tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/build
/lib.linux-x86_64-cpython-310
/numpy
/lib
/arraypad.py
""" | |
The arraypad module contains a group of functions to pad values onto the edges | |
of an n-dimensional array. | |
""" | |
from __future__ import division, absolute_import, print_function | |
import numpy as np | |
from numpy.compat import long | |
__all__ = ['pad'] | |
############################################################################### | |
# Private utility functions. | |
def _arange_ndarray(arr, shape, axis, reverse=False): | |
""" | |
Create an ndarray of `shape` with increments along specified `axis` | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
shape : tuple of ints | |
Shape of desired array. Should be equivalent to `arr.shape` except | |
`shape[axis]` which may have any positive value. | |
axis : int | |
Axis to increment along. | |
reverse : bool | |
If False, increment in a positive fashion from 1 to `shape[axis]`, | |
inclusive. If True, the bounds are the same but the order reversed. | |
Returns | |
------- | |
padarr : ndarray | |
Output array sized to pad `arr` along `axis`, with linear range from | |
1 to `shape[axis]` along specified `axis`. | |
Notes | |
----- | |
The range is deliberately 1-indexed for this specific use case. Think of | |
this algorithm as broadcasting `np.arange` to a single `axis` of an | |
arbitrarily shaped ndarray. | |
""" | |
initshape = tuple(1 if i != axis else shape[axis] | |
for (i, x) in enumerate(arr.shape)) | |
if not reverse: | |
padarr = np.arange(1, shape[axis] + 1) | |
else: | |
padarr = np.arange(shape[axis], 0, -1) | |
padarr = padarr.reshape(initshape) | |
for i, dim in enumerate(shape): | |
if padarr.shape[i] != dim: | |
padarr = padarr.repeat(dim, axis=i) | |
return padarr | |
def _round_ifneeded(arr, dtype): | |
""" | |
Rounds arr inplace if destination dtype is integer. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array. | |
dtype : dtype | |
The dtype of the destination array. | |
""" | |
if np.issubdtype(dtype, np.integer): | |
arr.round(out=arr) | |
def _prepend_const(arr, pad_amt, val, axis=-1): | |
""" | |
Prepend constant `val` along `axis` of `arr`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to prepend. | |
val : scalar | |
Constant value to use. For best results should be of type `arr.dtype`; | |
if not `arr.dtype` will be cast to `arr.dtype`. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` constant `val` prepended along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
padshape = tuple(x if i != axis else pad_amt | |
for (i, x) in enumerate(arr.shape)) | |
if val == 0: | |
return np.concatenate((np.zeros(padshape, dtype=arr.dtype), arr), | |
axis=axis) | |
else: | |
return np.concatenate(((np.zeros(padshape) + val).astype(arr.dtype), | |
arr), axis=axis) | |
def _append_const(arr, pad_amt, val, axis=-1): | |
""" | |
Append constant `val` along `axis` of `arr`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to append. | |
val : scalar | |
Constant value to use. For best results should be of type `arr.dtype`; | |
if not `arr.dtype` will be cast to `arr.dtype`. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` constant `val` appended along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
padshape = tuple(x if i != axis else pad_amt | |
for (i, x) in enumerate(arr.shape)) | |
if val == 0: | |
return np.concatenate((arr, np.zeros(padshape, dtype=arr.dtype)), | |
axis=axis) | |
else: | |
return np.concatenate( | |
(arr, (np.zeros(padshape) + val).astype(arr.dtype)), axis=axis) | |
def _prepend_edge(arr, pad_amt, axis=-1): | |
""" | |
Prepend `pad_amt` to `arr` along `axis` by extending edge values. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to prepend. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, extended by `pad_amt` edge values appended along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
edge_slice = tuple(slice(None) if i != axis else 0 | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
edge_arr = arr[edge_slice].reshape(pad_singleton) | |
return np.concatenate((edge_arr.repeat(pad_amt, axis=axis), arr), | |
axis=axis) | |
def _append_edge(arr, pad_amt, axis=-1): | |
""" | |
Append `pad_amt` to `arr` along `axis` by extending edge values. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to append. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, extended by `pad_amt` edge values prepended along | |
`axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
edge_slice = tuple(slice(None) if i != axis else arr.shape[axis] - 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
edge_arr = arr[edge_slice].reshape(pad_singleton) | |
return np.concatenate((arr, edge_arr.repeat(pad_amt, axis=axis)), | |
axis=axis) | |
def _prepend_ramp(arr, pad_amt, end, axis=-1): | |
""" | |
Prepend linear ramp along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to prepend. | |
end : scalar | |
Constal value to use. For best results should be of type `arr.dtype`; | |
