tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/build
/lib.linux-x86_64-cpython-310
/numpy
/add_newdocs.py
""" | |
This is only meant to add docs to objects defined in C-extension modules. | |
The purpose is to allow easier editing of the docstrings without | |
requiring a re-compile. | |
NOTE: Many of the methods of ndarray have corresponding functions. | |
If you update these docstrings, please keep also the ones in | |
core/fromnumeric.py, core/defmatrix.py up-to-date. | |
""" | |
from __future__ import division, absolute_import, print_function | |
from numpy.lib import add_newdoc | |
############################################################################### | |
# | |
# flatiter | |
# | |
# flatiter needs a toplevel description | |
# | |
############################################################################### | |
add_newdoc('numpy.core', 'flatiter', | |
""" | |
Flat iterator object to iterate over arrays. | |
A `flatiter` iterator is returned by ``x.flat`` for any array `x`. | |
It allows iterating over the array as if it were a 1-D array, | |
either in a for-loop or by calling its `next` method. | |
Iteration is done in C-contiguous style, with the last index varying the | |
fastest. The iterator can also be indexed using basic slicing or | |
advanced indexing. | |
See Also | |
-------- | |
ndarray.flat : Return a flat iterator over an array. | |
ndarray.flatten : Returns a flattened copy of an array. | |
Notes | |
----- | |
A `flatiter` iterator can not be constructed directly from Python code | |
by calling the `flatiter` constructor. | |
Examples | |
-------- | |
>>> x = np.arange(6).reshape(2, 3) | |
>>> fl = x.flat | |
>>> type(fl) | |
<type 'numpy.flatiter'> | |
>>> for item in fl: | |
... print item | |
... | |
0 | |
1 | |
2 | |
3 | |
4 | |
5 | |
>>> fl[2:4] | |
array([2, 3]) | |
""") | |
# flatiter attributes | |
add_newdoc('numpy.core', 'flatiter', ('base', | |
""" | |
A reference to the array that is iterated over. | |
Examples | |
-------- | |
>>> x = np.arange(5) | |
>>> fl = x.flat | |
>>> fl.base is x | |
True | |
""")) | |
add_newdoc('numpy.core', 'flatiter', ('coords', | |
""" | |
An N-dimensional tuple of current coordinates. | |
Examples | |
-------- | |
>>> x = np.arange(6).reshape(2, 3) | |
>>> fl = x.flat | |
>>> fl.coords | |
(0, 0) | |
>>> fl.next() | |
0 | |
>>> fl.coords | |
(0, 1) | |
""")) | |
add_newdoc('numpy.core', 'flatiter', ('index', | |
""" | |
Current flat index into the array. | |
Examples | |
-------- | |
>>> x = np.arange(6).reshape(2, 3) | |
>>> fl = x.flat | |
>>> fl.index | |
0 | |
>>> fl.next() | |
0 | |
>>> fl.index | |
1 | |
""")) | |
# flatiter functions | |
add_newdoc('numpy.core', 'flatiter', ('__array__', | |
"""__array__(type=None) Get array from iterator | |
""")) | |
add_newdoc('numpy.core', 'flatiter', ('copy', | |
""" | |
copy() | |
Get a copy of the iterator as a 1-D array. | |
Examples | |
-------- | |
>>> x = np.arange(6).reshape(2, 3) | |
>>> x | |
array([[0, 1, 2], | |
[3, 4, 5]]) | |
>>> fl = x.flat | |
>>> fl.copy() | |
array([0, 1, 2, 3, 4, 5]) | |
""")) | |
############################################################################### | |
# | |
# nditer | |
# | |
############################################################################### | |
add_newdoc('numpy.core', 'nditer', | |
""" | |
Efficient multi-dimensional iterator object to iterate over arrays. | |
To get started using this object, see the | |
:ref:`introductory guide to array iteration <arrays.nditer>`. | |
Parameters | |
---------- | |
op : ndarray or sequence of array_like | |
The array(s) to iterate over. | |
flags : sequence of str, optional | |
Flags to control the behavior of the iterator. | |
* "buffered" enables buffering when required. | |
* "c_index" causes a C-order index to be tracked. | |
* "f_index" causes a Fortran-order index to be tracked. | |
* "multi_index" causes a multi-index, or a tuple of indices | |
with one per iteration dimension, to be tracked. | |
* "common_dtype" causes all the operands to be converted to | |
a common data type, with copying or buffering as necessary. | |
* "delay_bufalloc" delays allocation of the buffers until | |
a reset() call is made. Allows "allocate" operands to | |
be initialized before their values are copied into the buffers. | |
* "external_loop" causes the `values` given to be | |
one-dimensional arrays with multiple values instead of | |
zero-dimensional arrays. | |
* "grow_inner" allows the `value` array sizes to be made | |
larger than the buffer size when both "buffered" and | |
"external_loop" is used. | |
* "ranged" allows the iterator to be restricted to a sub-range | |
of the iterindex values. | |
* "refs_ok" enables iteration of reference types, such as | |
object arrays. | |
* "reduce_ok" enables iteration of "readwrite" operands | |
which are broadcasted, also known as reduction operands. | |
* "zerosize_ok" allows `itersize` to be zero. | |
op_flags : list of list of str, optional | |
This is a list of flags for each operand. At minimum, one of | |
"readonly", "readwrite", or "writeonly" must be specified. | |
* "readonly" indicates the operand will only be read from. | |
* "readwrite" indicates the operand will be read from and written to. | |
* "writeonly" indicates the operand will only be written to. | |
* "no_broadcast" prevents the operand from being broadcasted. | |
* "contig" forces the operand data to be contiguous. | |
* "aligned" forces the operand data to be aligned. | |
* "nbo" forces the operand data to be in native byte order. | |
* "copy" allows a temporary read-only copy if required. | |
* "updateifcopy" allows a temporary read-write copy if required. | |
* "allocate" causes the array to be allocated if it is None | |
in the `op` parameter. | |
* "no_subtype" prevents an "allocate" operand from using a subtype. | |
* "arraymask" indicates that this operand is the mask to use | |
