, put, copyto, compress | |
Examples | |
-------- | |
>>> arr = np.arange(12).reshape((3, 4)) | |
>>> arr | |
array([[ 0, 1, 2, 3], | |
[ 4, 5, 6, 7], | |
[ 8, 9, 10, 11]]) | |
>>> condition = np.mod(arr, 3)==0 | |
>>> condition | |
array([[ True, False, False, True], | |
[False, False, True, False], | |
[False, True, False, False]], dtype=bool) | |
>>> np.extract(condition, arr) | |
array([0, 3, 6, 9]) | |
If `condition` is boolean: | |
>>> arr[condition] | |
array([0, 3, 6, 9]) | |
""" | |
return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) | |
def place(arr, mask, vals): | |
""" | |
Change elements of an array based on conditional and input values. | |
Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that | |
`place` uses the first N elements of `vals`, where N is the number of | |
True values in `mask`, while `copyto` uses the elements where `mask` | |
is True. | |
Note that `extract` does the exact opposite of `place`. | |
Parameters | |
---------- | |
arr : array_like | |
Array to put data into. | |
mask : array_like | |
Boolean mask array. Must have the same size as `a`. | |
vals : 1-D sequence | |
Values to put into `a`. Only the first N elements are used, where | |
N is the number of True values in `mask`. If `vals` is smaller | |
than N it will be repeated. | |
See Also | |
-------- | |
copyto, put, take, extract | |
Examples | |
-------- | |
>>> arr = np.arange(6).reshape(2, 3) | |
>>> np.place(arr, arr>2, [44, 55]) | |
>>> arr | |
array([[ 0, 1, 2], | |
[44, 55, 44]]) | |
""" | |
return _insert(arr, mask, vals) | |
def disp(mesg, device=None, linefeed=True): | |
""" | |
Display a message on a device. | |
Parameters | |
---------- | |
mesg : str | |
Message to display. | |
device : object | |
Device to write message. If None, defaults to ``sys.stdout`` which is | |
very similar to ``print``. `device` needs to have ``write()`` and | |
``flush()`` methods. | |
linefeed : bool, optional | |
Option whether to print a line feed or not. Defaults to True. | |
Raises | |
------ | |
AttributeError | |
If `device` does not have a ``write()`` or ``flush()`` method. | |
Examples | |
-------- | |
Besides ``sys.stdout``, a file-like object can also be used as it has | |
both required methods: | |
>>> from StringIO import StringIO | |
>>> buf = StringIO() | |
>>> np.disp('"Display" in a file', device=buf) | |
>>> buf.getvalue() | |
'"Display" in a file\\n' | |
""" | |
if device is None: | |
device = sys.stdout | |
if linefeed: | |
device.write('%s\n' % mesg) | |
else: | |
device.write('%s' % mesg) | |
device.flush() | |
return | |
class vectorize(object): | |
""" | |
vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False) | |
Generalized function class. | |
Define a vectorized function which takes a nested sequence | |
of objects or numpy arrays as inputs and returns a | |
numpy array as output. The vectorized function evaluates `pyfunc` over | |
successive tuples of the input arrays like the python map function, | |
except it uses the broadcasting rules of numpy. | |
The data type of the output of `vectorized` is determined by calling | |
the function with the first element of the input. This can be avoided | |
by specifying the `otypes` argument. | |
Parameters | |
---------- | |
pyfunc : callable | |
A python function or method. | |
otypes : str or list of dtypes, optional | |
The output data type. It must be specified as either a string of | |
typecode characters or a list of data type specifiers. There should | |
be one data type specifier for each output. | |
doc : str, optional | |
The docstring for the function. If `None`, the docstring will be the | |
``pyfunc.__doc__``. | |
excluded : set, optional | |
Set of strings or integers representing the positional or keyword | |
arguments for which the function will not be vectorized. These will be | |
passed directly to `pyfunc` unmodified. | |
.. versionadded:: 1.7.0 | |
cache : bool, optional | |
If `True`, then cache the first function call that determines the number | |
of outputs if `otypes` is not provided. | |
.. versionadded:: 1.7.0 | |
Returns | |
------- | |
vectorized : callable | |
Vectorized function. | |
Examples | |
-------- | |
>>> def myfunc(a, b): | |
... "Return a-b if a>b, otherwise return a+b" | |
... if a > b: | |
... return a - b | |
... else: | |
... return a + b | |
>>> vfunc = np.vectorize(myfunc) | |
>>> vfunc([1, 2, 3, 4], 2) | |
array([3, 4, 1, 2]) | |
The docstring is taken from the input function to `vectorize` unless it | |
is specified | |
>>> vfunc.__doc__ | |
'Return a-b if a>b, otherwise return a+b' | |
>>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') | |
>>> vfunc.__doc__ | |
'Vectorized `myfunc`' | |
The output type is determined by evaluating the first element of the input, | |
unless it is specified | |
>>> out = vfunc([1, 2, 3, 4], 2) | |
>>> type(out[0]) | |
<type 'numpy.int32'> | |
>>> vfunc = np.vectorize(myfunc, otypes=[np.float]) | |
>>> out = vfunc([1, 2, 3, 4], 2) | |
>>> type(out[0]) | |
<type 'numpy.float64'> | |
The `excluded` argument can be used to prevent vectorizing over certain | |
arguments. This can be useful for array-like arguments of a fixed length | |
such as the coefficients for a polynomial as in `polyval`: | |
>>> def mypolyval(p, x): | |
... _p = list(p) | |
... res = _p.pop(0) | |
... while _p: | |
... res = res*x + _p.pop(0) | |
... return res | |
>>> vpolyval = np.vectorize(mypolyval, excluded=['p']) | |
>>> vpolyval(p=[1, 2, 3], x=[0, 1]) | |
array([3, 6]) | |
Positional arguments may also be excluded by specifying their position: | |
>>> vpolyval.excluded.add(0) | |
>>> vpolyval([1, 2, 3], x=[0, 1]) | |
array([3, 6]) | |
Notes | |
----- | |
The `vectorize` function is provided primarily for convenience, not for | |
performance. The implementation is essentially a for loop. | |
If `otypes` is not specified, then a call to the function with the | |
first argument will be used to determine the number of outputs. The | |
results of this call will be cached if `cache` is `True` to prevent | |
calling the function twice. However, to implement the cache, the | |
original function must be wrapped which will slow down subsequent | |
calls, so only do this if your function is expensive. | |
The new keyword argument interface and `excluded` argument support | |
further degrades performance. | |
""" | |
def __init__(self, pyfunc, otypes='', doc=None, excluded=None, | |
cache=False): | |
self.pyfunc = pyfunc | |
self.cache = cache | |
self._ufunc = None # Caching to improve default performance | |
if doc is None: | |
self.__doc__ = pyfunc.__doc__ | |
else: | |
self.__doc__ = doc | |
if isinstance(otypes, str): | |
self.otypes = otypes | |
for char in self.otypes: | |
if char not in typecodes['All']: | |
raise ValueError( | |
"Invalid otype specified: %s" % (char,)) | |
elif iterable(otypes): | |
self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) | |
else: | |
raise ValueError( | |
"Invalid otype specification") | |
# Excluded variable support | |
if excluded is None: | |
excluded = set() | |
self.excluded = set(excluded) | |
def __call__(self, *args, **kwargs): | |
""" | |
Return arrays with the results of `pyfunc` broadcast (vectorized) over | |
`args` and `kwargs` not in `excluded`. | |
""" | |
excluded = self.excluded | |
if not kwargs and not excluded: | |
func = self.pyfunc | |
vargs = args | |
else: | |
# The wrapper accepts only positional arguments: we use `names` and | |
# `inds` to mutate `the_args` and `kwargs` to pass to the original | |
# function. | |
nargs = len(args) | |
names = [_n for _n in kwargs if _n not in excluded] | |
inds = [_i for _i in range(nargs) if _i not in excluded] | |
the_args = list(args) | |
def func(*vargs): | |
for _n, _i in enumerate(inds): | |
the_args[_i] = vargs[_n] | |
kwargs.update(zip(names, vargs[len(inds):])) | |
return self.pyfunc(*the_args, **kwargs) | |
vargs = [args[_i] for _i in inds] | |
vargs.extend([kwargs[_n] for _n in names]) | |
return self._vectorize_call(func=func, args=vargs) | |
def _get_ufunc_and_otypes(self, func, args): | |
"""Return (ufunc, otypes).""" | |
# frompyfunc will fail if args is empty | |
if not args: | |
raise ValueError('args can not be empty') | |
if self.otypes: | |
otypes = self.otypes | |
nout = len(otypes) | |
# Note logic here: We only *use* self._ufunc if func is self.pyfunc | |
# even though we set self._ufunc regardless. | |
if func is self.pyfunc and self._ufunc is not None: | |
ufunc = self._ufunc | |
else: | |
ufunc = self._ufunc = frompyfunc(func, len(args), nout) | |
else: | |
# Get number of outputs and output types by calling the function on | |
# the first entries of args. We also cache the result to prevent | |
# the subsequent call when the ufunc is evaluated. | |
# Assumes that ufunc first evaluates the 0th elements in the input | |
# arrays (the input values are not checked to ensure this) | |
inputs = [asarray(_a).flat[0] for _a in args] | |
outputs = func(*inputs) | |
# Performance note: profiling indicates that -- for simple | |
# functions at least -- this wrapping can almost double the | |
# execution time. | |
# Hence we make it optional. | |
if self.cache: | |