if not `arr.dtype` will be cast to `arr.dtype`. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values prepended along `axis`. The | |
prepended region ramps linearly from the edge value to `end`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Generate shape for final concatenated array | |
padshape = tuple(x if i != axis else pad_amt | |
for (i, x) in enumerate(arr.shape)) | |
# Generate an n-dimensional array incrementing along `axis` | |
ramp_arr = _arange_ndarray(arr, padshape, axis, | |
reverse=True).astype(np.float64) | |
# Appropriate slicing to extract n-dimensional edge along `axis` | |
edge_slice = tuple(slice(None) if i != axis else 0 | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract edge, reshape to original rank, and extend along `axis` | |
edge_pad = arr[edge_slice].reshape(pad_singleton).repeat(pad_amt, axis) | |
# Linear ramp | |
slope = (end - edge_pad) / float(pad_amt) | |
ramp_arr = ramp_arr * slope | |
ramp_arr += edge_pad | |
_round_ifneeded(ramp_arr, arr.dtype) | |
# Ramp values will most likely be float, cast them to the same type as arr | |
return np.concatenate((ramp_arr.astype(arr.dtype), arr), axis=axis) | |
def _append_ramp(arr, pad_amt, end, axis=-1): | |
""" | |
Append linear ramp along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to append. | |
end : scalar | |
Constal value to use. For best results should be of type `arr.dtype`; | |
if not `arr.dtype` will be cast to `arr.dtype`. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values appended along `axis`. The | |
appended region ramps linearly from the edge value to `end`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Generate shape for final concatenated array | |
padshape = tuple(x if i != axis else pad_amt | |
for (i, x) in enumerate(arr.shape)) | |
# Generate an n-dimensional array incrementing along `axis` | |
ramp_arr = _arange_ndarray(arr, padshape, axis, | |
reverse=False).astype(np.float64) | |
# Slice a chunk from the edge to calculate stats on | |
edge_slice = tuple(slice(None) if i != axis else -1 | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract edge, reshape to original rank, and extend along `axis` | |
edge_pad = arr[edge_slice].reshape(pad_singleton).repeat(pad_amt, axis) | |
# Linear ramp | |
slope = (end - edge_pad) / float(pad_amt) | |
ramp_arr = ramp_arr * slope | |
ramp_arr += edge_pad | |
_round_ifneeded(ramp_arr, arr.dtype) | |
# Ramp values will most likely be float, cast them to the same type as arr | |
return np.concatenate((arr, ramp_arr.astype(arr.dtype)), axis=axis) | |
def _prepend_max(arr, pad_amt, num, axis=-1): | |
""" | |
Prepend `pad_amt` maximum values along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to prepend. | |
num : int | |
Depth into `arr` along `axis` to calculate maximum. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values appended along `axis`. The | |
prepended region is the maximum of the first `num` values along | |
`axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _prepend_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
max_slice = tuple(slice(None) if i != axis else slice(num) | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate max, reshape to add singleton dimension back | |
max_chunk = arr[max_slice].max(axis=axis).reshape(pad_singleton) | |
# Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate((max_chunk.repeat(pad_amt, axis=axis), arr), | |
axis=axis) | |
def _append_max(arr, pad_amt, num, axis=-1): | |
""" | |
Pad one `axis` of `arr` with the maximum of the last `num` elements. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to append. | |
num : int | |
Depth into `arr` along `axis` to calculate maximum. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values appended along `axis`. The | |
appended region is the maximum of the final `num` values along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _append_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
end = arr.shape[axis] - 1 | |
if num is not None: | |
max_slice = tuple( | |
slice(None) if i != axis else slice(end, end - num, -1) | |
for (i, x) in enumerate(arr.shape)) | |
else: | |
max_slice = tuple(slice(None) for x in arr.shape) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate max, reshape to add singleton dimension back | |
max_chunk = arr[max_slice].max(axis=axis).reshape(pad_singleton) | |
# Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate((arr, max_chunk.repeat(pad_amt, axis=axis)), | |
axis=axis) | |
def _prepend_mean(arr, pad_amt, num, axis=-1): | |
""" | |
Prepend `pad_amt` mean values along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to prepend. | |
num : int | |
Depth into `arr` along `axis` to calculate mean. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values prepended along `axis`. The | |
prepended region is the mean of the first `num` values along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _prepend_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