for selecting elements when writing to operands with the | |
'writemasked' flag set. The iterator does not enforce this, | |
but when writing from a buffer back to the array, it only | |
copies those elements indicated by this mask. | |
* 'writemasked' indicates that only elements where the chosen | |
'arraymask' operand is True will be written to. | |
op_dtypes : dtype or tuple of dtype(s), optional | |
The required data type(s) of the operands. If copying or buffering | |
is enabled, the data will be converted to/from their original types. | |
order : {'C', 'F', 'A', 'K'}, optional | |
Controls the iteration order. 'C' means C order, 'F' means | |
Fortran order, 'A' means 'F' order if all the arrays are Fortran | |
contiguous, 'C' order otherwise, and 'K' means as close to the | |
order the array elements appear in memory as possible. This also | |
affects the element memory order of "allocate" operands, as they | |
are allocated to be compatible with iteration order. | |
Default is 'K'. | |
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional | |
Controls what kind of data casting may occur when making a copy | |
or buffering. Setting this to 'unsafe' is not recommended, | |
as it can adversely affect accumulations. | |
* 'no' means the data types should not be cast at all. | |
* 'equiv' means only byte-order changes are allowed. | |
* 'safe' means only casts which can preserve values are allowed. | |
* 'same_kind' means only safe casts or casts within a kind, | |
like float64 to float32, are allowed. | |
* 'unsafe' means any data conversions may be done. | |
op_axes : list of list of ints, optional | |
If provided, is a list of ints or None for each operands. | |
The list of axes for an operand is a mapping from the dimensions | |
of the iterator to the dimensions of the operand. A value of | |
-1 can be placed for entries, causing that dimension to be | |
treated as "newaxis". | |
itershape : tuple of ints, optional | |
The desired shape of the iterator. This allows "allocate" operands | |
with a dimension mapped by op_axes not corresponding to a dimension | |
of a different operand to get a value not equal to 1 for that | |
dimension. | |
buffersize : int, optional | |
When buffering is enabled, controls the size of the temporary | |
buffers. Set to 0 for the default value. | |
Attributes | |
---------- | |
dtypes : tuple of dtype(s) | |
The data types of the values provided in `value`. This may be | |
different from the operand data types if buffering is enabled. | |
finished : bool | |
Whether the iteration over the operands is finished or not. | |
has_delayed_bufalloc : bool | |
If True, the iterator was created with the "delay_bufalloc" flag, | |
and no reset() function was called on it yet. | |
has_index : bool | |
If True, the iterator was created with either the "c_index" or | |
the "f_index" flag, and the property `index` can be used to | |
retrieve it. | |
has_multi_index : bool | |
If True, the iterator was created with the "multi_index" flag, | |
and the property `multi_index` can be used to retrieve it. | |
index : | |
When the "c_index" or "f_index" flag was used, this property | |
provides access to the index. Raises a ValueError if accessed | |
and `has_index` is False. | |
iterationneedsapi : bool | |
Whether iteration requires access to the Python API, for example | |
if one of the operands is an object array. | |
iterindex : int | |
An index which matches the order of iteration. | |
itersize : int | |
Size of the iterator. | |
itviews : | |
Structured view(s) of `operands` in memory, matching the reordered | |
and optimized iterator access pattern. | |
multi_index : | |
When the "multi_index" flag was used, this property | |
provides access to the index. Raises a ValueError if accessed | |
accessed and `has_multi_index` is False. | |
ndim : int | |
The iterator's dimension. | |
nop : int | |
The number of iterator operands. | |
operands : tuple of operand(s) | |
The array(s) to be iterated over. | |
shape : tuple of ints | |
Shape tuple, the shape of the iterator. | |
value : | |
Value of `operands` at current iteration. Normally, this is a | |
tuple of array scalars, but if the flag "external_loop" is used, | |
it is a tuple of one dimensional arrays. | |
Notes | |
----- | |
`nditer` supersedes `flatiter`. The iterator implementation behind | |
`nditer` is also exposed by the Numpy C API. | |
The Python exposure supplies two iteration interfaces, one which follows | |
the Python iterator protocol, and another which mirrors the C-style | |
do-while pattern. The native Python approach is better in most cases, but | |
if you need the iterator's coordinates or index, use the C-style pattern. | |
Examples | |
-------- | |
Here is how we might write an ``iter_add`` function, using the | |
Python iterator protocol:: | |
def iter_add_py(x, y, out=None): | |
addop = np.add | |
it = np.nditer([x, y, out], [], | |
[['readonly'], ['readonly'], ['writeonly','allocate']]) | |
for (a, b, c) in it: | |
addop(a, b, out=c) | |
return it.operands[2] | |
Here is the same function, but following the C-style pattern:: | |
def iter_add(x, y, out=None): | |
addop = np.add | |
it = np.nditer([x, y, out], [], | |
[['readonly'], ['readonly'], ['writeonly','allocate']]) | |
while not it.finished: | |
addop(it[0], it[1], out=it[2]) | |
it.iternext() | |
return it.operands[2] | |
Here is an example outer product function:: | |
def outer_it(x, y, out=None): | |
mulop = np.multiply | |
it = np.nditer([x, y, out], ['external_loop'], | |
[['readonly'], ['readonly'], ['writeonly', 'allocate']], | |
op_axes=[range(x.ndim)+[-1]*y.ndim, | |
[-1]*x.ndim+range(y.ndim), | |
None]) | |
for (a, b, c) in it: | |
mulop(a, b, out=c) | |
return it.operands[2] | |
>>> a = np.arange(2)+1 | |
>>> b = np.arange(3)+1 | |
>>> outer_it(a,b) | |
array([[1, 2, 3], | |
[2, 4, 6]]) | |
Here is an example function which operates like a "lambda" ufunc:: | |