_cache = [outputs] | |
def _func(*vargs): | |
if _cache: | |
return _cache.pop() | |
else: | |
return func(*vargs) | |
else: | |
_func = func | |
if isinstance(outputs, tuple): | |
nout = len(outputs) | |
else: | |
nout = 1 | |
outputs = (outputs,) | |
otypes = ''.join([asarray(outputs[_k]).dtype.char | |
for _k in range(nout)]) | |
# Performance note: profiling indicates that creating the ufunc is | |
# not a significant cost compared with wrapping so it seems not | |
# worth trying to cache this. | |
ufunc = frompyfunc(_func, len(args), nout) | |
return ufunc, otypes | |
def _vectorize_call(self, func, args): | |
"""Vectorized call to `func` over positional `args`.""" | |
if not args: | |
_res = func() | |
else: | |
ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) | |
# Convert args to object arrays first | |
inputs = [array(_a, copy=False, subok=True, dtype=object) | |
for _a in args] | |
outputs = ufunc(*inputs) | |
if ufunc.nout == 1: | |
_res = array(outputs, | |
copy=False, subok=True, dtype=otypes[0]) | |
else: | |
_res = tuple([array(_x, copy=False, subok=True, dtype=_t) | |
for _x, _t in zip(outputs, otypes)]) | |
return _res | |
def cov(m, y=None, rowvar=1, bias=0, ddof=None): | |
""" | |
Estimate a covariance matrix, given data. | |
Covariance indicates the level to which two variables vary together. | |
If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, | |
then the covariance matrix element :math:`C_{ij}` is the covariance of | |
:math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance | |
of :math:`x_i`. | |
Parameters | |
---------- | |
m : array_like | |
A 1-D or 2-D array containing multiple variables and observations. | |
Each row of `m` represents a variable, and each column a single | |
observation of all those variables. Also see `rowvar` below. | |
y : array_like, optional | |
An additional set of variables and observations. `y` has the same | |
form as that of `m`. | |
rowvar : int, optional | |
If `rowvar` is non-zero (default), then each row represents a | |
variable, with observations in the columns. Otherwise, the relationship | |
is transposed: each column represents a variable, while the rows | |
contain observations. | |
bias : int, optional | |
Default normalization is by ``(N - 1)``, where ``N`` is the number of | |
observations given (unbiased estimate). If `bias` is 1, then | |
normalization is by ``N``. These values can be overridden by using | |
the keyword ``ddof`` in numpy versions >= 1.5. | |
ddof : int, optional | |
.. versionadded:: 1.5 | |
If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is | |
the number of observations; this overrides the value implied by | |
``bias``. The default value is ``None``. | |
Returns | |
------- | |
out : ndarray | |
The covariance matrix of the variables. | |
See Also | |
-------- | |
corrcoef : Normalized covariance matrix | |
Examples | |
-------- | |
Consider two variables, :math:`x_0` and :math:`x_1`, which | |
correlate perfectly, but in opposite directions: | |
>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T | |
>>> x | |
array([[0, 1, 2], | |
[2, 1, 0]]) | |
Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance | |
matrix shows this clearly: | |
>>> np.cov(x) | |
array([[ 1., -1.], | |
[-1., 1.]]) | |
Note that element :math:`C_{0,1}`, which shows the correlation between | |
:math:`x_0` and :math:`x_1`, is negative. | |
Further, note how `x` and `y` are combined: | |
>>> x = [-2.1, -1, 4.3] | |
>>> y = [3, 1.1, 0.12] | |
>>> X = np.vstack((x,y)) | |
>>> print np.cov(X) | |
[[ 11.71 -4.286 ] | |
[ -4.286 2.14413333]] | |
>>> print np.cov(x, y) | |
[[ 11.71 -4.286 ] | |
[ -4.286 2.14413333]] | |
>>> print np.cov(x) | |
11.71 | |
""" | |
# Check inputs | |
if ddof is not None and ddof != int(ddof): | |
raise ValueError( | |
"ddof must be integer") | |
# Handles complex arrays too | |
m = np.asarray(m) | |
if y is None: | |
dtype = np.result_type(m, np.float64) | |
else: | |
y = np.asarray(y) | |
dtype = np.result_type(m, y, np.float64) | |
X = array(m, ndmin=2, dtype=dtype) | |
if X.shape[0] == 1: | |
rowvar = 1 | |
if rowvar: | |
N = X.shape[1] | |
axis = 0 | |
else: | |
N = X.shape[0] | |
axis = 1 | |
# check ddof | |
if ddof is None: | |
if bias == 0: | |
ddof = 1 | |
else: | |
ddof = 0 | |
fact = float(N - ddof) | |
if fact <= 0: | |
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) | |
fact = 0.0 | |
if y is not None: | |
y = array(y, copy=False, ndmin=2, dtype=dtype) | |
X = concatenate((X, y), axis) | |
X -= X.mean(axis=1-axis, keepdims=True) | |
if not rowvar: | |
return (dot(X.T, X.conj()) / fact).squeeze() | |
else: | |
return (dot(X, X.T.conj()) / fact).squeeze() | |
def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): | |
""" | |
Return correlation coefficients. | |
Please refer to the documentation for `cov` for more detail. The | |
relationship between the correlation coefficient matrix, `P`, and the | |
covariance matrix, `C`, is | |
.. math:: P_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } | |
The values of `P` are between -1 and 1, inclusive. | |
Parameters | |
---------- | |
x : array_like | |
A 1-D or 2-D array containing multiple variables and observations. | |
Each row of `m` represents a variable, and each column a single | |
observation of all those variables. Also see `rowvar` below. | |
y : array_like, optional | |
An additional set of variables and observations. `y` has the same | |
shape as `m`. | |
rowvar : int, optional | |
If `rowvar` is non-zero (default), then each row represents a | |
variable, with observations in the columns. Otherwise, the relationship | |
is transposed: each column represents a variable, while the rows | |
contain observations. | |
bias : int, optional | |
Default normalization is by ``(N - 1)``, where ``N`` is the number of | |
observations (unbiased estimate). If `bias` is 1, then | |
normalization is by ``N``. These values can be overridden by using | |
the keyword ``ddof`` in numpy versions >= 1.5. | |
ddof : {None, int}, optional | |
.. versionadded:: 1.5 | |
If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is | |
the number of observations; this overrides the value implied by | |
``bias``. The default value is ``None``. | |
Returns | |
------- | |
out : ndarray | |
The correlation coefficient matrix of the variables. | |
See Also | |
-------- | |
cov : Covariance matrix | |
""" | |
c = cov(x, y, rowvar, bias, ddof) | |
try: | |
d = diag(c) | |
except ValueError: # scalar covariance | |
# nan if incorrect value (nan, inf, 0), 1 otherwise | |
return c / c | |
return c / sqrt(multiply.outer(d, d)) | |
def blackman(M): | |
""" | |
Return the Blackman window. | |
The Blackman window is a taper formed by using the first three | |
terms of a summation of cosines. It was designed to have close to the | |
minimal leakage possible. It is close to optimal, only slightly worse | |
than a Kaiser window. | |
Parameters | |
---------- | |
M : int | |
Number of points in the output window. If zero or less, an empty | |
array is returned. | |
Returns | |
------- | |
out : ndarray | |
The window, with the maximum value normalized to one (the value one | |
appears only if the number of samples is odd). | |
See Also | |
-------- | |
bartlett, hamming, hanning, kaiser | |
Notes | |
----- | |
The Blackman window is defined as | |
.. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) | |
Most references to the Blackman window come from the signal processing | |
literature, where it is used as one of many windowing functions for | |
smoothing values. It is also known as an apodization (which means | |
"removing the foot", i.e. smoothing discontinuities at the beginning | |
and end of the sampled signal) or tapering function. It is known as a | |
"near optimal" tapering function, almost as good (by some measures) | |
as the kaiser window. | |
References | |
---------- | |
Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, | |
Dover Publications, New York. | |
Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. | |
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. | |
Examples | |
-------- | |
>>> np.blackman(12) | |
array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, | |
4.14397981e-01, 7.36045180e-01, 9.67046769e-01, | |
9.67046769e-01, 7.36045180e-01, 4.14397981e-01, | |
1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) | |
Plot the window and the frequency response: | |
>>> from numpy.fft import fft, fftshift | |
>>> window = np.blackman(51) | |
>>> plt.plot(window) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Blackman window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Amplitude") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Sample") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.show() | |
>>> plt.figure() | |
<matplotlib.figure.Figure object at 0x...> | |
>>> A = fft(window, 2048) / 25.5 | |
>>> mag = np.abs(fftshift(A)) | |
>>> freq = np.linspace(-0.5, 0.5, len(A)) | |
>>> response = 20 * np.log10(mag) | |
>>> response = np.clip(response, -100, 100) | |
