tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/build
/lib.linux-x86_64-cpython-310
/numpy
/lib
/arraysetops.py
""" | |
Set operations for 1D numeric arrays based on sorting. | |
:Contains: | |
ediff1d, | |
unique, | |
intersect1d, | |
setxor1d, | |
in1d, | |
union1d, | |
setdiff1d | |
:Notes: | |
For floating point arrays, inaccurate results may appear due to usual round-off | |
and floating point comparison issues. | |
Speed could be gained in some operations by an implementation of | |
sort(), that can provide directly the permutation vectors, avoiding | |
thus calls to argsort(). | |
To do: Optionally return indices analogously to unique for all functions. | |
:Author: Robert Cimrman | |
""" | |
from __future__ import division, absolute_import, print_function | |
import numpy as np | |
__all__ = [ | |
'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique', | |
'in1d' | |
] | |
def ediff1d(ary, to_end=None, to_begin=None): | |
""" | |
The differences between consecutive elements of an array. | |
Parameters | |
---------- | |
ary : array_like | |
If necessary, will be flattened before the differences are taken. | |
to_end : array_like, optional | |
Number(s) to append at the end of the returned differences. | |
to_begin : array_like, optional | |
Number(s) to prepend at the beginning of the returned differences. | |
Returns | |
------- | |
ediff1d : ndarray | |
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. | |
See Also | |
-------- | |
diff, gradient | |
Notes | |
----- | |
When applied to masked arrays, this function drops the mask information | |
if the `to_begin` and/or `to_end` parameters are used. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 4, 7, 0]) | |
>>> np.ediff1d(x) | |
array([ 1, 2, 3, -7]) | |
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) | |
array([-99, 1, 2, 3, -7, 88, 99]) | |
The returned array is always 1D. | |
>>> y = [[1, 2, 4], [1, 6, 24]] | |
>>> np.ediff1d(y) | |
array([ 1, 2, -3, 5, 18]) | |
""" | |
ary = np.asanyarray(ary).flat | |
ed = ary[1:] - ary[:-1] | |
arrays = [ed] | |
if to_begin is not None: | |
arrays.insert(0, to_begin) | |
if to_end is not None: | |
arrays.append(to_end) | |
if len(arrays) != 1: | |
# We'll save ourselves a copy of a potentially large array in | |
# the common case where neither to_begin or to_end was given. | |
ed = np.hstack(arrays) | |
return ed | |
def unique(ar, return_index=False, return_inverse=False, return_counts=False): | |
""" | |
Find the unique elements of an array. | |
Returns the sorted unique elements of an array. There are two optional | |
outputs in addition to the unique elements: the indices of the input array | |
that give the unique values, and the indices of the unique array that | |
reconstruct the input array. | |
Parameters | |
---------- | |
ar : array_like | |
Input array. This will be flattened if it is not already 1-D. | |
return_index : bool, optional | |
If True, also return the indices of `ar` that result in the unique | |
array. | |
return_inverse : bool, optional | |
If True, also return the indices of the unique array that can be used | |
to reconstruct `ar`. | |
return_counts : bool, optional | |
.. versionadded:: 1.9.0 | |
If True, also return the number of times each unique value comes up | |
in `ar`. | |
Returns | |
------- | |
unique : ndarray | |
The sorted unique values. | |
unique_indices : ndarray, optional | |
The indices of the first occurrences of the unique values in the | |
(flattened) original array. Only provided if `return_index` is True. | |
unique_inverse : ndarray, optional | |
The indices to reconstruct the (flattened) original array from the | |
unique array. Only provided if `return_inverse` is True. | |
unique_counts : ndarray, optional | |
.. versionadded:: 1.9.0 | |
The number of times each of the unique values comes up in the | |
original array. Only provided if `return_counts` is True. | |
See Also | |
-------- | |
numpy.lib.arraysetops : Module with a number of other functions for | |
performing set operations on arrays. | |
Examples | |
-------- | |
>>> np.unique([1, 1, 2, 2, 3, 3]) | |
array([1, 2, 3]) | |
>>> a = np.array([[1, 1], [2, 3]]) | |