def luf(lamdaexpr, *args, **kwargs): | |
"luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)" | |
nargs = len(args) | |
op = (kwargs.get('out',None),) + args | |
it = np.nditer(op, ['buffered','external_loop'], | |
[['writeonly','allocate','no_broadcast']] + | |
[['readonly','nbo','aligned']]*nargs, | |
order=kwargs.get('order','K'), | |
casting=kwargs.get('casting','safe'), | |
buffersize=kwargs.get('buffersize',0)) | |
while not it.finished: | |
it[0] = lamdaexpr(*it[1:]) | |
it.iternext() | |
return it.operands[0] | |
>>> a = np.arange(5) | |
>>> b = np.ones(5) | |
>>> luf(lambda i,j:i*i + j/2, a, b) | |
array([ 0.5, 1.5, 4.5, 9.5, 16.5]) | |
""") | |
# nditer methods | |
add_newdoc('numpy.core', 'nditer', ('copy', | |
""" | |
copy() | |
Get a copy of the iterator in its current state. | |
Examples | |
-------- | |
>>> x = np.arange(10) | |
>>> y = x + 1 | |
>>> it = np.nditer([x, y]) | |
>>> it.next() | |
(array(0), array(1)) | |
>>> it2 = it.copy() | |
>>> it2.next() | |
(array(1), array(2)) | |
""")) | |
add_newdoc('numpy.core', 'nditer', ('debug_print', | |
""" | |
debug_print() | |
Print the current state of the `nditer` instance and debug info to stdout. | |
""")) | |
add_newdoc('numpy.core', 'nditer', ('enable_external_loop', | |
""" | |
enable_external_loop() | |
When the "external_loop" was not used during construction, but | |
is desired, this modifies the iterator to behave as if the flag | |
was specified. | |
""")) | |
add_newdoc('numpy.core', 'nditer', ('iternext', | |
""" | |
iternext() | |
Check whether iterations are left, and perform a single internal iteration | |
without returning the result. Used in the C-style pattern do-while | |
pattern. For an example, see `nditer`. | |
Returns | |
------- | |
iternext : bool | |
Whether or not there are iterations left. | |
""")) | |
add_newdoc('numpy.core', 'nditer', ('remove_axis', | |
""" | |
remove_axis(i) | |
Removes axis `i` from the iterator. Requires that the flag "multi_index" | |
be enabled. | |
""")) | |
add_newdoc('numpy.core', 'nditer', ('remove_multi_index', | |
""" | |
remove_multi_index() | |
When the "multi_index" flag was specified, this removes it, allowing | |
the internal iteration structure to be optimized further. | |
""")) | |
add_newdoc('numpy.core', 'nditer', ('reset', | |
""" | |
reset() | |
Reset the iterator to its initial state. | |
""")) | |
############################################################################### | |
# | |
# broadcast | |
# | |
############################################################################### | |
add_newdoc('numpy.core', 'broadcast', | |
""" | |
Produce an object that mimics broadcasting. | |
Parameters | |
---------- | |
in1, in2, ... : array_like | |
Input parameters. | |
Returns | |
------- | |
b : broadcast object | |
Broadcast the input parameters against one another, and | |
return an object that encapsulates the result. | |
Amongst others, it has ``shape`` and ``nd`` properties, and | |
may be used as an iterator. | |
Examples | |
-------- | |
Manually adding two vectors, using broadcasting: | |
>>> x = np.array([[1], [2], [3]]) | |
>>> y = np.array([4, 5, 6]) | |
>>> b = np.broadcast(x, y) | |
>>> out = np.empty(b.shape) | |
>>> out.flat = [u+v for (u,v) in b] | |
>>> out | |
array([[ 5., 6., 7.], | |
[ 6., 7., 8.], | |
[ 7., 8., 9.]]) | |
Compare against built-in broadcasting: | |
>>> x + y | |
array([[5, 6, 7], | |
[6, 7, 8], | |
[7, 8, 9]]) | |
""") | |
# attributes | |
add_newdoc('numpy.core', 'broadcast', ('index', | |
""" | |
current index in broadcasted result | |
Examples | |
-------- | |
>>> x = np.array([[1], [2], [3]]) | |
>>> y = np.array([4, 5, 6]) | |
>>> b = np.broadcast(x, y) | |
>>> b.index | |
0 | |
>>> b.next(), b.next(), b.next() | |
((1, 4), (1, 5), (1, 6)) | |
>>> b.index | |
3 | |
""")) | |
add_newdoc('numpy.core', 'broadcast', ('iters', | |
""" | |
tuple of iterators along ``self``'s "components." | |
Returns a tuple of `numpy.flatiter` objects, one for each "component" | |
of ``self``. | |
See Also | |
-------- | |
numpy.flatiter | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3]) | |
>>> y = np.array([[4], [5], [6]]) | |
>>> b = np.broadcast(x, y) | |
>>> row, col = b.iters | |
>>> row.next(), col.next() | |
(1, 4) | |
""")) | |
add_newdoc('numpy.core', 'broadcast', ('nd', | |
""" | |
Number of dimensions of broadcasted result. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3]) | |
>>> y = np.array([[4], [5], [6]]) | |
>>> b = np.broadcast(x, y) | |
>>> b.nd | |
2 | |
""")) | |
add_newdoc('numpy.core', 'broadcast', ('numiter', | |
""" | |
Number of iterators possessed by the broadcasted result. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3]) | |
>>> y = np.array([[4], [5], [6]]) | |
>>> b = np.broadcast(x, y) | |
>>> b.numiter | |
2 | |
""")) | |
add_newdoc('numpy.core', 'broadcast', ('shape', | |
""" | |
Shape of broadcasted result. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3]) | |
>>> y = np.array([[4], [5], [6]]) | |
>>> b = np.broadcast(x, y) | |
>>> b.shape | |
(3, 3) | |
""")) | |
add_newdoc('numpy.core', 'broadcast', ('size', | |
""" | |
Total size of broadcasted result. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3]) | |
>>> y = np.array([[4], [5], [6]]) | |
>>> b = np.broadcast(x, y) | |
>>> b.size | |
9 | |
""")) | |
add_newdoc('numpy.core', 'broadcast', ('reset', | |
""" | |
reset() | |
Reset the broadcasted result's iterator(s). | |
Parameters | |
---------- | |
None | |
Returns | |
------- | |
None | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3]) | |
>>> y = np.array([[4], [5], [6]] | |
>>> b = np.broadcast(x, y) | |
>>> b.index | |
0 | |
>>> b.next(), b.next(), b.next() | |
((1, 4), (2, 4), (3, 4)) | |
>>> b.index | |
3 | |
>>> b.reset() | |
>>> b.index | |
0 | |
""")) | |
############################################################################### | |