>>> plt.plot(freq, response) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Frequency response of Blackman window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Magnitude [dB]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Normalized frequency [cycles per sample]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.axis('tight') | |
(-0.5, 0.5, -100.0, ...) | |
>>> plt.show() | |
""" | |
if M < 1: | |
return array([]) | |
if M == 1: | |
return ones(1, float) | |
n = arange(0, M) | |
return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) | |
def bartlett(M): | |
""" | |
Return the Bartlett window. | |
The Bartlett window is very similar to a triangular window, except | |
that the end points are at zero. It is often used in signal | |
processing for tapering a signal, without generating too much | |
ripple in the frequency domain. | |
Parameters | |
---------- | |
M : int | |
Number of points in the output window. If zero or less, an | |
empty array is returned. | |
Returns | |
------- | |
out : array | |
The triangular window, with the maximum value normalized to one | |
(the value one appears only if the number of samples is odd), with | |
the first and last samples equal to zero. | |
See Also | |
-------- | |
blackman, hamming, hanning, kaiser | |
Notes | |
----- | |
The Bartlett window is defined as | |
.. math:: w(n) = \\frac{2}{M-1} \\left( | |
\\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| | |
\\right) | |
Most references to the Bartlett window come from the signal | |
processing literature, where it is used as one of many windowing | |
functions for smoothing values. Note that convolution with this | |
window produces linear interpolation. It is also known as an | |
apodization (which means"removing the foot", i.e. smoothing | |
discontinuities at the beginning and end of the sampled signal) or | |
tapering function. The fourier transform of the Bartlett is the product | |
of two sinc functions. | |
Note the excellent discussion in Kanasewich. | |
References | |
---------- | |
.. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", | |
Biometrika 37, 1-16, 1950. | |
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", | |
The University of Alberta Press, 1975, pp. 109-110. | |
.. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal | |
Processing", Prentice-Hall, 1999, pp. 468-471. | |
.. [4] Wikipedia, "Window function", | |
http://en.wikipedia.org/wiki/Window_function | |
.. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, | |
"Numerical Recipes", Cambridge University Press, 1986, page 429. | |
Examples | |
-------- | |
>>> np.bartlett(12) | |
array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, | |
0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, | |
0.18181818, 0. ]) | |
Plot the window and its frequency response (requires SciPy and matplotlib): | |
>>> from numpy.fft import fft, fftshift | |
>>> window = np.bartlett(51) | |
>>> plt.plot(window) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Bartlett window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Amplitude") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Sample") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.show() | |
>>> plt.figure() | |
<matplotlib.figure.Figure object at 0x...> | |
>>> A = fft(window, 2048) / 25.5 | |
>>> mag = np.abs(fftshift(A)) | |
>>> freq = np.linspace(-0.5, 0.5, len(A)) | |
>>> response = 20 * np.log10(mag) | |
>>> response = np.clip(response, -100, 100) | |
>>> plt.plot(freq, response) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Frequency response of Bartlett window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Magnitude [dB]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Normalized frequency [cycles per sample]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.axis('tight') | |
(-0.5, 0.5, -100.0, ...) | |
>>> plt.show() | |
""" | |
if M < 1: | |
return array([]) | |
if M == 1: | |
return ones(1, float) | |
n = arange(0, M) | |
return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1)) | |
def hanning(M): | |
""" | |
Return the Hanning window. | |
The Hanning window is a taper formed by using a weighted cosine. | |
Parameters | |
---------- | |
M : int | |
Number of points in the output window. If zero or less, an | |
empty array is returned. | |
Returns | |
------- | |
out : ndarray, shape(M,) | |
The window, with the maximum value normalized to one (the value | |
one appears only if `M` is odd). | |
See Also | |
-------- | |
bartlett, blackman, hamming, kaiser | |
Notes | |
----- | |
The Hanning window is defined as | |
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
\\qquad 0 \\leq n \\leq M-1 | |
The Hanning was named for Julius van Hann, an Austrian meteorologist. | |
It is also known as the Cosine Bell. Some authors prefer that it be | |
called a Hann window, to help avoid confusion with the very similar | |
Hamming window. | |
Most references to the Hanning window come from the signal processing | |
literature, where it is used as one of many windowing functions for | |
smoothing values. It is also known as an apodization (which means | |
"removing the foot", i.e. smoothing discontinuities at the beginning | |
and end of the sampled signal) or tapering function. | |
References | |
---------- | |
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power | |
spectra, Dover Publications, New York. | |
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", | |
The University of Alberta Press, 1975, pp. 106-108. | |
.. [3] Wikipedia, "Window function", | |
http://en.wikipedia.org/wiki/Window_function | |
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, | |
"Numerical Recipes", Cambridge University Press, 1986, page 425. | |
Examples | |
-------- | |
>>> np.hanning(12) | |
array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, | |
0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, | |
0.07937323, 0. ]) | |
Plot the window and its frequency response: | |
>>> from numpy.fft import fft, fftshift | |
>>> window = np.hanning(51) | |
>>> plt.plot(window) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Hann window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Amplitude") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Sample") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.show() | |
>>> plt.figure() | |
<matplotlib.figure.Figure object at 0x...> | |
>>> A = fft(window, 2048) / 25.5 | |
>>> mag = np.abs(fftshift(A)) | |
>>> freq = np.linspace(-0.5, 0.5, len(A)) | |
>>> response = 20 * np.log10(mag) | |
>>> response = np.clip(response, -100, 100) | |
>>> plt.plot(freq, response) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Frequency response of the Hann window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Magnitude [dB]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Normalized frequency [cycles per sample]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.axis('tight') | |
(-0.5, 0.5, -100.0, ...) | |
>>> plt.show() | |
""" | |
if M < 1: | |
return array([]) | |
if M == 1: | |
return ones(1, float) | |
n = arange(0, M) | |
return 0.5 - 0.5*cos(2.0*pi*n/(M-1)) | |
def hamming(M): | |
""" | |
Return the Hamming window. | |
The Hamming window is a taper formed by using a weighted cosine. | |
Parameters | |
---------- | |
M : int | |
Number of points in the output window. If zero or less, an | |
empty array is returned. | |
Returns | |
------- | |
out : ndarray | |
The window, with the maximum value normalized to one (the value | |
one appears only if the number of samples is odd). | |
See Also | |
-------- | |
bartlett, blackman, hanning, kaiser | |
Notes | |
----- | |
The Hamming window is defined as | |
.. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) | |
\\qquad 0 \\leq n \\leq M-1 | |
The Hamming was named for R. W. Hamming, an associate of J. W. Tukey | |
and is described in Blackman and Tukey. It was recommended for | |
smoothing the truncated autocovariance function in the time domain. | |
Most references to the Hamming window come from the signal processing | |
literature, where it is used as one of many windowing functions for | |
smoothing values. It is also known as an apodization (which means | |
"removing the foot", i.e. smoothing discontinuities at the beginning | |
and end of the sampled signal) or tapering function. | |
References | |
---------- | |
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power | |
spectra, Dover Publications, New York. | |
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The | |
University of Alberta Press, 1975, pp. 109-110. | |
.. [3] Wikipedia, "Window function", | |
http://en.wikipedia.org/wiki/Window_function | |
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, | |
"Numerical Recipes", Cambridge University Press, 1986, page 425. | |
Examples | |
-------- | |
>>> np.hamming(12) | |
array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, | |
0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, | |
0.15302337, 0.08 ]) | |
Plot the window and the frequency response: | |
>>> from numpy.fft import fft, fftshift | |
>>> window = np.hamming(51) | |
>>> plt.plot(window) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Hamming window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Amplitude") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Sample") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.show() | |