mean_slice = tuple(slice(None) if i != axis else slice(num) | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate mean, reshape to add singleton dimension back | |
mean_chunk = arr[mean_slice].mean(axis).reshape(pad_singleton) | |
_round_ifneeded(mean_chunk, arr.dtype) | |
# Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate((mean_chunk.repeat(pad_amt, axis).astype(arr.dtype), | |
arr), axis=axis) | |
def _append_mean(arr, pad_amt, num, axis=-1): | |
""" | |
Append `pad_amt` mean values along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to append. | |
num : int | |
Depth into `arr` along `axis` to calculate mean. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values appended along `axis`. The | |
appended region is the maximum of the final `num` values along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _append_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
end = arr.shape[axis] - 1 | |
if num is not None: | |
mean_slice = tuple( | |
slice(None) if i != axis else slice(end, end - num, -1) | |
for (i, x) in enumerate(arr.shape)) | |
else: | |
mean_slice = tuple(slice(None) for x in arr.shape) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate mean, reshape to add singleton dimension back | |
mean_chunk = arr[mean_slice].mean(axis=axis).reshape(pad_singleton) | |
_round_ifneeded(mean_chunk, arr.dtype) | |
# Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate( | |
(arr, mean_chunk.repeat(pad_amt, axis).astype(arr.dtype)), axis=axis) | |
def _prepend_med(arr, pad_amt, num, axis=-1): | |
""" | |
Prepend `pad_amt` median values along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to prepend. | |
num : int | |
Depth into `arr` along `axis` to calculate median. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values prepended along `axis`. The | |
prepended region is the median of the first `num` values along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _prepend_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
med_slice = tuple(slice(None) if i != axis else slice(num) | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate median, reshape to add singleton dimension back | |
med_chunk = np.median(arr[med_slice], axis=axis).reshape(pad_singleton) | |
_round_ifneeded(med_chunk, arr.dtype) | |
# Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate( | |
(med_chunk.repeat(pad_amt, axis).astype(arr.dtype), arr), axis=axis) | |
def _append_med(arr, pad_amt, num, axis=-1): | |
""" | |
Append `pad_amt` median values along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to append. | |
num : int | |
Depth into `arr` along `axis` to calculate median. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values appended along `axis`. The | |
appended region is the median of the final `num` values along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _append_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
end = arr.shape[axis] - 1 | |
if num is not None: | |
med_slice = tuple( | |
slice(None) if i != axis else slice(end, end - num, -1) | |
for (i, x) in enumerate(arr.shape)) | |
else: | |
med_slice = tuple(slice(None) for x in arr.shape) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate median, reshape to add singleton dimension back | |
med_chunk = np.median(arr[med_slice], axis=axis).reshape(pad_singleton) | |
_round_ifneeded(med_chunk, arr.dtype) | |
# Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate( | |
(arr, med_chunk.repeat(pad_amt, axis).astype(arr.dtype)), axis=axis) | |
def _prepend_min(arr, pad_amt, num, axis=-1): | |
""" | |
Prepend `pad_amt` minimum values along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to prepend. | |
num : int | |
Depth into `arr` along `axis` to calculate minimum. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values prepended along `axis`. The | |
prepended region is the minimum of the first `num` values along | |
`axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _prepend_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
min_slice = tuple(slice(None) if i != axis else slice(num) | |
for (i, x) in enumerate(arr.shape)) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate min, reshape to add singleton dimension back | |
min_chunk = arr[min_slice].min(axis=axis).reshape(pad_singleton) | |
# Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate((min_chunk.repeat(pad_amt, axis=axis), arr), | |
axis=axis) | |
def _append_min(arr, pad_amt, num, axis=-1): | |
""" | |
Append `pad_amt` median values along `axis`. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : int | |
Amount of padding to append. | |
num : int | |
Depth into `arr` along `axis` to calculate minimum. | |
Range: [1, `arr.shape[axis]`] or None (entire axis) | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt` values appended along `axis`. The | |
appended region is the minimum of the final `num` values along `axis`. | |
""" | |
if pad_amt == 0: | |
return arr | |
# Equivalent to edge padding for single value, so do that instead | |
if num == 1: | |
return _append_edge(arr, pad_amt, axis) | |
# Use entire array if `num` is too large | |
if num is not None: | |