# | |
# numpy functions | |
# | |
############################################################################### | |
add_newdoc('numpy.core.multiarray', 'array', | |
""" | |
array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0) | |
Create an array. | |
Parameters | |
---------- | |
object : array_like | |
An array, any object exposing the array interface, an | |
object whose __array__ method returns an array, or any | |
(nested) sequence. | |
dtype : data-type, optional | |
The desired data-type for the array. If not given, then | |
the type will be determined as the minimum type required | |
to hold the objects in the sequence. This argument can only | |
be used to 'upcast' the array. For downcasting, use the | |
.astype(t) method. | |
copy : bool, optional | |
If true (default), then the object is copied. Otherwise, a copy | |
will only be made if __array__ returns a copy, if obj is a | |
nested sequence, or if a copy is needed to satisfy any of the other | |
requirements (`dtype`, `order`, etc.). | |
order : {'C', 'F', 'A'}, optional | |
Specify the order of the array. If order is 'C' (default), then the | |
array will be in C-contiguous order (last-index varies the | |
fastest). If order is 'F', then the returned array | |
will be in Fortran-contiguous order (first-index varies the | |
fastest). If order is 'A', then the returned array may | |
be in any order (either C-, Fortran-contiguous, or even | |
discontiguous). | |
subok : bool, optional | |
If True, then sub-classes will be passed-through, otherwise | |
the returned array will be forced to be a base-class array (default). | |
ndmin : int, optional | |
Specifies the minimum number of dimensions that the resulting | |
array should have. Ones will be pre-pended to the shape as | |
needed to meet this requirement. | |
Returns | |
------- | |
out : ndarray | |
An array object satisfying the specified requirements. | |
See Also | |
-------- | |
empty, empty_like, zeros, zeros_like, ones, ones_like, fill | |
Examples | |
-------- | |
>>> np.array([1, 2, 3]) | |
array([1, 2, 3]) | |
Upcasting: | |
>>> np.array([1, 2, 3.0]) | |
array([ 1., 2., 3.]) | |
More than one dimension: | |
>>> np.array([[1, 2], [3, 4]]) | |
array([[1, 2], | |
[3, 4]]) | |
Minimum dimensions 2: | |
>>> np.array([1, 2, 3], ndmin=2) | |
array([[1, 2, 3]]) | |
Type provided: | |
>>> np.array([1, 2, 3], dtype=complex) | |
array([ 1.+0.j, 2.+0.j, 3.+0.j]) | |
Data-type consisting of more than one element: | |
>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) | |
>>> x['a'] | |
array([1, 3]) | |
Creating an array from sub-classes: | |
>>> np.array(np.mat('1 2; 3 4')) | |
array([[1, 2], | |
[3, 4]]) | |
>>> np.array(np.mat('1 2; 3 4'), subok=True) | |
matrix([[1, 2], | |
[3, 4]]) | |
""") | |
add_newdoc('numpy.core.multiarray', 'empty', | |
""" | |
empty(shape, dtype=float, order='C') | |
Return a new array of given shape and type, without initializing entries. | |
Parameters | |
---------- | |
shape : int or tuple of int | |
Shape of the empty array | |
dtype : data-type, optional | |
Desired output data-type. | |
order : {'C', 'F'}, optional | |
Whether to store multi-dimensional data in C (row-major) or | |
Fortran (column-major) order in memory. | |
Returns | |
------- | |
out : ndarray | |
Array of uninitialized (arbitrary) data with the given | |
shape, dtype, and order. | |
See Also | |
-------- | |
empty_like, zeros, ones | |
Notes | |
----- | |
`empty`, unlike `zeros`, does not set the array values to zero, | |
and may therefore be marginally faster. On the other hand, it requires | |
the user to manually set all the values in the array, and should be | |
used with caution. | |
Examples | |
-------- | |
>>> np.empty([2, 2]) | |
array([[ -9.74499359e+001, 6.69583040e-309], | |
[ 2.13182611e-314, 3.06959433e-309]]) #random | |
>>> np.empty([2, 2], dtype=int) | |
array([[-1073741821, -1067949133], | |
[ 496041986, 19249760]]) #random | |
""") | |
add_newdoc('numpy.core.multiarray', 'empty_like', | |
""" | |
empty_like(a, dtype=None, order='K', subok=True) | |
Return a new array with the same shape and type as a given array. | |
Parameters | |
---------- | |
a : array_like | |
The shape and data-type of `a` define these same attributes of the | |
returned array. | |
dtype : data-type, optional | |
.. versionadded:: 1.6.0 | |
Overrides the data type of the result. | |
order : {'C', 'F', 'A', or 'K'}, optional | |
.. versionadded:: 1.6.0 | |
Overrides the memory layout of the result. 'C' means C-order, | |
'F' means F-order, 'A' means 'F' if ``a`` is Fortran contiguous, | |
'C' otherwise. 'K' means match the layout of ``a`` as closely | |
as possible. | |
subok : bool, optional. | |
If True, then the newly created array will use the sub-class | |
type of 'a', otherwise it will be a base-class array. Defaults | |
to True. | |
Returns | |
------- | |
out : ndarray | |
Array of uninitialized (arbitrary) data with the same | |
shape and type as `a`. | |
See Also | |
-------- | |
ones_like : Return an array of ones with shape and type of input. | |
zeros_like : Return an array of zeros with shape and type of input. | |
empty : Return a new uninitialized array. | |
ones : Return a new array setting values to one. | |
zeros : Return a new array setting values to zero. | |
Notes | |
----- | |
This function does *not* initialize the returned array; to do that use | |
`zeros_like` or `ones_like` instead. It may be marginally faster than | |
the functions that do set the array values. | |
Examples | |
-------- | |
>>> a = ([1,2,3], [4,5,6]) # a is array-like | |
>>> np.empty_like(a) | |
array([[-1073741821, -1073741821, 3], #random | |
[ 0, 0, -1073741821]]) | |
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) | |
>>> np.empty_like(a) | |
array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random | |
[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) | |
""") | |
add_newdoc('numpy.core.multiarray', 'scalar', | |