>>> plt.figure() | |
<matplotlib.figure.Figure object at 0x...> | |
>>> A = fft(window, 2048) / 25.5 | |
>>> mag = np.abs(fftshift(A)) | |
>>> freq = np.linspace(-0.5, 0.5, len(A)) | |
>>> response = 20 * np.log10(mag) | |
>>> response = np.clip(response, -100, 100) | |
>>> plt.plot(freq, response) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Frequency response of Hamming window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Magnitude [dB]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Normalized frequency [cycles per sample]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.axis('tight') | |
(-0.5, 0.5, -100.0, ...) | |
>>> plt.show() | |
""" | |
if M < 1: | |
return array([]) | |
if M == 1: | |
return ones(1, float) | |
n = arange(0, M) | |
return 0.54 - 0.46*cos(2.0*pi*n/(M-1)) | |
## Code from cephes for i0 | |
_i0A = [ | |
-4.41534164647933937950E-18, | |
3.33079451882223809783E-17, | |
-2.43127984654795469359E-16, | |
1.71539128555513303061E-15, | |
-1.16853328779934516808E-14, | |
7.67618549860493561688E-14, | |
-4.85644678311192946090E-13, | |
2.95505266312963983461E-12, | |
-1.72682629144155570723E-11, | |
9.67580903537323691224E-11, | |
-5.18979560163526290666E-10, | |
2.65982372468238665035E-9, | |
-1.30002500998624804212E-8, | |
6.04699502254191894932E-8, | |
-2.67079385394061173391E-7, | |
1.11738753912010371815E-6, | |
-4.41673835845875056359E-6, | |
1.64484480707288970893E-5, | |
-5.75419501008210370398E-5, | |
1.88502885095841655729E-4, | |
-5.76375574538582365885E-4, | |
1.63947561694133579842E-3, | |
-4.32430999505057594430E-3, | |
1.05464603945949983183E-2, | |
-2.37374148058994688156E-2, | |
4.93052842396707084878E-2, | |
-9.49010970480476444210E-2, | |
1.71620901522208775349E-1, | |
-3.04682672343198398683E-1, | |
6.76795274409476084995E-1 | |
] | |
_i0B = [ | |
-7.23318048787475395456E-18, | |
-4.83050448594418207126E-18, | |
4.46562142029675999901E-17, | |
3.46122286769746109310E-17, | |
-2.82762398051658348494E-16, | |
-3.42548561967721913462E-16, | |
1.77256013305652638360E-15, | |
3.81168066935262242075E-15, | |
-9.55484669882830764870E-15, | |
-4.15056934728722208663E-14, | |
1.54008621752140982691E-14, | |
3.85277838274214270114E-13, | |
7.18012445138366623367E-13, | |
-1.79417853150680611778E-12, | |
-1.32158118404477131188E-11, | |
-3.14991652796324136454E-11, | |
1.18891471078464383424E-11, | |
4.94060238822496958910E-10, | |
3.39623202570838634515E-9, | |
2.26666899049817806459E-8, | |
2.04891858946906374183E-7, | |
2.89137052083475648297E-6, | |
6.88975834691682398426E-5, | |
3.36911647825569408990E-3, | |
8.04490411014108831608E-1 | |
] | |
def _chbevl(x, vals): | |
b0 = vals[0] | |
b1 = 0.0 | |
for i in range(1, len(vals)): | |
b2 = b1 | |
b1 = b0 | |
b0 = x*b1 - b2 + vals[i] | |
return 0.5*(b0 - b2) | |
def _i0_1(x): | |
return exp(x) * _chbevl(x/2.0-2, _i0A) | |
def _i0_2(x): | |
return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) | |
def i0(x): | |
""" | |
Modified Bessel function of the first kind, order 0. | |
Usually denoted :math:`I_0`. This function does broadcast, but will *not* | |
"up-cast" int dtype arguments unless accompanied by at least one float or | |
complex dtype argument (see Raises below). | |
Parameters | |
---------- | |
x : array_like, dtype float or complex | |
Argument of the Bessel function. | |
Returns | |
------- | |
out : ndarray, shape = x.shape, dtype = x.dtype | |
The modified Bessel function evaluated at each of the elements of `x`. | |
Raises | |
------ | |
TypeError: array cannot be safely cast to required type | |
If argument consists exclusively of int dtypes. | |
See Also | |
-------- | |
scipy.special.iv, scipy.special.ive | |
Notes | |
----- | |
We use the algorithm published by Clenshaw [1]_ and referenced by | |
Abramowitz and Stegun [2]_, for which the function domain is | |
partitioned into the two intervals [0,8] and (8,inf), and Chebyshev | |
polynomial expansions are employed in each interval. Relative error on | |
the domain [0,30] using IEEE arithmetic is documented [3]_ as having a | |
peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). | |
References | |
---------- | |
.. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in | |
*National Physical Laboratory Mathematical Tables*, vol. 5, London: | |
Her Majesty's Stationery Office, 1962. | |
.. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical | |
Functions*, 10th printing, New York: Dover, 1964, pp. 379. | |
http://www.math.sfu.ca/~cbm/aands/page_379.htm | |
.. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html | |
Examples | |
-------- | |
>>> np.i0([0.]) | |
array(1.0) | |
>>> np.i0([0., 1. + 2j]) | |
array([ 1.00000000+0.j , 0.18785373+0.64616944j]) | |
""" | |
x = atleast_1d(x).copy() | |
y = empty_like(x) | |
ind = (x < 0) | |
x[ind] = -x[ind] | |
ind = (x <= 8.0) | |
y[ind] = _i0_1(x[ind]) | |
ind2 = ~ind | |
y[ind2] = _i0_2(x[ind2]) | |
return y.squeeze() | |
## End of cephes code for i0 | |
def kaiser(M, beta): | |
""" | |
Return the Kaiser window. | |
The Kaiser window is a taper formed by using a Bessel function. | |
Parameters | |
---------- | |
M : int | |
Number of points in the output window. If zero or less, an | |
empty array is returned. | |
beta : float | |
Shape parameter for window. | |
Returns | |
------- | |
out : array | |
The window, with the maximum value normalized to one (the value | |
one appears only if the number of samples is odd). | |
See Also | |
-------- | |
bartlett, blackman, hamming, hanning | |
Notes | |
----- | |
The Kaiser window is defined as | |
.. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} | |
\\right)/I_0(\\beta) | |
with | |
.. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, | |
where :math:`I_0` is the modified zeroth-order Bessel function. | |
The Kaiser was named for Jim Kaiser, who discovered a simple | |
approximation to the DPSS window based on Bessel functions. The Kaiser | |
window is a very good approximation to the Digital Prolate Spheroidal | |
Sequence, or Slepian window, which is the transform which maximizes the | |
energy in the main lobe of the window relative to total energy. | |
The Kaiser can approximate many other windows by varying the beta | |
parameter. | |
==== ======================= | |
beta Window shape | |
==== ======================= | |
0 Rectangular | |
5 Similar to a Hamming | |
6 Similar to a Hanning | |
8.6 Similar to a Blackman | |
==== ======================= | |
A beta value of 14 is probably a good starting point. Note that as beta | |
gets large, the window narrows, and so the number of samples needs to be | |
large enough to sample the increasingly narrow spike, otherwise NaNs will | |
get returned. | |
Most references to the Kaiser window come from the signal processing | |
literature, where it is used as one of many windowing functions for | |
smoothing values. It is also known as an apodization (which means | |
"removing the foot", i.e. smoothing discontinuities at the beginning | |
and end of the sampled signal) or tapering function. | |
References | |
---------- | |
.. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by | |
digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. | |
John Wiley and Sons, New York, (1966). | |
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The | |
University of Alberta Press, 1975, pp. 177-178. | |
.. [3] Wikipedia, "Window function", | |
http://en.wikipedia.org/wiki/Window_function | |
Examples | |
-------- | |
>>> np.kaiser(12, 14) | |
array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, | |
2.29737120e-01, 5.99885316e-01, 9.45674898e-01, | |
9.45674898e-01, 5.99885316e-01, 2.29737120e-01, | |
4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) | |
Plot the window and the frequency response: | |
>>> from numpy.fft import fft, fftshift | |
>>> window = np.kaiser(51, 14) | |
>>> plt.plot(window) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Kaiser window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Amplitude") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Sample") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.show() | |
>>> plt.figure() | |
<matplotlib.figure.Figure object at 0x...> | |
>>> A = fft(window, 2048) / 25.5 | |
>>> mag = np.abs(fftshift(A)) | |
>>> freq = np.linspace(-0.5, 0.5, len(A)) | |
>>> response = 20 * np.log10(mag) | |
>>> response = np.clip(response, -100, 100) | |
>>> plt.plot(freq, response) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Frequency response of Kaiser window") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Magnitude [dB]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("Normalized frequency [cycles per sample]") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.axis('tight') | |
(-0.5, 0.5, -100.0, ...) | |
>>> plt.show() | |
""" | |
from numpy.dual import i0 | |
if M == 1: | |
return np.array([1.]) | |
n = arange(0, M) | |
alpha = (M-1)/2.0 | |
return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) | |
def sinc(x): | |
""" | |
Return the sinc function. | |