if num >= arr.shape[axis]: | |
num = None | |
# Slice a chunk from the edge to calculate stats on | |
end = arr.shape[axis] - 1 | |
if num is not None: | |
min_slice = tuple( | |
slice(None) if i != axis else slice(end, end - num, -1) | |
for (i, x) in enumerate(arr.shape)) | |
else: | |
min_slice = tuple(slice(None) for x in arr.shape) | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
# Extract slice, calculate min, reshape to add singleton dimension back | |
min_chunk = arr[min_slice].min(axis=axis).reshape(pad_singleton) | |
# Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt` | |
return np.concatenate((arr, min_chunk.repeat(pad_amt, axis=axis)), | |
axis=axis) | |
def _pad_ref(arr, pad_amt, method, axis=-1): | |
""" | |
Pad `axis` of `arr` by reflection. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : tuple of ints, length 2 | |
Padding to (prepend, append) along `axis`. | |
method : str | |
Controls method of reflection; options are 'even' or 'odd'. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt[0]` values prepended and `pad_amt[1]` | |
values appended along `axis`. Both regions are padded with reflected | |
values from the original array. | |
Notes | |
----- | |
This algorithm does not pad with repetition, i.e. the edges are not | |
repeated in the reflection. For that behavior, use `method='symmetric'`. | |
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a | |
single function, lest the indexing tricks in non-integer multiples of the | |
original shape would violate repetition in the final iteration. | |
""" | |
# Implicit booleanness to test for zero (or None) in any scalar type | |
if pad_amt[0] == 0 and pad_amt[1] == 0: | |
return arr | |
########################################################################## | |
# Prepended region | |
# Slice off a reverse indexed chunk from near edge to pad `arr` before | |
ref_slice = tuple(slice(None) if i != axis else slice(pad_amt[0], 0, -1) | |
for (i, x) in enumerate(arr.shape)) | |
ref_chunk1 = arr[ref_slice] | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
if pad_amt[0] == 1: | |
ref_chunk1 = ref_chunk1.reshape(pad_singleton) | |
# Memory/computationally more expensive, only do this if `method='odd'` | |
if 'odd' in method and pad_amt[0] > 0: | |
edge_slice1 = tuple(slice(None) if i != axis else 0 | |
for (i, x) in enumerate(arr.shape)) | |
edge_chunk = arr[edge_slice1].reshape(pad_singleton) | |
ref_chunk1 = 2 * edge_chunk - ref_chunk1 | |
del edge_chunk | |
########################################################################## | |
# Appended region | |
# Slice off a reverse indexed chunk from far edge to pad `arr` after | |
start = arr.shape[axis] - pad_amt[1] - 1 | |
end = arr.shape[axis] - 1 | |
ref_slice = tuple(slice(None) if i != axis else slice(start, end) | |
for (i, x) in enumerate(arr.shape)) | |
rev_idx = tuple(slice(None) if i != axis else slice(None, None, -1) | |
for (i, x) in enumerate(arr.shape)) | |
ref_chunk2 = arr[ref_slice][rev_idx] | |
if pad_amt[1] == 1: | |
ref_chunk2 = ref_chunk2.reshape(pad_singleton) | |
if 'odd' in method: | |
edge_slice2 = tuple(slice(None) if i != axis else -1 | |
for (i, x) in enumerate(arr.shape)) | |
edge_chunk = arr[edge_slice2].reshape(pad_singleton) | |
ref_chunk2 = 2 * edge_chunk - ref_chunk2 | |
del edge_chunk | |
# Concatenate `arr` with both chunks, extending along `axis` | |
return np.concatenate((ref_chunk1, arr, ref_chunk2), axis=axis) | |
def _pad_sym(arr, pad_amt, method, axis=-1): | |
""" | |
Pad `axis` of `arr` by symmetry. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : tuple of ints, length 2 | |
Padding to (prepend, append) along `axis`. | |
method : str | |
Controls method of symmetry; options are 'even' or 'odd'. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt[0]` values prepended and `pad_amt[1]` | |
values appended along `axis`. Both regions are padded with symmetric | |
values from the original array. | |
Notes | |
----- | |
This algorithm DOES pad with repetition, i.e. the edges are repeated. | |
For a method that does not repeat edges, use `method='reflect'`. | |
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a | |
single function, lest the indexing tricks in non-integer multiples of the | |
original shape would violate repetition in the final iteration. | |
""" | |
# Implicit booleanness to test for zero (or None) in any scalar type | |
if pad_amt[0] == 0 and pad_amt[1] == 0: | |
return arr | |
########################################################################## | |
# Prepended region | |
# Slice off a reverse indexed chunk from near edge to pad `arr` before | |
sym_slice = tuple(slice(None) if i != axis else slice(0, pad_amt[0]) | |
for (i, x) in enumerate(arr.shape)) | |
rev_idx = tuple(slice(None) if i != axis else slice(None, None, -1) | |
for (i, x) in enumerate(arr.shape)) | |
sym_chunk1 = arr[sym_slice][rev_idx] | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
if pad_amt[0] == 1: | |
sym_chunk1 = sym_chunk1.reshape(pad_singleton) | |