""" | |
scalar(dtype, obj) | |
Return a new scalar array of the given type initialized with obj. | |
This function is meant mainly for pickle support. `dtype` must be a | |
valid data-type descriptor. If `dtype` corresponds to an object | |
descriptor, then `obj` can be any object, otherwise `obj` must be a | |
string. If `obj` is not given, it will be interpreted as None for object | |
type and as zeros for all other types. | |
""") | |
add_newdoc('numpy.core.multiarray', 'zeros', | |
""" | |
zeros(shape, dtype=float, order='C') | |
Return a new array of given shape and type, filled with zeros. | |
Parameters | |
---------- | |
shape : int or sequence of ints | |
Shape of the new array, e.g., ``(2, 3)`` or ``2``. | |
dtype : data-type, optional | |
The desired data-type for the array, e.g., `numpy.int8`. Default is | |
`numpy.float64`. | |
order : {'C', 'F'}, optional | |
Whether to store multidimensional data in C- or Fortran-contiguous | |
(row- or column-wise) order in memory. | |
Returns | |
------- | |
out : ndarray | |
Array of zeros with the given shape, dtype, and order. | |
See Also | |
-------- | |
zeros_like : Return an array of zeros with shape and type of input. | |
ones_like : Return an array of ones with shape and type of input. | |
empty_like : Return an empty array with shape and type of input. | |
ones : Return a new array setting values to one. | |
empty : Return a new uninitialized array. | |
Examples | |
-------- | |
>>> np.zeros(5) | |
array([ 0., 0., 0., 0., 0.]) | |
>>> np.zeros((5,), dtype=numpy.int) | |
array([0, 0, 0, 0, 0]) | |
>>> np.zeros((2, 1)) | |
array([[ 0.], | |
[ 0.]]) | |
>>> s = (2,2) | |
>>> np.zeros(s) | |
array([[ 0., 0.], | |
[ 0., 0.]]) | |
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype | |
array([(0, 0), (0, 0)], | |
dtype=[('x', '<i4'), ('y', '<i4')]) | |
""") | |
add_newdoc('numpy.core.multiarray', 'count_nonzero', | |
""" | |
count_nonzero(a) | |
Counts the number of non-zero values in the array ``a``. | |
Parameters | |
---------- | |
a : array_like | |
The array for which to count non-zeros. | |
Returns | |
------- | |
count : int or array of int | |
Number of non-zero values in the array. | |
See Also | |
-------- | |
nonzero : Return the coordinates of all the non-zero values. | |
Examples | |
-------- | |
>>> np.count_nonzero(np.eye(4)) | |
4 | |
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) | |
5 | |
""") | |
add_newdoc('numpy.core.multiarray', 'set_typeDict', | |
"""set_typeDict(dict) | |
Set the internal dictionary that can look up an array type using a | |
registered code. | |
""") | |
add_newdoc('numpy.core.multiarray', 'fromstring', | |
""" | |
fromstring(string, dtype=float, count=-1, sep='') | |
A new 1-D array initialized from raw binary or text data in a string. | |
Parameters | |
---------- | |
string : str | |
A string containing the data. | |
dtype : data-type, optional | |
The data type of the array; default: float. For binary input data, | |
the data must be in exactly this format. | |
count : int, optional | |
Read this number of `dtype` elements from the data. If this is | |
negative (the default), the count will be determined from the | |
length of the data. | |
sep : str, optional | |
If not provided or, equivalently, the empty string, the data will | |
be interpreted as binary data; otherwise, as ASCII text with | |
decimal numbers. Also in this latter case, this argument is | |
interpreted as the string separating numbers in the data; extra | |
whitespace between elements is also ignored. | |
Returns | |
------- | |
arr : ndarray | |
The constructed array. | |
Raises | |
------ | |
ValueError | |
If the string is not the correct size to satisfy the requested | |
`dtype` and `count`. | |
See Also | |
-------- | |
frombuffer, fromfile, fromiter | |
Examples | |
-------- | |
>>> np.fromstring('\\x01\\x02', dtype=np.uint8) | |
array([1, 2], dtype=uint8) | |
>>> np.fromstring('1 2', dtype=int, sep=' ') | |
array([1, 2]) | |
>>> np.fromstring('1, 2', dtype=int, sep=',') | |
array([1, 2]) | |
>>> np.fromstring('\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3) | |
array([1, 2, 3], dtype=uint8) | |
""") | |
add_newdoc('numpy.core.multiarray', 'fromiter', | |
""" | |
fromiter(iterable, dtype, count=-1) | |
Create a new 1-dimensional array from an iterable object. | |
Parameters | |
---------- | |
iterable : iterable object | |
An iterable object providing data for the array. | |
dtype : data-type | |
The data-type of the returned array. | |
count : int, optional | |
The number of items to read from *iterable*. The default is -1, | |
which means all data is read. | |
Returns | |
------- | |
out : ndarray | |
The output array. | |
Notes | |
----- | |
Specify `count` to improve performance. It allows ``fromiter`` to | |
pre-allocate the output array, instead of resizing it on demand. | |
Examples | |
-------- | |
>>> iterable = (x*x for x in range(5)) | |
>>> np.fromiter(iterable, np.float) | |
array([ 0., 1., 4., 9., 16.]) | |
""") | |
add_newdoc('numpy.core.multiarray', 'fromfile', | |
""" | |
fromfile(file, dtype=float, count=-1, sep='') | |
Construct an array from data in a text or binary file. | |
A highly efficient way of reading binary data with a known data-type, | |
as well as parsing simply formatted text files. Data written using the | |
`tofile` method can be read using this function. | |
Parameters | |
---------- | |
file : file or str | |
Open file object or filename. | |
dtype : data-type | |
Data type of the returned array. | |
For binary files, it is used to determine the size and byte-order | |
of the items in the file. | |
count : int | |
Number of items to read. ``-1`` means all items (i.e., the complete | |
file). | |
sep : str | |
Separator between items if file is a text file. | |
Empty ("") separator means the file should be treated as binary. | |
Spaces (" ") in the separator match zero or more whitespace characters. | |