The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. | |
Parameters | |
---------- | |
x : ndarray | |
Array (possibly multi-dimensional) of values for which to to | |
calculate ``sinc(x)``. | |
Returns | |
------- | |
out : ndarray | |
``sinc(x)``, which has the same shape as the input. | |
Notes | |
----- | |
``sinc(0)`` is the limit value 1. | |
The name sinc is short for "sine cardinal" or "sinus cardinalis". | |
The sinc function is used in various signal processing applications, | |
including in anti-aliasing, in the construction of a Lanczos resampling | |
filter, and in interpolation. | |
For bandlimited interpolation of discrete-time signals, the ideal | |
interpolation kernel is proportional to the sinc function. | |
References | |
---------- | |
.. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web | |
Resource. http://mathworld.wolfram.com/SincFunction.html | |
.. [2] Wikipedia, "Sinc function", | |
http://en.wikipedia.org/wiki/Sinc_function | |
Examples | |
-------- | |
>>> x = np.linspace(-4, 4, 41) | |
>>> np.sinc(x) | |
array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, | |
-8.90384387e-02, -5.84680802e-02, 3.89804309e-17, | |
6.68206631e-02, 1.16434881e-01, 1.26137788e-01, | |
8.50444803e-02, -3.89804309e-17, -1.03943254e-01, | |
-1.89206682e-01, -2.16236208e-01, -1.55914881e-01, | |
3.89804309e-17, 2.33872321e-01, 5.04551152e-01, | |
7.56826729e-01, 9.35489284e-01, 1.00000000e+00, | |
9.35489284e-01, 7.56826729e-01, 5.04551152e-01, | |
2.33872321e-01, 3.89804309e-17, -1.55914881e-01, | |
-2.16236208e-01, -1.89206682e-01, -1.03943254e-01, | |
-3.89804309e-17, 8.50444803e-02, 1.26137788e-01, | |
1.16434881e-01, 6.68206631e-02, 3.89804309e-17, | |
-5.84680802e-02, -8.90384387e-02, -8.40918587e-02, | |
-4.92362781e-02, -3.89804309e-17]) | |
>>> plt.plot(x, np.sinc(x)) | |
[<matplotlib.lines.Line2D object at 0x...>] | |
>>> plt.title("Sinc Function") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.ylabel("Amplitude") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.xlabel("X") | |
<matplotlib.text.Text object at 0x...> | |
>>> plt.show() | |
It works in 2-D as well: | |
>>> x = np.linspace(-4, 4, 401) | |
>>> xx = np.outer(x, x) | |
>>> plt.imshow(np.sinc(xx)) | |
<matplotlib.image.AxesImage object at 0x...> | |
""" | |
x = np.asanyarray(x) | |
y = pi * where(x == 0, 1.0e-20, x) | |
return sin(y)/y | |
def msort(a): | |
""" | |
Return a copy of an array sorted along the first axis. | |
Parameters | |
---------- | |
a : array_like | |
Array to be sorted. | |
Returns | |
------- | |
sorted_array : ndarray | |
Array of the same type and shape as `a`. | |
See Also | |
-------- | |
sort | |
Notes | |
----- | |
``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. | |
""" | |
b = array(a, subok=True, copy=True) | |
b.sort(0) | |
return b | |
def _ureduce(a, func, **kwargs): | |
""" | |
Internal Function. | |
Call `func` with `a` as first argument swapping the axes to use extended | |
axis on functions that don't support it natively. | |
Returns result and a.shape with axis dims set to 1. | |
Parameters | |
---------- | |
a : array_like | |
Input array or object that can be converted to an array. | |
func : callable | |
Reduction function Kapable of receiving an axis argument. | |
It is is called with `a` as first argument followed by `kwargs`. | |
kwargs : keyword arguments | |
additional keyword arguments to pass to `func`. | |
Returns | |
------- | |
result : tuple | |
Result of func(a, **kwargs) and a.shape with axis dims set to 1 | |
which can be used to reshape the result to the same shape a ufunc with | |
keepdims=True would produce. | |
""" | |
a = np.asanyarray(a) | |
axis = kwargs.get('axis', None) | |
if axis is not None: | |
keepdim = list(a.shape) | |
nd = a.ndim | |
try: | |
axis = operator.index(axis) | |
if axis >= nd or axis < -nd: | |
raise IndexError("axis %d out of bounds (%d)" % (axis, a.ndim)) | |
keepdim[axis] = 1 | |
except TypeError: | |
sax = set() | |
for x in axis: | |
if x >= nd or x < -nd: | |
raise IndexError("axis %d out of bounds (%d)" % (x, nd)) | |
if x in sax: | |
raise ValueError("duplicate value in axis") | |
sax.add(x % nd) | |
keepdim[x] = 1 | |
keep = sax.symmetric_difference(frozenset(range(nd))) | |
nkeep = len(keep) | |
# swap axis that should not be reduced to front | |
for i, s in enumerate(sorted(keep)): | |
a = a.swapaxes(i, s) | |
# merge reduced axis | |
a = a.reshape(a.shape[:nkeep] + (-1,)) | |
kwargs['axis'] = -1 | |
else: | |
keepdim = [1] * a.ndim | |
r = func(a, **kwargs) | |
return r, keepdim | |
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): | |
""" | |
Compute the median along the specified axis. | |
Returns the median of the array elements. | |
Parameters | |
---------- | |
a : array_like | |
Input array or object that can be converted to an array. | |
axis : int or sequence of int, optional | |
Axis along which the medians are computed. The default (axis=None) | |
is to compute the median along a flattened version of the array. | |
A sequence of axes is supported since version 1.9.0. | |
out : ndarray, optional | |
Alternative output array in which to place the result. It must have | |
the same shape and buffer length as the expected output, but the | |
type (of the output) will be cast if necessary. | |
overwrite_input : bool, optional | |
If True, then allow use of memory of input array (a) for | |
calculations. The input array will be modified by the call to | |
median. This will save memory when you do not need to preserve the | |
contents of the input array. Treat the input as undefined, but it | |
will probably be fully or partially sorted. Default is False. Note | |
that, if `overwrite_input` is True and the input is not already an | |
ndarray, an error will be raised. | |
keepdims : bool, optional | |
If this is set to True, the axes which are reduced are left | |
in the result as dimensions with size one. With this option, | |
the result will broadcast correctly against the original `arr`. | |
.. versionadded:: 1.9.0 | |
Returns | |
------- | |
median : ndarray | |
A new array holding the result (unless `out` is specified, in which | |
case that array is returned instead). If the input contains | |
integers, or floats of smaller precision than 64, then the output | |
data-type is float64. Otherwise, the output data-type is the same | |
as that of the input. | |
See Also | |
-------- | |
mean, percentile | |
Notes | |
----- | |
Given a vector V of length N, the median of V is the middle value of | |
a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is | |
odd. When N is even, it is the average of the two middle values of | |
``V_sorted``. | |
Examples | |
-------- | |
>>> a = np.array([[10, 7, 4], [3, 2, 1]]) | |
>>> a | |
array([[10, 7, 4], | |
[ 3, 2, 1]]) | |
>>> np.median(a) | |
3.5 | |
>>> np.median(a, axis=0) | |
array([ 6.5, 4.5, 2.5]) | |
>>> np.median(a, axis=1) | |
array([ 7., 2.]) | |
>>> m = np.median(a, axis=0) | |
>>> out = np.zeros_like(m) | |
>>> np.median(a, axis=0, out=m) | |
array([ 6.5, 4.5, 2.5]) | |
>>> m | |
array([ 6.5, 4.5, 2.5]) | |
>>> b = a.copy() | |
>>> np.median(b, axis=1, overwrite_input=True) | |
array([ 7., 2.]) | |
>>> assert not np.all(a==b) | |
>>> b = a.copy() | |
>>> np.median(b, axis=None, overwrite_input=True) | |
3.5 | |
>>> assert not np.all(a==b) | |
""" | |
r, k = _ureduce(a, func=_median, axis=axis, out=out, | |
overwrite_input=overwrite_input) | |
if keepdims: | |
return r.reshape(k) | |
else: | |
return r | |
def _median(a, axis=None, out=None, overwrite_input=False): | |
# can't be reasonably be implemented in terms of percentile as we have to | |
# call mean to not break astropy | |
a = np.asanyarray(a) | |
if axis is not None and axis >= a.ndim: | |
raise IndexError( | |
"axis %d out of bounds (%d)" % (axis, a.ndim)) | |
if overwrite_input: | |
if axis is None: | |
part = a.ravel() | |
sz = part.size | |
if sz % 2 == 0: | |
szh = sz // 2 | |
part.partition((szh - 1, szh)) | |
else: | |
part.partition((sz - 1) // 2) | |
else: | |
sz = a.shape[axis] | |
if sz % 2 == 0: | |
szh = sz // 2 | |
a.partition((szh - 1, szh), axis=axis) | |
else: | |
a.partition((sz - 1) // 2, axis=axis) | |
part = a | |
else: | |
if axis is None: | |
sz = a.size | |
else: | |
sz = a.shape[axis] | |
if sz % 2 == 0: | |
part = partition(a, ((sz // 2) - 1, sz // 2), axis=axis) | |
else: | |
part = partition(a, (sz - 1) // 2, axis=axis) | |
if part.shape == (): | |
# make 0-D arrays work | |
return part.item() | |
if axis is None: | |
axis = 0 | |
indexer = [slice(None)] * part.ndim | |
index = part.shape[axis] // 2 | |
if part.shape[axis] % 2 == 1: | |
# index with slice to allow mean (below) to work | |
indexer[axis] = slice(index, index+1) | |
else: | |
indexer[axis] = slice(index-1, index+1) | |
# Use mean in odd and even case to coerce data type | |
# and check, use out array. | |
return mean(part[indexer], axis=axis, out=out) | |
def percentile(a, q, axis=None, out=None, | |
overwrite_input=False, interpolation='linear', keepdims=False): | |
""" | |
Compute the qth percentile of the data along the specified axis. | |
Returns the qth percentile of the array elements. | |