# Memory/computationally more expensive, only do this if `method='odd'` | |
if 'odd' in method and pad_amt[0] > 0: | |
edge_slice1 = tuple(slice(None) if i != axis else 0 | |
for (i, x) in enumerate(arr.shape)) | |
edge_chunk = arr[edge_slice1].reshape(pad_singleton) | |
sym_chunk1 = 2 * edge_chunk - sym_chunk1 | |
del edge_chunk | |
########################################################################## | |
# Appended region | |
# Slice off a reverse indexed chunk from far edge to pad `arr` after | |
start = arr.shape[axis] - pad_amt[1] | |
end = arr.shape[axis] | |
sym_slice = tuple(slice(None) if i != axis else slice(start, end) | |
for (i, x) in enumerate(arr.shape)) | |
sym_chunk2 = arr[sym_slice][rev_idx] | |
if pad_amt[1] == 1: | |
sym_chunk2 = sym_chunk2.reshape(pad_singleton) | |
if 'odd' in method: | |
edge_slice2 = tuple(slice(None) if i != axis else -1 | |
for (i, x) in enumerate(arr.shape)) | |
edge_chunk = arr[edge_slice2].reshape(pad_singleton) | |
sym_chunk2 = 2 * edge_chunk - sym_chunk2 | |
del edge_chunk | |
# Concatenate `arr` with both chunks, extending along `axis` | |
return np.concatenate((sym_chunk1, arr, sym_chunk2), axis=axis) | |
def _pad_wrap(arr, pad_amt, axis=-1): | |
""" | |
Pad `axis` of `arr` via wrapping. | |
Parameters | |
---------- | |
arr : ndarray | |
Input array of arbitrary shape. | |
pad_amt : tuple of ints, length 2 | |
Padding to (prepend, append) along `axis`. | |
axis : int | |
Axis along which to pad `arr`. | |
Returns | |
------- | |
padarr : ndarray | |
Output array, with `pad_amt[0]` values prepended and `pad_amt[1]` | |
values appended along `axis`. Both regions are padded wrapped values | |
from the opposite end of `axis`. | |
Notes | |
----- | |
This method of padding is also known as 'tile' or 'tiling'. | |
The modes 'reflect', 'symmetric', and 'wrap' must be padded with a | |
single function, lest the indexing tricks in non-integer multiples of the | |
original shape would violate repetition in the final iteration. | |
""" | |
# Implicit booleanness to test for zero (or None) in any scalar type | |
if pad_amt[0] == 0 and pad_amt[1] == 0: | |
return arr | |
########################################################################## | |
# Prepended region | |
# Slice off a reverse indexed chunk from near edge to pad `arr` before | |
start = arr.shape[axis] - pad_amt[0] | |
end = arr.shape[axis] | |
wrap_slice = tuple(slice(None) if i != axis else slice(start, end) | |
for (i, x) in enumerate(arr.shape)) | |
wrap_chunk1 = arr[wrap_slice] | |
# Shape to restore singleton dimension after slicing | |
pad_singleton = tuple(x if i != axis else 1 | |
for (i, x) in enumerate(arr.shape)) | |
if pad_amt[0] == 1: | |
wrap_chunk1 = wrap_chunk1.reshape(pad_singleton) | |
########################################################################## | |
# Appended region | |
# Slice off a reverse indexed chunk from far edge to pad `arr` after | |
wrap_slice = tuple(slice(None) if i != axis else slice(0, pad_amt[1]) | |
for (i, x) in enumerate(arr.shape)) | |
wrap_chunk2 = arr[wrap_slice] | |
if pad_amt[1] == 1: | |
wrap_chunk2 = wrap_chunk2.reshape(pad_singleton) | |
# Concatenate `arr` with both chunks, extending along `axis` | |
return np.concatenate((wrap_chunk1, arr, wrap_chunk2), axis=axis) | |
def _normalize_shape(narray, shape): | |
""" | |
Private function which does some checks and normalizes the possibly | |
much simpler representations of 'pad_width', 'stat_length', | |
'constant_values', 'end_values'. | |
Parameters | |
---------- | |
narray : ndarray | |
Input ndarray | |
shape : {sequence, int}, optional | |
The width of padding (pad_width) or the number of elements on the | |
edge of the narray used for statistics (stat_length). | |
((before_1, after_1), ... (before_N, after_N)) unique number of | |
elements for each axis where `N` is rank of `narray`. | |
((before, after),) yields same before and after constants for each | |
axis. | |
(constant,) or int is a shortcut for before = after = constant for | |
all axes. | |
Returns | |
------- | |
_normalize_shape : tuple of tuples | |
int => ((int, int), (int, int), ...) | |
[[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...) | |
((int1, int2), (int3, int4), ...) => no change | |
[[int1, int2], ] => ((int1, int2), (int1, int2), ...) | |
((int1, int2), ) => ((int1, int2), (int1, int2), ...) | |
[[int , ], ] => ((int, int), (int, int), ...) | |
((int , ), ) => ((int, int), (int, int), ...) | |
""" | |
normshp = None | |
shapelen = len(np.shape(narray)) | |
if (isinstance(shape, int)) or shape is None: | |
normshp = ((shape, shape), ) * shapelen | |
elif (isinstance(shape, (tuple, list)) | |
and isinstance(shape[0], (tuple, list)) | |
and len(shape) == shapelen): | |
normshp = shape | |
for i in normshp: | |
if len(i) != 2: | |
fmt = "Unable to create correctly shaped tuple from %s" | |
raise ValueError(fmt % (normshp,)) | |
elif (isinstance(shape, (tuple, list)) | |
and isinstance(shape[0], (int, float, long)) | |
and len(shape) == 1): | |