A separator consisting only of spaces must match at least one | |
whitespace. | |
See also | |
-------- | |
load, save | |
ndarray.tofile | |
loadtxt : More flexible way of loading data from a text file. | |
Notes | |
----- | |
Do not rely on the combination of `tofile` and `fromfile` for | |
data storage, as the binary files generated are are not platform | |
independent. In particular, no byte-order or data-type information is | |
saved. Data can be stored in the platform independent ``.npy`` format | |
using `save` and `load` instead. | |
Examples | |
-------- | |
Construct an ndarray: | |
>>> dt = np.dtype([('time', [('min', int), ('sec', int)]), | |
... ('temp', float)]) | |
>>> x = np.zeros((1,), dtype=dt) | |
>>> x['time']['min'] = 10; x['temp'] = 98.25 | |
>>> x | |
array([((10, 0), 98.25)], | |
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')]) | |
Save the raw data to disk: | |
>>> import os | |
>>> fname = os.tmpnam() | |
>>> x.tofile(fname) | |
Read the raw data from disk: | |
>>> np.fromfile(fname, dtype=dt) | |
array([((10, 0), 98.25)], | |
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')]) | |
The recommended way to store and load data: | |
>>> np.save(fname, x) | |
>>> np.load(fname + '.npy') | |
array([((10, 0), 98.25)], | |
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')]) | |
""") | |
add_newdoc('numpy.core.multiarray', 'frombuffer', | |
""" | |
frombuffer(buffer, dtype=float, count=-1, offset=0) | |
Interpret a buffer as a 1-dimensional array. | |
Parameters | |
---------- | |
buffer : buffer_like | |
An object that exposes the buffer interface. | |
dtype : data-type, optional | |
Data-type of the returned array; default: float. | |
count : int, optional | |
Number of items to read. ``-1`` means all data in the buffer. | |
offset : int, optional | |
Start reading the buffer from this offset; default: 0. | |
Notes | |
----- | |
If the buffer has data that is not in machine byte-order, this should | |
be specified as part of the data-type, e.g.:: | |
>>> dt = np.dtype(int) | |
>>> dt = dt.newbyteorder('>') | |
>>> np.frombuffer(buf, dtype=dt) | |
The data of the resulting array will not be byteswapped, but will be | |
interpreted correctly. | |
Examples | |
-------- | |
>>> s = 'hello world' | |
>>> np.frombuffer(s, dtype='S1', count=5, offset=6) | |
array(['w', 'o', 'r', 'l', 'd'], | |
dtype='|S1') | |
""") | |
add_newdoc('numpy.core.multiarray', 'concatenate', | |
""" | |
concatenate((a1, a2, ...), axis=0) | |
Join a sequence of arrays together. | |
Parameters | |
---------- | |
a1, a2, ... : sequence of array_like | |
The arrays must have the same shape, except in the dimension | |
corresponding to `axis` (the first, by default). | |
axis : int, optional | |
The axis along which the arrays will be joined. Default is 0. | |
Returns | |
------- | |
res : ndarray | |
The concatenated array. | |
See Also | |
-------- | |
ma.concatenate : Concatenate function that preserves input masks. | |
array_split : Split an array into multiple sub-arrays of equal or | |
near-equal size. | |
split : Split array into a list of multiple sub-arrays of equal size. | |
hsplit : Split array into multiple sub-arrays horizontally (column wise) | |
vsplit : Split array into multiple sub-arrays vertically (row wise) | |
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). | |
hstack : Stack arrays in sequence horizontally (column wise) | |
vstack : Stack arrays in sequence vertically (row wise) | |
dstack : Stack arrays in sequence depth wise (along third dimension) | |
Notes | |
----- | |
When one or more of the arrays to be concatenated is a MaskedArray, | |
this function will return a MaskedArray object instead of an ndarray, | |
but the input masks are *not* preserved. In cases where a MaskedArray | |
is expected as input, use the ma.concatenate function from the masked | |
array module instead. | |
Examples | |
-------- | |
>>> a = np.array([[1, 2], [3, 4]]) | |
>>> b = np.array([[5, 6]]) | |
>>> np.concatenate((a, b), axis=0) | |
array([[1, 2], | |
[3, 4], | |
[5, 6]]) | |
>>> np.concatenate((a, b.T), axis=1) | |
array([[1, 2, 5], | |
[3, 4, 6]]) | |
This function will not preserve masking of MaskedArray inputs. | |
>>> a = np.ma.arange(3) | |
>>> a[1] = np.ma.masked | |
>>> b = np.arange(2, 5) | |
>>> a | |
masked_array(data = [0 -- 2], | |
mask = [False True False], | |
fill_value = 999999) | |
>>> b | |
array([2, 3, 4]) | |
>>> np.concatenate([a, b]) | |
masked_array(data = [0 1 2 2 3 4], | |
mask = False, | |
fill_value = 999999) | |
>>> np.ma.concatenate([a, b]) | |
masked_array(data = [0 -- 2 2 3 4], | |
mask = [False True False False False False], | |
fill_value = 999999) | |
""") | |
add_newdoc('numpy.core', 'inner', | |
""" | |
inner(a, b) | |
Inner product of two arrays. | |
Ordinary inner product of vectors for 1-D arrays (without complex | |
conjugation), in higher dimensions a sum product over the last axes. | |
Parameters | |
---------- | |
a, b : array_like | |
If `a` and `b` are nonscalar, their last dimensions of must match. | |
Returns | |
------- | |
out : ndarray | |
`out.shape = a.shape[:-1] + b.shape[:-1]` | |
Raises | |
------ | |
ValueError | |
If the last dimension of `a` and `b` has different size. | |
See Also | |
-------- | |
tensordot : Sum products over arbitrary axes. | |
dot : Generalised matrix product, using second last dimension of `b`. | |
einsum : Einstein summation convention. | |
Notes | |
----- | |
For vectors (1-D arrays) it computes the ordinary inner-product:: | |
np.inner(a, b) = sum(a[:]*b[:]) | |
More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`:: | |
np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) | |
or explicitly:: | |
np.inner(a, b)[i0,...,ir-1,j0,...,js-1] | |
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) | |
In addition `a` or `b` may be scalars, in which case:: | |
np.inner(a,b) = a*b | |