Parameters | |
---------- | |
a : array_like | |
Input array or object that can be converted to an array. | |
q : float in range of [0,100] (or sequence of floats) | |
Percentile to compute which must be between 0 and 100 inclusive. | |
axis : int or sequence of int, optional | |
Axis along which the percentiles are computed. The default (None) | |
is to compute the percentiles along a flattened version of the array. | |
A sequence of axes is supported since version 1.9.0. | |
out : ndarray, optional | |
Alternative output array in which to place the result. It must | |
have the same shape and buffer length as the expected output, | |
but the type (of the output) will be cast if necessary. | |
overwrite_input : bool, optional | |
If True, then allow use of memory of input array `a` for | |
calculations. The input array will be modified by the call to | |
percentile. This will save memory when you do not need to preserve | |
the contents of the input array. In this case you should not make | |
any assumptions about the content of the passed in array `a` after | |
this function completes -- treat it as undefined. Default is False. | |
Note that, if the `a` input is not already an array this parameter | |
will have no effect, `a` will be converted to an array internally | |
regardless of the value of this parameter. | |
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} | |
This optional parameter specifies the interpolation method to use, | |
when the desired quantile lies between two data points `i` and `j`: | |
* linear: `i + (j - i) * fraction`, where `fraction` is the | |
fractional part of the index surrounded by `i` and `j`. | |
* lower: `i`. | |
* higher: `j`. | |
* nearest: `i` or `j` whichever is nearest. | |
* midpoint: (`i` + `j`) / 2. | |
.. versionadded:: 1.9.0 | |
keepdims : bool, optional | |
If this is set to True, the axes which are reduced are left | |
in the result as dimensions with size one. With this option, | |
the result will broadcast correctly against the original `arr`. | |
.. versionadded:: 1.9.0 | |
Returns | |
------- | |
percentile : scalar or ndarray | |
If a single percentile `q` is given and axis=None a scalar is | |
returned. If multiple percentiles `q` are given an array holding | |
the result is returned. The results are listed in the first axis. | |
(If `out` is specified, in which case that array is returned | |
instead). If the input contains integers, or floats of smaller | |
precision than 64, then the output data-type is float64. Otherwise, | |
the output data-type is the same as that of the input. | |
See Also | |
-------- | |
mean, median | |
Notes | |
----- | |
Given a vector V of length N, the q-th percentile of V is the q-th ranked | |
value in a sorted copy of V. The values and distances of the two | |
nearest neighbors as well as the `interpolation` parameter will | |
determine the percentile if the normalized ranking does not match q | |
exactly. This function is the same as the median if ``q=50``, the same | |
as the minimum if ``q=0`` and the same as the maximum if ``q=100``. | |
Examples | |
-------- | |
>>> a = np.array([[10, 7, 4], [3, 2, 1]]) | |
>>> a | |
array([[10, 7, 4], | |
[ 3, 2, 1]]) | |
>>> np.percentile(a, 50) | |
array([ 3.5]) | |
>>> np.percentile(a, 50, axis=0) | |
array([[ 6.5, 4.5, 2.5]]) | |
>>> np.percentile(a, 50, axis=1) | |
array([[ 7.], | |
[ 2.]]) | |
>>> m = np.percentile(a, 50, axis=0) | |
>>> out = np.zeros_like(m) | |
>>> np.percentile(a, 50, axis=0, out=m) | |
array([[ 6.5, 4.5, 2.5]]) | |
>>> m | |
array([[ 6.5, 4.5, 2.5]]) | |
>>> b = a.copy() | |
>>> np.percentile(b, 50, axis=1, overwrite_input=True) | |
array([[ 7.], | |
[ 2.]]) | |
>>> assert not np.all(a==b) | |
>>> b = a.copy() | |
>>> np.percentile(b, 50, axis=None, overwrite_input=True) | |
array([ 3.5]) | |
""" | |
q = array(q, dtype=np.float64, copy=True) | |
r, k = _ureduce(a, func=_percentile, q=q, axis=axis, out=out, | |
overwrite_input=overwrite_input, | |
interpolation=interpolation) | |
if keepdims: | |
if q.ndim == 0: | |
return r.reshape(k) | |
else: | |
return r.reshape([len(q)] + k) | |
else: | |
return r | |
def _percentile(a, q, axis=None, out=None, | |
overwrite_input=False, interpolation='linear', keepdims=False): | |
a = asarray(a) | |
if q.ndim == 0: | |
# Do not allow 0-d arrays because following code fails for scalar | |
zerod = True | |
q = q[None] | |
else: | |
zerod = False | |
# avoid expensive reductions, relevant for arrays with < O(1000) elements | |
if q.size < 10: | |
for i in range(q.size): | |
if q[i] < 0. or q[i] > 100.: | |
raise ValueError("Percentiles must be in the range [0,100]") | |
q[i] /= 100. | |
else: | |
# faster than any() | |
if np.count_nonzero(q < 0.) or np.count_nonzero(q > 100.): | |
raise ValueError("Percentiles must be in the range [0,100]") | |
q /= 100. | |
# prepare a for partioning | |
if overwrite_input: | |
if axis is None: | |
ap = a.ravel() | |
else: | |
ap = a | |
else: | |
if axis is None: | |
ap = a.flatten() | |
else: | |
ap = a.copy() | |
if axis is None: | |
axis = 0 | |
Nx = ap.shape[axis] | |
indices = q * (Nx - 1) | |
# round fractional indices according to interpolation method | |
if interpolation == 'lower': | |
indices = floor(indices).astype(intp) | |
elif interpolation == 'higher': | |
indices = ceil(indices).astype(intp) | |
elif interpolation == 'midpoint': | |
indices = floor(indices) + 0.5 | |
elif interpolation == 'nearest': | |
indices = around(indices).astype(intp) | |
elif interpolation == 'linear': | |
pass # keep index as fraction and interpolate | |
else: | |
raise ValueError( | |
"interpolation can only be 'linear', 'lower' 'higher', " | |
"'midpoint', or 'nearest'") | |
if indices.dtype == intp: # take the points along axis | |
ap.partition(indices, axis=axis) | |
# ensure axis with qth is first | |
ap = np.rollaxis(ap, axis, 0) | |
axis = 0 | |
if zerod: | |
indices = indices[0] | |
r = take(ap, indices, axis=axis, out=out) | |
else: # weight the points above and below the indices | |
indices_below = floor(indices).astype(intp) | |
indices_above = indices_below + 1 | |
indices_above[indices_above > Nx - 1] = Nx - 1 | |
weights_above = indices - indices_below | |
weights_below = 1.0 - weights_above | |
weights_shape = [1, ] * ap.ndim | |
weights_shape[axis] = len(indices) | |
weights_below.shape = weights_shape | |
weights_above.shape = weights_shape | |
ap.partition(concatenate((indices_below, indices_above)), axis=axis) | |
x1 = take(ap, indices_below, axis=axis) * weights_below | |
x2 = take(ap, indices_above, axis=axis) * weights_above | |
# ensure axis with qth is first | |
x1 = np.rollaxis(x1, axis, 0) | |
x2 = np.rollaxis(x2, axis, 0) | |
if zerod: | |
x1 = x1.squeeze(0) | |
x2 = x2.squeeze(0) | |
if out is not None: | |
r = add(x1, x2, out=out) | |
else: | |
r = add(x1, x2) | |
return r | |
def trapz(y, x=None, dx=1.0, axis=-1): | |
""" | |
Integrate along the given axis using the composite trapezoidal rule. | |
Integrate `y` (`x`) along given axis. | |
Parameters | |
---------- | |
y : array_like | |
Input array to integrate. | |
x : array_like, optional | |
If `x` is None, then spacing between all `y` elements is `dx`. | |
dx : scalar, optional | |
If `x` is None, spacing given by `dx` is assumed. Default is 1. | |
axis : int, optional | |
Specify the axis. | |
Returns | |
------- | |
trapz : float | |
Definite integral as approximated by trapezoidal rule. | |
See Also | |
-------- | |
sum, cumsum | |
Notes | |
----- | |
Image [2]_ illustrates trapezoidal rule -- y-axis locations of points | |
will be taken from `y` array, by default x-axis distances between | |
points will be 1.0, alternatively they can be provided with `x` array | |
or with `dx` scalar. Return value will be equal to combined area under | |
the red lines. | |
References | |
---------- | |
.. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule | |
.. [2] Illustration image: | |
http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png | |
Examples | |
-------- | |
>>> np.trapz([1,2,3]) | |
4.0 | |
>>> np.trapz([1,2,3], x=[4,6,8]) | |
8.0 | |
>>> np.trapz([1,2,3], dx=2) | |
8.0 | |
>>> a = np.arange(6).reshape(2, 3) | |
>>> a | |
array([[0, 1, 2], | |
[3, 4, 5]]) | |
>>> np.trapz(a, axis=0) | |
array([ 1.5, 2.5, 3.5]) | |
>>> np.trapz(a, axis=1) | |
array([ 2., 8.]) | |
""" | |
y = asanyarray(y) | |
if x is None: | |
d = dx | |
else: | |
x = asanyarray(x) | |
if x.ndim == 1: | |
d = diff(x) | |
# reshape to correct shape | |
shape = [1]*y.ndim | |
shape[axis] = d.shape[0] | |
d = d.reshape(shape) | |
else: | |
d = diff(x, axis=axis) | |
nd = len(y.shape) | |
slice1 = [slice(None)]*nd | |
slice2 = [slice(None)]*nd | |
slice1[axis] = slice(1, None) | |
slice2[axis] = slice(None, -1) | |
try: | |
ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis) | |
except ValueError: | |
# Operations didn't work, cast to ndarray | |
d = np.asarray(d) | |
y = np.asarray(y) | |
ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) | |
return ret | |
#always succeed | |
def add_newdoc(place, obj, doc): | |
"""Adds documentation to obj which is in module place. | |
If doc is a string add it to obj as a docstring | |