normshp = ((shape[0], shape[0]), ) * shapelen | |
elif (isinstance(shape, (tuple, list)) | |
and isinstance(shape[0], (int, float, long)) | |
and len(shape) == 2): | |
normshp = (shape, ) * shapelen | |
if normshp is None: | |
fmt = "Unable to create correctly shaped tuple from %s" | |
raise ValueError(fmt % (shape,)) | |
return normshp | |
def _validate_lengths(narray, number_elements): | |
""" | |
Private function which does some checks and reformats pad_width and | |
stat_length using _normalize_shape. | |
Parameters | |
---------- | |
narray : ndarray | |
Input ndarray | |
number_elements : {sequence, int}, optional | |
The width of padding (pad_width) or the number of elements on the edge | |
of the narray used for statistics (stat_length). | |
((before_1, after_1), ... (before_N, after_N)) unique number of | |
elements for each axis. | |
((before, after),) yields same before and after constants for each | |
axis. | |
(constant,) or int is a shortcut for before = after = constant for all | |
axes. | |
Returns | |
------- | |
_validate_lengths : tuple of tuples | |
int => ((int, int), (int, int), ...) | |
[[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...) | |
((int1, int2), (int3, int4), ...) => no change | |
[[int1, int2], ] => ((int1, int2), (int1, int2), ...) | |
((int1, int2), ) => ((int1, int2), (int1, int2), ...) | |
[[int , ], ] => ((int, int), (int, int), ...) | |
((int , ), ) => ((int, int), (int, int), ...) | |
""" | |
normshp = _normalize_shape(narray, number_elements) | |
for i in normshp: | |
chk = [1 if x is None else x for x in i] | |
chk = [1 if x >= 0 else -1 for x in chk] | |
if (chk[0] < 0) or (chk[1] < 0): | |
fmt = "%s cannot contain negative values." | |
raise ValueError(fmt % (number_elements,)) | |
return normshp | |
############################################################################### | |
# Public functions | |
def pad(array, pad_width, mode=None, **kwargs): | |
""" | |
Pads an array. | |
Parameters | |
---------- | |
array : array_like of rank N | |
Input array | |
pad_width : {sequence, int} | |
Number of values padded to the edges of each axis. | |
((before_1, after_1), ... (before_N, after_N)) unique pad widths | |
for each axis. | |
((before, after),) yields same before and after pad for each axis. | |
(pad,) or int is a shortcut for before = after = pad width for all | |
axes. | |
mode : {str, function} | |
One of the following string values or a user supplied function. | |
'constant' | |
Pads with a constant value. | |
'edge' | |
Pads with the edge values of array. | |
'linear_ramp' | |
Pads with the linear ramp between end_value and the | |
array edge value. | |
'maximum' | |
Pads with the maximum value of all or part of the | |
vector along each axis. | |
'mean' | |
Pads with the mean value of all or part of the | |
vector along each axis. | |
'median' | |
Pads with the median value of all or part of the | |
vector along each axis. | |
'minimum' | |
Pads with the minimum value of all or part of the | |
vector along each axis. | |
'reflect' | |
Pads with the reflection of the vector mirrored on | |
the first and last values of the vector along each | |
axis. | |
'symmetric' | |
Pads with the reflection of the vector mirrored | |
along the edge of the array. | |
'wrap' | |
Pads with the wrap of the vector along the axis. | |
The first values are used to pad the end and the | |
end values are used to pad the beginning. | |
<function> | |
Padding function, see Notes. | |
stat_length : {sequence, int}, optional | |
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of | |
values at edge of each axis used to calculate the statistic value. | |
((before_1, after_1), ... (before_N, after_N)) unique statistic | |
lengths for each axis. | |
((before, after),) yields same before and after statistic lengths | |
for each axis. | |
(stat_length,) or int is a shortcut for before = after = statistic | |
length for all axes. | |
Default is ``None``, to use the entire axis. | |
constant_values : {sequence, int}, optional | |
Used in 'constant'. The values to set the padded values for each | |
axis. | |
((before_1, after_1), ... (before_N, after_N)) unique pad constants | |
for each axis. | |
((before, after),) yields same before and after constants for each | |
axis. | |
(constant,) or int is a shortcut for before = after = constant for | |
all axes. | |
Default is 0. | |
end_values : {sequence, int}, optional | |
Used in 'linear_ramp'. The values used for the ending value of the | |
linear_ramp and that will form the edge of the padded array. | |
((before_1, after_1), ... (before_N, after_N)) unique end values | |
for each axis. | |
((before, after),) yields same before and after end values for each | |
axis. | |
(constant,) or int is a shortcut for before = after = end value for | |
all axes. | |
Default is 0. | |
reflect_type : str {'even', 'odd'}, optional | |
Used in 'reflect', and 'symmetric'. The 'even' style is the | |
default with an unaltered reflection around the edge value. For | |