Examples | |
-------- | |
Ordinary inner product for vectors: | |
>>> a = np.array([1,2,3]) | |
>>> b = np.array([0,1,0]) | |
>>> np.inner(a, b) | |
2 | |
A multidimensional example: | |
>>> a = np.arange(24).reshape((2,3,4)) | |
>>> b = np.arange(4) | |
>>> np.inner(a, b) | |
array([[ 14, 38, 62], | |
[ 86, 110, 134]]) | |
An example where `b` is a scalar: | |
>>> np.inner(np.eye(2), 7) | |
array([[ 7., 0.], | |
[ 0., 7.]]) | |
""") | |
add_newdoc('numpy.core', 'fastCopyAndTranspose', | |
"""_fastCopyAndTranspose(a)""") | |
add_newdoc('numpy.core.multiarray', 'correlate', | |
"""cross_correlate(a,v, mode=0)""") | |
add_newdoc('numpy.core.multiarray', 'arange', | |
""" | |
arange([start,] stop[, step,], dtype=None) | |
Return evenly spaced values within a given interval. | |
Values are generated within the half-open interval ``[start, stop)`` | |
(in other words, the interval including `start` but excluding `stop`). | |
For integer arguments the function is equivalent to the Python built-in | |
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function, | |
but returns an ndarray rather than a list. | |
When using a non-integer step, such as 0.1, the results will often not | |
be consistent. It is better to use ``linspace`` for these cases. | |
Parameters | |
---------- | |
start : number, optional | |
Start of interval. The interval includes this value. The default | |
start value is 0. | |
stop : number | |
End of interval. The interval does not include this value, except | |
in some cases where `step` is not an integer and floating point | |
round-off affects the length of `out`. | |
step : number, optional | |
Spacing between values. For any output `out`, this is the distance | |
between two adjacent values, ``out[i+1] - out[i]``. The default | |
step size is 1. If `step` is specified, `start` must also be given. | |
dtype : dtype | |
The type of the output array. If `dtype` is not given, infer the data | |
type from the other input arguments. | |
Returns | |
------- | |
arange : ndarray | |
Array of evenly spaced values. | |
For floating point arguments, the length of the result is | |
``ceil((stop - start)/step)``. Because of floating point overflow, | |
this rule may result in the last element of `out` being greater | |
than `stop`. | |
See Also | |
-------- | |
linspace : Evenly spaced numbers with careful handling of endpoints. | |
ogrid: Arrays of evenly spaced numbers in N-dimensions. | |
mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions. | |
Examples | |
-------- | |
>>> np.arange(3) | |
array([0, 1, 2]) | |
>>> np.arange(3.0) | |
array([ 0., 1., 2.]) | |
>>> np.arange(3,7) | |
array([3, 4, 5, 6]) | |
>>> np.arange(3,7,2) | |
array([3, 5]) | |
""") | |
add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version', | |
"""_get_ndarray_c_version() | |
Return the compile time NDARRAY_VERSION number. | |
""") | |
add_newdoc('numpy.core.multiarray', '_reconstruct', | |
"""_reconstruct(subtype, shape, dtype) | |
Construct an empty array. Used by Pickles. | |
""") | |
add_newdoc('numpy.core.multiarray', 'set_string_function', | |
""" | |
set_string_function(f, repr=1) | |
Internal method to set a function to be used when pretty printing arrays. | |
""") | |
add_newdoc('numpy.core.multiarray', 'set_numeric_ops', | |
""" | |
set_numeric_ops(op1=func1, op2=func2, ...) | |
Set numerical operators for array objects. | |
Parameters | |
---------- | |
op1, op2, ... : callable | |
Each ``op = func`` pair describes an operator to be replaced. | |
For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace | |
addition by modulus 5 addition. | |
Returns | |
------- | |
saved_ops : list of callables | |
A list of all operators, stored before making replacements. | |
Notes | |
----- | |
.. WARNING:: | |
Use with care! Incorrect usage may lead to memory errors. | |
A function replacing an operator cannot make use of that operator. | |
For example, when replacing add, you may not use ``+``. Instead, | |
directly call ufuncs. | |
Examples | |
-------- | |
>>> def add_mod5(x, y): | |
... return np.add(x, y) % 5 | |
... | |
>>> old_funcs = np.set_numeric_ops(add=add_mod5) | |
>>> x = np.arange(12).reshape((3, 4)) | |
>>> x + x | |
array([[0, 2, 4, 1], | |
[3, 0, 2, 4], | |
[1, 3, 0, 2]]) | |
>>> ignore = np.set_numeric_ops(**old_funcs) # restore operators | |
""") | |
add_newdoc('numpy.core.multiarray', 'where', | |
""" | |
where(condition, [x, y]) | |
Return elements, either from `x` or `y`, depending on `condition`. | |
If only `condition` is given, return ``condition.nonzero()``. | |
Parameters | |
---------- | |
condition : array_like, bool | |
When True, yield `x`, otherwise yield `y`. | |
x, y : array_like, optional | |
Values from which to choose. `x` and `y` need to have the same | |
shape as `condition`. | |
Returns | |
------- | |
out : ndarray or tuple of ndarrays | |
If both `x` and `y` are specified, the output array contains | |
elements of `x` where `condition` is True, and elements from | |
`y` elsewhere. | |
If only `condition` is given, return the tuple | |
``condition.nonzero()``, the indices where `condition` is True. | |
See Also | |
-------- | |
nonzero, choose | |
Notes | |
----- | |
If `x` and `y` are given and input arrays are 1-D, `where` is | |
equivalent to:: | |
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)] | |
Examples | |
-------- | |
>>> np.where([[True, False], [True, True]], | |
... [[1, 2], [3, 4]], | |
... [[9, 8], [7, 6]]) | |
array([[1, 8], | |
[3, 4]]) | |
>>> np.where([[0, 1], [1, 0]]) | |
(array([0, 1]), array([1, 0])) | |
>>> x = np.arange(9.).reshape(3, 3) | |
>>> np.where( x > 5 ) | |
(array([2, 2, 2]), array([0, 1, 2])) | |
>>> x[np.where( x > 3.0 )] # Note: result is 1D. | |
array([ 4., 5., 6., 7., 8.]) | |
>>> np.where(x < 5, x, -1) # Note: broadcasting. | |
array([[ 0., 1., 2.], | |
[ 3., 4., -1.], | |
[-1., -1., -1.]]) | |