>>> np.unique(a) | |
array([1, 2, 3]) | |
Return the indices of the original array that give the unique values: | |
>>> a = np.array(['a', 'b', 'b', 'c', 'a']) | |
>>> u, indices = np.unique(a, return_index=True) | |
>>> u | |
array(['a', 'b', 'c'], | |
dtype='|S1') | |
>>> indices | |
array([0, 1, 3]) | |
>>> a[indices] | |
array(['a', 'b', 'c'], | |
dtype='|S1') | |
Reconstruct the input array from the unique values: | |
>>> a = np.array([1, 2, 6, 4, 2, 3, 2]) | |
>>> u, indices = np.unique(a, return_inverse=True) | |
>>> u | |
array([1, 2, 3, 4, 6]) | |
>>> indices | |
array([0, 1, 4, 3, 1, 2, 1]) | |
>>> u[indices] | |
array([1, 2, 6, 4, 2, 3, 2]) | |
""" | |
ar = np.asanyarray(ar).flatten() | |
optional_indices = return_index or return_inverse | |
optional_returns = optional_indices or return_counts | |
if ar.size == 0: | |
if not optional_returns: | |
ret = ar | |
else: | |
ret = (ar,) | |
if return_index: | |
ret += (np.empty(0, np.bool),) | |
if return_inverse: | |
ret += (np.empty(0, np.bool),) | |
if return_counts: | |
ret += (np.empty(0, np.intp),) | |
return ret | |
if optional_indices: | |
perm = ar.argsort(kind='mergesort' if return_index else 'quicksort') | |
aux = ar[perm] | |
else: | |
ar.sort() | |
aux = ar | |
flag = np.concatenate(([True], aux[1:] != aux[:-1])) | |
if not optional_returns: | |
ret = aux[flag] | |
else: | |
ret = (aux[flag],) | |
if return_index: | |
ret += (perm[flag],) | |
if return_inverse: | |
iflag = np.cumsum(flag) - 1 | |
iperm = perm.argsort() | |
ret += (np.take(iflag, iperm),) | |
if return_counts: | |
idx = np.concatenate(np.nonzero(flag) + ([ar.size],)) | |
ret += (np.diff(idx),) | |
return ret | |
def intersect1d(ar1, ar2, assume_unique=False): | |
""" | |
Find the intersection of two arrays. | |
Return the sorted, unique values that are in both of the input arrays. | |
Parameters | |
---------- | |
ar1, ar2 : array_like | |
Input arrays. | |
assume_unique : bool | |
If True, the input arrays are both assumed to be unique, which | |
can speed up the calculation. Default is False. | |
Returns | |
------- | |
intersect1d : ndarray | |
Sorted 1D array of common and unique elements. | |
See Also | |
-------- | |
numpy.lib.arraysetops : Module with a number of other functions for | |
performing set operations on arrays. | |
Examples | |
-------- | |
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1]) | |
array([1, 3]) | |
""" | |
if not assume_unique: | |
# Might be faster than unique( intersect1d( ar1, ar2 ) )? | |
ar1 = unique(ar1) | |
ar2 = unique(ar2) | |
aux = np.concatenate((ar1, ar2)) | |
aux.sort() | |
return aux[:-1][aux[1:] == aux[:-1]] | |
def setxor1d(ar1, ar2, assume_unique=False): | |
""" | |
Find the set exclusive-or of two arrays. | |
Return the sorted, unique values that are in only one (not both) of the | |
input arrays. | |
Parameters | |
---------- | |
ar1, ar2 : array_like | |
Input arrays. | |
assume_unique : bool | |
If True, the input arrays are both assumed to be unique, which | |
can speed up the calculation. Default is False. | |
Returns | |
------- | |
setxor1d : ndarray | |
Sorted 1D array of unique values that are in only one of the input | |
arrays. | |
Examples | |
-------- | |
>>> a = np.array([1, 2, 3, 2, 4]) | |
>>> b = np.array([2, 3, 5, 7, 5]) | |
>>> np.setxor1d(a,b) | |
array([1, 4, 5, 7]) | |
""" | |
if not assume_unique: | |
ar1 = unique(ar1) | |
ar2 = unique(ar2) | |
aux = np.concatenate((ar1, ar2)) | |
if aux.size == 0: | |
return aux | |
aux.sort() | |
# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 | |
flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) | |
# flag2 = ediff1d( flag ) == 0 | |
flag2 = flag[1:] == flag[:-1] | |
return aux[flag2] | |
def in1d(ar1, ar2, assume_unique=False, invert=False): | |
""" | |
Test whether each element of a 1-D array is also present in a second array. | |
Returns a boolean array the same length as `ar1` that is True | |
where an element of `ar1` is in `ar2` and False otherwise. | |
Parameters | |
---------- | |
ar1 : (M,) array_like | |
Input array. | |
ar2 : array_like | |
The values against which to test each value of `ar1`. | |
assume_unique : bool, optional | |