the 'odd' style, the extented part of the array is created by | |
subtracting the reflected values from two times the edge value. | |
Returns | |
------- | |
pad : ndarray | |
Padded array of rank equal to `array` with shape increased | |
according to `pad_width`. | |
Notes | |
----- | |
.. versionadded:: 1.7.0 | |
For an array with rank greater than 1, some of the padding of later | |
axes is calculated from padding of previous axes. This is easiest to | |
think about with a rank 2 array where the corners of the padded array | |
are calculated by using padded values from the first axis. | |
The padding function, if used, should return a rank 1 array equal in | |
length to the vector argument with padded values replaced. It has the | |
following signature:: | |
padding_func(vector, iaxis_pad_width, iaxis, **kwargs) | |
where | |
vector : ndarray | |
A rank 1 array already padded with zeros. Padded values are | |
vector[:pad_tuple[0]] and vector[-pad_tuple[1]:]. | |
iaxis_pad_width : tuple | |
A 2-tuple of ints, iaxis_pad_width[0] represents the number of | |
values padded at the beginning of vector where | |
iaxis_pad_width[1] represents the number of values padded at | |
the end of vector. | |
iaxis : int | |
The axis currently being calculated. | |
kwargs : misc | |
Any keyword arguments the function requires. | |
Examples | |
-------- | |
>>> a = [1, 2, 3, 4, 5] | |
>>> np.lib.pad(a, (2,3), 'constant', constant_values=(4,6)) | |
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6]) | |
>>> np.lib.pad(a, (2,3), 'edge') | |
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5]) | |
>>> np.lib.pad(a, (2,3), 'linear_ramp', end_values=(5,-4)) | |
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) | |
>>> np.lib.pad(a, (2,), 'maximum') | |
array([5, 5, 1, 2, 3, 4, 5, 5, 5]) | |
>>> np.lib.pad(a, (2,), 'mean') | |
array([3, 3, 1, 2, 3, 4, 5, 3, 3]) | |
>>> np.lib.pad(a, (2,), 'median') | |
array([3, 3, 1, 2, 3, 4, 5, 3, 3]) | |
>>> a = [[1,2], [3,4]] | |
>>> np.lib.pad(a, ((3, 2), (2, 3)), 'minimum') | |
array([[1, 1, 1, 2, 1, 1, 1], | |
[1, 1, 1, 2, 1, 1, 1], | |
[1, 1, 1, 2, 1, 1, 1], | |
[1, 1, 1, 2, 1, 1, 1], | |
[3, 3, 3, 4, 3, 3, 3], | |
[1, 1, 1, 2, 1, 1, 1], | |
[1, 1, 1, 2, 1, 1, 1]]) | |
>>> a = [1, 2, 3, 4, 5] | |
>>> np.lib.pad(a, (2,3), 'reflect') | |
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) | |
>>> np.lib.pad(a, (2,3), 'reflect', reflect_type='odd') | |
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) | |
>>> np.lib.pad(a, (2,3), 'symmetric') | |
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) | |
>>> np.lib.pad(a, (2,3), 'symmetric', reflect_type='odd') | |
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) | |
>>> np.lib.pad(a, (2,3), 'wrap') | |
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) | |
>>> def padwithtens(vector, pad_width, iaxis, kwargs): | |
... vector[:pad_width[0]] = 10 | |
... vector[-pad_width[1]:] = 10 | |
... return vector | |
>>> a = np.arange(6) | |
>>> a = a.reshape((2,3)) | |
>>> np.lib.pad(a, 2, padwithtens) | |
array([[10, 10, 10, 10, 10, 10, 10], | |
[10, 10, 10, 10, 10, 10, 10], | |
[10, 10, 0, 1, 2, 10, 10], | |
[10, 10, 3, 4, 5, 10, 10], | |
[10, 10, 10, 10, 10, 10, 10], | |
[10, 10, 10, 10, 10, 10, 10]]) | |
""" | |
narray = np.array(array) | |
pad_width = _validate_lengths(narray, pad_width) | |
allowedkwargs = { | |
'constant': ['constant_values'], | |
'edge': [], | |
'linear_ramp': ['end_values'], | |
'maximum': ['stat_length'], | |
'mean': ['stat_length'], | |
'median': ['stat_length'], | |
'minimum': ['stat_length'], | |
'reflect': ['reflect_type'], | |
'symmetric': ['reflect_type'], | |
'wrap': [], | |
} | |
kwdefaults = { | |
'stat_length': None, | |
'constant_values': 0, | |
'end_values': 0, | |
'reflect_type': 'even', | |
} | |
if isinstance(mode, str): | |
# Make sure have allowed kwargs appropriate for mode | |
for key in kwargs: | |
if key not in allowedkwargs[mode]: | |
raise ValueError('%s keyword not in allowed keywords %s' % | |
(key, allowedkwargs[mode])) | |
# Set kwarg defaults | |
for kw in allowedkwargs[mode]: | |
kwargs.setdefault(kw, kwdefaults[kw]) | |
# Need to only normalize particular keywords. | |
for i in kwargs: | |
if i == 'stat_length': | |
kwargs[i] = _validate_lengths(narray, kwargs[i]) | |
if i in ['end_values', 'constant_values']: | |
kwargs[i] = _normalize_shape(narray, kwargs[i]) | |
elif mode is None: | |
raise ValueError('Keyword "mode" must be a function or one of %s.' % | |
(list(allowedkwargs.keys()),)) | |
else: | |
# Drop back to old, slower np.apply_along_axis mode for user-supplied | |
# vector function | |
function = mode | |
# Create a new padded array | |
rank = list(range(len(narray.shape))) | |
total_dim_increase = [np.sum(pad_width[i]) for i in rank] | |
offset_slices = [slice(pad_width[i][0], | |
pad_width[i][0] + narray.shape[i]) | |
for i in rank] | |
new_shape = np.array(narray.shape) + total_dim_increase | |
newmat = np.zeros(new_shape, narray.dtype) | |
# Insert the original array into the padded array | |
newmat[offset_slices] = narray | |