If doc is a tuple, then the first element is interpreted as | |
an attribute of obj and the second as the docstring | |
(method, docstring) | |
If doc is a list, then each element of the list should be a | |
sequence of length two --> [(method1, docstring1), | |
(method2, docstring2), ...] | |
This routine never raises an error. | |
This routine cannot modify read-only docstrings, as appear | |
in new-style classes or built-in functions. Because this | |
routine never raises an error the caller must check manually | |
that the docstrings were changed. | |
""" | |
try: | |
new = getattr(__import__(place, globals(), {}, [obj]), obj) | |
if isinstance(doc, str): | |
add_docstring(new, doc.strip()) | |
elif isinstance(doc, tuple): | |
add_docstring(getattr(new, doc[0]), doc[1].strip()) | |
elif isinstance(doc, list): | |
for val in doc: | |
add_docstring(getattr(new, val[0]), val[1].strip()) | |
except: | |
pass | |
# Based on scitools meshgrid | |
def meshgrid(*xi, **kwargs): | |
""" | |
Return coordinate matrices from coordinate vectors. | |
Make N-D coordinate arrays for vectorized evaluations of | |
N-D scalar/vector fields over N-D grids, given | |
one-dimensional coordinate arrays x1, x2,..., xn. | |
.. versionchanged:: 1.9 | |
1-D and 0-D cases are allowed. | |
Parameters | |
---------- | |
x1, x2,..., xn : array_like | |
1-D arrays representing the coordinates of a grid. | |
indexing : {'xy', 'ij'}, optional | |
Cartesian ('xy', default) or matrix ('ij') indexing of output. | |
See Notes for more details. | |
.. versionadded:: 1.7.0 | |
sparse : bool, optional | |
If True a sparse grid is returned in order to conserve memory. | |
Default is False. | |
.. versionadded:: 1.7.0 | |
copy : bool, optional | |
If False, a view into the original arrays are returned in order to | |
conserve memory. Default is True. Please note that | |
``sparse=False, copy=False`` will likely return non-contiguous | |
arrays. Furthermore, more than one element of a broadcast array | |
may refer to a single memory location. If you need to write to the | |
arrays, make copies first. | |
.. versionadded:: 1.7.0 | |
Returns | |
------- | |
X1, X2,..., XN : ndarray | |
For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , | |
return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' | |
or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' | |
with the elements of `xi` repeated to fill the matrix along | |
the first dimension for `x1`, the second for `x2` and so on. | |
Notes | |
----- | |
This function supports both indexing conventions through the indexing | |
keyword argument. Giving the string 'ij' returns a meshgrid with | |
matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. | |
In the 2-D case with inputs of length M and N, the outputs are of shape | |
(N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case | |
with inputs of length M, N and P, outputs are of shape (N, M, P) for | |
'xy' indexing and (M, N, P) for 'ij' indexing. The difference is | |
illustrated by the following code snippet:: | |
xv, yv = meshgrid(x, y, sparse=False, indexing='ij') | |
for i in range(nx): | |
for j in range(ny): | |
# treat xv[i,j], yv[i,j] | |
xv, yv = meshgrid(x, y, sparse=False, indexing='xy') | |
for i in range(nx): | |
for j in range(ny): | |
# treat xv[j,i], yv[j,i] | |
In the 1-D and 0-D case, the indexing and sparse keywords have no effect. | |
See Also | |
-------- | |
index_tricks.mgrid : Construct a multi-dimensional "meshgrid" | |
using indexing notation. | |
index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" | |
using indexing notation. | |
Examples | |
-------- | |
>>> nx, ny = (3, 2) | |
>>> x = np.linspace(0, 1, nx) | |
>>> y = np.linspace(0, 1, ny) | |
>>> xv, yv = meshgrid(x, y) | |
>>> xv | |
array([[ 0. , 0.5, 1. ], | |
[ 0. , 0.5, 1. ]]) | |
>>> yv | |
array([[ 0., 0., 0.], | |
[ 1., 1., 1.]]) | |
>>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays | |
>>> xv | |
array([[ 0. , 0.5, 1. ]]) | |
>>> yv | |
array([[ 0.], | |
[ 1.]]) | |
`meshgrid` is very useful to evaluate functions on a grid. | |
>>> x = np.arange(-5, 5, 0.1) | |
>>> y = np.arange(-5, 5, 0.1) | |
>>> xx, yy = meshgrid(x, y, sparse=True) | |
>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) | |
>>> h = plt.contourf(x,y,z) | |
""" | |
ndim = len(xi) | |
copy_ = kwargs.pop('copy', True) | |
sparse = kwargs.pop('sparse', False) | |
indexing = kwargs.pop('indexing', 'xy') | |
if kwargs: | |
raise TypeError("meshgrid() got an unexpected keyword argument '%s'" | |
% (list(kwargs)[0],)) | |
if indexing not in ['xy', 'ij']: | |
raise ValueError( | |
"Valid values for `indexing` are 'xy' and 'ij'.") | |
s0 = (1,) * ndim | |
output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::]) | |
for i, x in enumerate(xi)] | |
shape = [x.size for x in output] | |
if indexing == 'xy' and ndim > 1: | |
# switch first and second axis | |
output[0].shape = (1, -1) + (1,)*(ndim - 2) | |
output[1].shape = (-1, 1) + (1,)*(ndim - 2) | |
shape[0], shape[1] = shape[1], shape[0] | |
if sparse: | |
if copy_: | |
return [x.copy() for x in output] | |
else: | |
return output | |
else: | |
# Return the full N-D matrix (not only the 1-D vector) | |
if copy_: | |
mult_fact = np.ones(shape, dtype=int) | |
return [x * mult_fact for x in output] | |
else: | |
return np.broadcast_arrays(*output) | |
def delete(arr, obj, axis=None): | |
""" | |
Return a new array with sub-arrays along an axis deleted. For a one | |
dimensional array, this returns those entries not returned by | |
`arr[obj]`. | |
Parameters | |
---------- | |
arr : array_like | |
Input array. | |
obj : slice, int or array of ints | |
Indicate which sub-arrays to remove. | |
axis : int, optional | |
The axis along which to delete the subarray defined by `obj`. | |
If `axis` is None, `obj` is applied to the flattened array. | |
Returns | |
------- | |
out : ndarray | |
A copy of `arr` with the elements specified by `obj` removed. Note | |
that `delete` does not occur in-place. If `axis` is None, `out` is | |
a flattened array. | |
See Also | |
-------- | |
insert : Insert elements into an array. | |
append : Append elements at the end of an array. | |
Notes | |
----- | |
Often it is preferable to use a boolean mask. For example: | |
>>> mask = np.ones(len(arr), dtype=bool) | |
>>> mask[[0,2,4]] = False | |
>>> result = arr[mask,...] | |
Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further | |
use of `mask`. | |
Examples | |
-------- | |
>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) | |
>>> arr | |
array([[ 1, 2, 3, 4], | |
[ 5, 6, 7, 8], | |
[ 9, 10, 11, 12]]) | |
>>> np.delete(arr, 1, 0) | |
array([[ 1, 2, 3, 4], | |
[ 9, 10, 11, 12]]) | |
>>> np.delete(arr, np.s_[::2], 1) | |
array([[ 2, 4], | |
[ 6, 8], | |
[10, 12]]) | |
>>> np.delete(arr, [1,3,5], None) | |
array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) | |
""" | |
wrap = None | |
if type(arr) is not ndarray: | |
try: | |
wrap = arr.__array_wrap__ | |
except AttributeError: | |
pass | |
arr = asarray(arr) | |
ndim = arr.ndim | |
if axis is None: | |
if ndim != 1: | |
arr = arr.ravel() | |
ndim = arr.ndim | |
axis = ndim - 1 | |
if ndim == 0: | |
warnings.warn( | |
"in the future the special handling of scalars will be removed " | |
"from delete and raise an error", DeprecationWarning) | |
if wrap: | |
return wrap(arr) | |
else: | |
return arr.copy() | |
slobj = [slice(None)]*ndim | |
N = arr.shape[axis] | |
newshape = list(arr.shape) | |
if isinstance(obj, slice): | |
start, stop, step = obj.indices(N) | |
xr = range(start, stop, step) | |
numtodel = len(xr) | |
if numtodel <= 0: | |
if wrap: | |
return wrap(arr.copy()) | |
else: | |
return arr.copy() | |
# Invert if step is negative: | |
if step < 0: | |
step = -step | |
start = xr[-1] | |
stop = xr[0] + 1 | |
newshape[axis] -= numtodel | |
new = empty(newshape, arr.dtype, arr.flags.fnc) | |
# copy initial chunk | |
if start == 0: | |
pass | |
else: | |
slobj[axis] = slice(None, start) | |
new[slobj] = arr[slobj] | |
# copy end chunck | |
if stop == N: | |
pass | |
else: | |
slobj[axis] = slice(stop-numtodel, None) | |
slobj2 = [slice(None)]*ndim | |
slobj2[axis] = slice(stop, None) | |
new[slobj] = arr[slobj2] | |
# copy middle pieces | |
if step == 1: | |
pass | |
else: # use array indexing. | |
keep = ones(stop-start, dtype=bool) | |
keep[:stop-start:step] = False | |
slobj[axis] = slice(start, stop-numtodel) | |
slobj2 = [slice(None)]*ndim | |
slobj2[axis] = slice(start, stop) | |
arr = arr[slobj2] | |
slobj2[axis] = keep | |
new[slobj] = arr[slobj2] | |
if wrap: | |
return wrap(new) | |
else: | |
return new | |
_obj = obj | |
obj = np.asarray(obj) | |
# After removing the special handling of booleans and out of | |
# bounds values, the conversion to the array can be removed. | |
if obj.dtype == bool: | |
warnings.warn( | |
"in the future insert will treat boolean arrays and array-likes " | |
"as boolean index instead of casting it to integer", FutureWarning) | |
obj = obj.astype(intp) | |
if isinstance(_obj, (int, long, integer)): | |
# optimization for a single value | |
obj = obj.item() | |
if (obj < -N or obj >= N): | |