If True, the input arrays are both assumed to be unique, which | |
can speed up the calculation. Default is False. | |
invert : bool, optional | |
If True, the values in the returned array are inverted (that is, | |
False where an element of `ar1` is in `ar2` and True otherwise). | |
Default is False. ``np.in1d(a, b, invert=True)`` is equivalent | |
to (but is faster than) ``np.invert(in1d(a, b))``. | |
.. versionadded:: 1.8.0 | |
Returns | |
------- | |
in1d : (M,) ndarray, bool | |
The values `ar1[in1d]` are in `ar2`. | |
See Also | |
-------- | |
numpy.lib.arraysetops : Module with a number of other functions for | |
performing set operations on arrays. | |
Notes | |
----- | |
`in1d` can be considered as an element-wise function version of the | |
python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly | |
equivalent to ``np.array([item in b for item in a])``. | |
.. versionadded:: 1.4.0 | |
Examples | |
-------- | |
>>> test = np.array([0, 1, 2, 5, 0]) | |
>>> states = [0, 2] | |
>>> mask = np.in1d(test, states) | |
>>> mask | |
array([ True, False, True, False, True], dtype=bool) | |
>>> test[mask] | |
array([0, 2, 0]) | |
>>> mask = np.in1d(test, states, invert=True) | |
>>> mask | |
array([False, True, False, True, False], dtype=bool) | |
>>> test[mask] | |
array([1, 5]) | |
""" | |
# Ravel both arrays, behavior for the first array could be different | |
ar1 = np.asarray(ar1).ravel() | |
ar2 = np.asarray(ar2).ravel() | |
# This code is significantly faster when the condition is satisfied. | |
if len(ar2) < 10 * len(ar1) ** 0.145: | |
if invert: | |
mask = np.ones(len(ar1), dtype=np.bool) | |
for a in ar2: | |
mask &= (ar1 != a) | |
else: | |
mask = np.zeros(len(ar1), dtype=np.bool) | |
for a in ar2: | |
mask |= (ar1 == a) | |
return mask | |
# Otherwise use sorting | |
if not assume_unique: | |
ar1, rev_idx = np.unique(ar1, return_inverse=True) | |
ar2 = np.unique(ar2) | |
ar = np.concatenate((ar1, ar2)) | |
# We need this to be a stable sort, so always use 'mergesort' | |
# here. The values from the first array should always come before | |
# the values from the second array. | |
order = ar.argsort(kind='mergesort') | |
sar = ar[order] | |
if invert: | |
bool_ar = (sar[1:] != sar[:-1]) | |
else: | |
bool_ar = (sar[1:] == sar[:-1]) | |
flag = np.concatenate((bool_ar, [invert])) | |
indx = order.argsort(kind='mergesort')[:len(ar1)] | |
if assume_unique: | |
return flag[indx] | |
else: | |
return flag[indx][rev_idx] | |
def union1d(ar1, ar2): | |
""" | |
Find the union of two arrays. | |
Return the unique, sorted array of values that are in either of the two | |
input arrays. | |
Parameters | |
---------- | |
ar1, ar2 : array_like | |
Input arrays. They are flattened if they are not already 1D. | |
Returns | |
------- | |
union1d : ndarray | |
Unique, sorted union of the input arrays. | |
See Also | |
-------- | |
numpy.lib.arraysetops : Module with a number of other functions for | |
performing set operations on arrays. | |
Examples | |
-------- | |
>>> np.union1d([-1, 0, 1], [-2, 0, 2]) | |
array([-2, -1, 0, 1, 2]) | |
""" | |
return unique(np.concatenate((ar1, ar2))) | |
def setdiff1d(ar1, ar2, assume_unique=False): | |
""" | |
Find the set difference of two arrays. | |
Return the sorted, unique values in `ar1` that are not in `ar2`. | |
Parameters | |
---------- | |
ar1 : array_like | |
Input array. | |
ar2 : array_like | |
Input comparison array. | |
assume_unique : bool | |
If True, the input arrays are both assumed to be unique, which | |
can speed up the calculation. Default is False. | |
Returns | |
------- | |
setdiff1d : ndarray | |
Sorted 1D array of values in `ar1` that are not in `ar2`. | |
See Also | |
-------- | |
numpy.lib.arraysetops : Module with a number of other functions for | |
performing set operations on arrays. | |
Examples | |
-------- | |
>>> a = np.array([1, 2, 3, 2, 4, 1]) | |
>>> b = np.array([3, 4, 5, 6]) | |
>>> np.setdiff1d(a, b) | |
array([1, 2]) | |
""" | |
if not assume_unique: | |
ar1 = unique(ar1) | |
ar2 = unique(ar2) | |
aux = in1d(ar1, ar2, assume_unique=True) | |
if aux.size == 0: | |
return aux | |
else: | |
return np.asarray(ar1)[aux == 0] | |