# This is the core of pad ... | |
for iaxis in rank: | |
np.apply_along_axis(function, | |
iaxis, | |
newmat, | |
pad_width[iaxis], | |
iaxis, | |
kwargs) | |
return newmat | |
# If we get here, use new padding method | |
newmat = narray.copy() | |
# API preserved, but completely new algorithm which pads by building the | |
# entire block to pad before/after `arr` with in one step, for each axis. | |
if mode == 'constant': | |
for axis, ((pad_before, pad_after), (before_val, after_val)) \ | |
in enumerate(zip(pad_width, kwargs['constant_values'])): | |
newmat = _prepend_const(newmat, pad_before, before_val, axis) | |
newmat = _append_const(newmat, pad_after, after_val, axis) | |
elif mode == 'edge': | |
for axis, (pad_before, pad_after) in enumerate(pad_width): | |
newmat = _prepend_edge(newmat, pad_before, axis) | |
newmat = _append_edge(newmat, pad_after, axis) | |
elif mode == 'linear_ramp': | |
for axis, ((pad_before, pad_after), (before_val, after_val)) \ | |
in enumerate(zip(pad_width, kwargs['end_values'])): | |
newmat = _prepend_ramp(newmat, pad_before, before_val, axis) | |
newmat = _append_ramp(newmat, pad_after, after_val, axis) | |
elif mode == 'maximum': | |
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ | |
in enumerate(zip(pad_width, kwargs['stat_length'])): | |
newmat = _prepend_max(newmat, pad_before, chunk_before, axis) | |
newmat = _append_max(newmat, pad_after, chunk_after, axis) | |
elif mode == 'mean': | |
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ | |
in enumerate(zip(pad_width, kwargs['stat_length'])): | |
newmat = _prepend_mean(newmat, pad_before, chunk_before, axis) | |
newmat = _append_mean(newmat, pad_after, chunk_after, axis) | |
elif mode == 'median': | |
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ | |
in enumerate(zip(pad_width, kwargs['stat_length'])): | |
newmat = _prepend_med(newmat, pad_before, chunk_before, axis) | |
newmat = _append_med(newmat, pad_after, chunk_after, axis) | |
elif mode == 'minimum': | |
for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \ | |
in enumerate(zip(pad_width, kwargs['stat_length'])): | |
newmat = _prepend_min(newmat, pad_before, chunk_before, axis) | |
newmat = _append_min(newmat, pad_after, chunk_after, axis) | |
elif mode == 'reflect': | |
for axis, (pad_before, pad_after) in enumerate(pad_width): | |
# Recursive padding along any axis where `pad_amt` is too large | |
# for indexing tricks. We can only safely pad the original axis | |
# length, to keep the period of the reflections consistent. | |
if ((pad_before > 0) or | |
(pad_after > 0)) and newmat.shape[axis] == 1: | |
# Extending singleton dimension for 'reflect' is legacy | |
# behavior; it really should raise an error. | |
newmat = _prepend_edge(newmat, pad_before, axis) | |
newmat = _append_edge(newmat, pad_after, axis) | |
continue | |
method = kwargs['reflect_type'] | |
safe_pad = newmat.shape[axis] - 1 | |
while ((pad_before > safe_pad) or (pad_after > safe_pad)): | |
offset = 0 | |
pad_iter_b = min(safe_pad, | |
safe_pad * (pad_before // safe_pad)) | |
pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad)) | |
newmat = _pad_ref(newmat, (pad_iter_b, | |
pad_iter_a), method, axis) | |
pad_before -= pad_iter_b | |
pad_after -= pad_iter_a | |
if pad_iter_b > 0: | |
offset += 1 | |
if pad_iter_a > 0: | |
offset += 1 | |
safe_pad += pad_iter_b + pad_iter_a | |
newmat = _pad_ref(newmat, (pad_before, pad_after), method, axis) | |
elif mode == 'symmetric': | |
for axis, (pad_before, pad_after) in enumerate(pad_width): | |
# Recursive padding along any axis where `pad_amt` is too large | |
# for indexing tricks. We can only safely pad the original axis | |
# length, to keep the period of the reflections consistent. | |
method = kwargs['reflect_type'] | |
safe_pad = newmat.shape[axis] | |
while ((pad_before > safe_pad) or | |
(pad_after > safe_pad)): | |
pad_iter_b = min(safe_pad, | |
safe_pad * (pad_before // safe_pad)) | |
pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad)) | |
newmat = _pad_sym(newmat, (pad_iter_b, | |
pad_iter_a), method, axis) | |
pad_before -= pad_iter_b | |
pad_after -= pad_iter_a | |
safe_pad += pad_iter_b + pad_iter_a | |
newmat = _pad_sym(newmat, (pad_before, pad_after), method, axis) | |
elif mode == 'wrap': | |
for axis, (pad_before, pad_after) in enumerate(pad_width): | |
# Recursive padding along any axis where `pad_amt` is too large | |
# for indexing tricks. We can only safely pad the original axis | |
# length, to keep the period of the reflections consistent. | |
safe_pad = newmat.shape[axis] | |
while ((pad_before > safe_pad) or | |
(pad_after > safe_pad)): | |
pad_iter_b = min(safe_pad, | |
safe_pad * (pad_before // safe_pad)) | |
pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad)) | |
newmat = _pad_wrap(newmat, (pad_iter_b, pad_iter_a), axis) | |
pad_before -= pad_iter_b | |
pad_after -= pad_iter_a | |
safe_pad += pad_iter_b + pad_iter_a | |
newmat = _pad_wrap(newmat, (pad_before, pad_after), axis) | |
return newmat | |