raise IndexError( | |
"index %i is out of bounds for axis %i with " | |
"size %i" % (obj, axis, N)) | |
if (obj < 0): | |
obj += N | |
newshape[axis] -= 1 | |
new = empty(newshape, arr.dtype, arr.flags.fnc) | |
slobj[axis] = slice(None, obj) | |
new[slobj] = arr[slobj] | |
slobj[axis] = slice(obj, None) | |
slobj2 = [slice(None)]*ndim | |
slobj2[axis] = slice(obj+1, None) | |
new[slobj] = arr[slobj2] | |
else: | |
if obj.size == 0 and not isinstance(_obj, np.ndarray): | |
obj = obj.astype(intp) | |
if not np.can_cast(obj, intp, 'same_kind'): | |
# obj.size = 1 special case always failed and would just | |
# give superfluous warnings. | |
warnings.warn( | |
"using a non-integer array as obj in delete will result in an " | |
"error in the future", DeprecationWarning) | |
obj = obj.astype(intp) | |
keep = ones(N, dtype=bool) | |
# Test if there are out of bound indices, this is deprecated | |
inside_bounds = (obj < N) & (obj >= -N) | |
if not inside_bounds.all(): | |
warnings.warn( | |
"in the future out of bounds indices will raise an error " | |
"instead of being ignored by `numpy.delete`.", | |
DeprecationWarning) | |
obj = obj[inside_bounds] | |
positive_indices = obj >= 0 | |
if not positive_indices.all(): | |
warnings.warn( | |
"in the future negative indices will not be ignored by " | |
"`numpy.delete`.", FutureWarning) | |
obj = obj[positive_indices] | |
keep[obj, ] = False | |
slobj[axis] = keep | |
new = arr[slobj] | |
if wrap: | |
return wrap(new) | |
else: | |
return new | |
def insert(arr, obj, values, axis=None): | |
""" | |
Insert values along the given axis before the given indices. | |
Parameters | |
---------- | |
arr : array_like | |
Input array. | |
obj : int, slice or sequence of ints | |
Object that defines the index or indices before which `values` is | |
inserted. | |
.. versionadded:: 1.8.0 | |
Support for multiple insertions when `obj` is a single scalar or a | |
sequence with one element (similar to calling insert multiple | |
times). | |
values : array_like | |
Values to insert into `arr`. If the type of `values` is different | |
from that of `arr`, `values` is converted to the type of `arr`. | |
`values` should be shaped so that ``arr[...,obj,...] = values`` | |
is legal. | |
axis : int, optional | |
Axis along which to insert `values`. If `axis` is None then `arr` | |
is flattened first. | |
Returns | |
------- | |
out : ndarray | |
A copy of `arr` with `values` inserted. Note that `insert` | |
does not occur in-place: a new array is returned. If | |
`axis` is None, `out` is a flattened array. | |
See Also | |
-------- | |
append : Append elements at the end of an array. | |
concatenate : Join a sequence of arrays together. | |
delete : Delete elements from an array. | |
Notes | |
----- | |
Note that for higher dimensional inserts `obj=0` behaves very different | |
from `obj=[0]` just like `arr[:,0,:] = values` is different from | |
`arr[:,[0],:] = values`. | |
Examples | |
-------- | |
>>> a = np.array([[1, 1], [2, 2], [3, 3]]) | |
>>> a | |
array([[1, 1], | |
[2, 2], | |
[3, 3]]) | |
>>> np.insert(a, 1, 5) | |
array([1, 5, 1, 2, 2, 3, 3]) | |
>>> np.insert(a, 1, 5, axis=1) | |
array([[1, 5, 1], | |
[2, 5, 2], | |
[3, 5, 3]]) | |
Difference between sequence and scalars: | |
>>> np.insert(a, [1], [[1],[2],[3]], axis=1) | |
array([[1, 1, 1], | |
[2, 2, 2], | |
[3, 3, 3]]) | |
>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), | |
... np.insert(a, [1], [[1],[2],[3]], axis=1)) | |
True | |
>>> b = a.flatten() | |
>>> b | |
array([1, 1, 2, 2, 3, 3]) | |
>>> np.insert(b, [2, 2], [5, 6]) | |
array([1, 1, 5, 6, 2, 2, 3, 3]) | |
>>> np.insert(b, slice(2, 4), [5, 6]) | |
array([1, 1, 5, 2, 6, 2, 3, 3]) | |
>>> np.insert(b, [2, 2], [7.13, False]) # type casting | |
array([1, 1, 7, 0, 2, 2, 3, 3]) | |
>>> x = np.arange(8).reshape(2, 4) | |
>>> idx = (1, 3) | |
>>> np.insert(x, idx, 999, axis=1) | |
array([[ 0, 999, 1, 2, 999, 3], | |
[ 4, 999, 5, 6, 999, 7]]) | |
""" | |
wrap = None | |
if type(arr) is not ndarray: | |
try: | |
wrap = arr.__array_wrap__ | |
except AttributeError: | |
pass | |
arr = asarray(arr) | |
ndim = arr.ndim | |
if axis is None: | |
if ndim != 1: | |
arr = arr.ravel() | |
ndim = arr.ndim | |
axis = ndim - 1 | |
else: | |
if ndim > 0 and (axis < -ndim or axis >= ndim): | |
raise IndexError( | |
"axis %i is out of bounds for an array of " | |
"dimension %i" % (axis, ndim)) | |
if (axis < 0): | |
axis += ndim | |
if (ndim == 0): | |
warnings.warn( | |
"in the future the special handling of scalars will be removed " | |
"from insert and raise an error", DeprecationWarning) | |
arr = arr.copy() | |
arr[...] = values | |
if wrap: | |
return wrap(arr) | |
else: | |
return arr | |
slobj = [slice(None)]*ndim | |
N = arr.shape[axis] | |
newshape = list(arr.shape) | |
if isinstance(obj, slice): | |
# turn it into a range object | |
indices = arange(*obj.indices(N), **{'dtype': intp}) | |
else: | |
# need to copy obj, because indices will be changed in-place | |
indices = np.array(obj) | |
if indices.dtype == bool: | |
# See also delete | |
warnings.warn( | |
"in the future insert will treat boolean arrays and " | |
"array-likes as a boolean index instead of casting it to " | |
"integer", FutureWarning) | |
indices = indices.astype(intp) | |
# Code after warning period: | |
#if obj.ndim != 1: | |
# raise ValueError('boolean array argument obj to insert ' | |
# 'must be one dimensional') | |
#indices = np.flatnonzero(obj) | |
elif indices.ndim > 1: | |
raise ValueError( | |
"index array argument obj to insert must be one dimensional " | |
"or scalar") | |
if indices.size == 1: | |
index = indices.item() | |
if index < -N or index > N: | |
raise IndexError( | |
"index %i is out of bounds for axis %i with " | |
"size %i" % (obj, axis, N)) | |
if (index < 0): | |
index += N | |
# There are some object array corner cases here, but we cannot avoid | |
# that: | |
values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype) | |
if indices.ndim == 0: | |
# broadcasting is very different here, since a[:,0,:] = ... behaves | |
# very different from a[:,[0],:] = ...! This changes values so that | |
# it works likes the second case. (here a[:,0:1,:]) | |
values = np.rollaxis(values, 0, (axis % values.ndim) + 1) | |
numnew = values.shape[axis] | |
newshape[axis] += numnew | |
new = empty(newshape, arr.dtype, arr.flags.fnc) | |
slobj[axis] = slice(None, index) | |
new[slobj] = arr[slobj] | |
slobj[axis] = slice(index, index+numnew) | |
new[slobj] = values | |
slobj[axis] = slice(index+numnew, None) | |
slobj2 = [slice(None)] * ndim | |
slobj2[axis] = slice(index, None) | |
new[slobj] = arr[slobj2] | |
if wrap: | |
return wrap(new) | |
return new | |
elif indices.size == 0 and not isinstance(obj, np.ndarray): | |
# Can safely cast the empty list to intp | |
indices = indices.astype(intp) | |
if not np.can_cast(indices, intp, 'same_kind'): | |
warnings.warn( | |
"using a non-integer array as obj in insert will result in an " | |
"error in the future", DeprecationWarning) | |
indices = indices.astype(intp) | |
indices[indices < 0] += N | |
numnew = len(indices) | |
order = indices.argsort(kind='mergesort') # stable sort | |
indices[order] += np.arange(numnew) | |
newshape[axis] += numnew | |
old_mask = ones(newshape[axis], dtype=bool) | |
old_mask[indices] = False | |
new = empty(newshape, arr.dtype, arr.flags.fnc) | |
slobj2 = [slice(None)]*ndim | |
slobj[axis] = indices | |
slobj2[axis] = old_mask | |
new[slobj] = values | |
new[slobj2] = arr | |
if wrap: | |
return wrap(new) | |
return new | |
def append(arr, values, axis=None): | |
""" | |
Append values to the end of an array. | |
Parameters | |
---------- | |
arr : array_like | |
Values are appended to a copy of this array. | |
values : array_like | |
These values are appended to a copy of `arr`. It must be of the | |
correct shape (the same shape as `arr`, excluding `axis`). If | |
`axis` is not specified, `values` can be any shape and will be | |
flattened before use. | |
axis : int, optional | |
The axis along which `values` are appended. If `axis` is not | |
given, both `arr` and `values` are flattened before use. | |
Returns | |
------- | |
append : ndarray | |
A copy of `arr` with `values` appended to `axis`. Note that | |
`append` does not occur in-place: a new array is allocated and | |
filled. If `axis` is None, `out` is a flattened array. | |
See Also | |
-------- | |
insert : Insert elements into an array. | |
delete : Delete elements from an array. | |
Examples | |
-------- | |
>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) | |
array([1, 2, 3, 4, 5, 6, 7, 8, 9]) | |
When `axis` is specified, `values` must have the correct shape. | |
>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) | |
array([[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]]) | |
>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) | |
Traceback (most recent call last): | |
... | |
ValueError: arrays must have same number of dimensions | |
""" | |
arr = asanyarray(arr) | |
if axis is None: | |
if arr.ndim != 1: | |
arr = arr.ravel() | |
values = ravel(values) | |
axis = arr.ndim-1 | |
return concatenate((arr, values), axis=axis) | |