Find the indices of elements of `x` that are in `goodvalues`. | |
>>> goodvalues = [3, 4, 7] | |
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape) | |
>>> ix | |
array([[False, False, False], | |
[ True, True, False], | |
[False, True, False]], dtype=bool) | |
>>> np.where(ix) | |
(array([1, 1, 2]), array([0, 1, 1])) | |
""") | |
add_newdoc('numpy.core.multiarray', 'lexsort', | |
""" | |
lexsort(keys, axis=-1) | |
Perform an indirect sort using a sequence of keys. | |
Given multiple sorting keys, which can be interpreted as columns in a | |
spreadsheet, lexsort returns an array of integer indices that describes | |
the sort order by multiple columns. The last key in the sequence is used | |
for the primary sort order, the second-to-last key for the secondary sort | |
order, and so on. The keys argument must be a sequence of objects that | |
can be converted to arrays of the same shape. If a 2D array is provided | |
for the keys argument, it's rows are interpreted as the sorting keys and | |
sorting is according to the last row, second last row etc. | |
Parameters | |
---------- | |
keys : (k, N) array or tuple containing k (N,)-shaped sequences | |
The `k` different "columns" to be sorted. The last column (or row if | |
`keys` is a 2D array) is the primary sort key. | |
axis : int, optional | |
Axis to be indirectly sorted. By default, sort over the last axis. | |
Returns | |
------- | |
indices : (N,) ndarray of ints | |
Array of indices that sort the keys along the specified axis. | |
See Also | |
-------- | |
argsort : Indirect sort. | |
ndarray.sort : In-place sort. | |
sort : Return a sorted copy of an array. | |
Examples | |
-------- | |
Sort names: first by surname, then by name. | |
>>> surnames = ('Hertz', 'Galilei', 'Hertz') | |
>>> first_names = ('Heinrich', 'Galileo', 'Gustav') | |
>>> ind = np.lexsort((first_names, surnames)) | |
>>> ind | |
array([1, 2, 0]) | |
>>> [surnames[i] + ", " + first_names[i] for i in ind] | |
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] | |
Sort two columns of numbers: | |
>>> a = [1,5,1,4,3,4,4] # First column | |
>>> b = [9,4,0,4,0,2,1] # Second column | |
>>> ind = np.lexsort((b,a)) # Sort by a, then by b | |
>>> print ind | |
[2 0 4 6 5 3 1] | |
>>> [(a[i],b[i]) for i in ind] | |
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] | |
Note that sorting is first according to the elements of ``a``. | |
Secondary sorting is according to the elements of ``b``. | |
A normal ``argsort`` would have yielded: | |
>>> [(a[i],b[i]) for i in np.argsort(a)] | |
[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)] | |
Structured arrays are sorted lexically by ``argsort``: | |
>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)], | |
... dtype=np.dtype([('x', int), ('y', int)])) | |
>>> np.argsort(x) # or np.argsort(x, order=('x', 'y')) | |
array([2, 0, 4, 6, 5, 3, 1]) | |
""") | |
add_newdoc('numpy.core.multiarray', 'can_cast', | |
""" | |
can_cast(from, totype, casting = 'safe') | |
Returns True if cast between data types can occur according to the | |
casting rule. If from is a scalar or array scalar, also returns | |
True if the scalar value can be cast without overflow or truncation | |
to an integer. | |
Parameters | |
---------- | |
from : dtype, dtype specifier, scalar, or array | |
Data type, scalar, or array to cast from. | |
totype : dtype or dtype specifier | |
Data type to cast to. | |
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional | |
Controls what kind of data casting may occur. | |
* 'no' means the data types should not be cast at all. | |
* 'equiv' means only byte-order changes are allowed. | |
* 'safe' means only casts which can preserve values are allowed. | |
* 'same_kind' means only safe casts or casts within a kind, | |
like float64 to float32, are allowed. | |
* 'unsafe' means any data conversions may be done. | |
Returns | |
------- | |
out : bool | |
True if cast can occur according to the casting rule. | |
Notes | |
----- | |
Starting in NumPy 1.9, can_cast function now returns False in 'safe' | |
casting mode for integer/float dtype and string dtype if the string dtype | |
length is not long enough to store the max integer/float value converted | |
to a string. Previously can_cast in 'safe' mode returned True for | |
integer/float dtype and a string dtype of any length. | |
See also | |
-------- | |
dtype, result_type | |
Examples | |
-------- | |
Basic examples | |
>>> np.can_cast(np.int32, np.int64) | |
True | |
>>> np.can_cast(np.float64, np.complex) | |
True | |
>>> np.can_cast(np.complex, np.float) | |
False | |
>>> np.can_cast('i8', 'f8') | |
True | |
>>> np.can_cast('i8', 'f4') | |
False | |
>>> np.can_cast('i4', 'S4') | |
False | |
Casting scalars | |
>>> np.can_cast(100, 'i1') | |
True | |
>>> np.can_cast(150, 'i1') | |
False | |
>>> np.can_cast(150, 'u1') | |
True | |
>>> np.can_cast(3.5e100, np.float32) | |
False | |
>>> np.can_cast(1000.0, np.float32) | |
True | |
Array scalar checks the value, array does not | |
>>> np.can_cast(np.array(1000.0), np.float32) | |
True | |
>>> np.can_cast(np.array([1000.0]), np.float32) | |
False | |
Using the casting rules | |
>>> np.can_cast('i8', 'i8', 'no') | |
True | |
>>> np.can_cast('<i8', '>i8', 'no') | |
False | |
>>> np.can_cast('<i8', '>i8', 'equiv') | |
True | |
>>> np.can_cast('<i4', '>i8', 'equiv') | |
False | |
>>> np.can_cast('<i4', '>i8', 'safe') | |
True | |
>>> np.can_cast('<i8', '>i4', 'safe') | |
False | |
>>> np.can_cast('<i8', '>i4', 'same_kind') | |
True | |
>>> np.can_cast('<i8', '>u4', 'same_kind') | |
False | |
>>> np.can_cast('<i8', '>u4', 'unsafe') | |
True | |
""") | |
add_newdoc('numpy.core.multiarray', 'promote_types', | |
""" | |
promote_types(type1, type2) | |
Returns the data type with the smallest size and smallest scalar | |
kind to which both ``type1`` and ``type2`` may be safely cast. | |
The returned data type is always in native byte order. | |
This function is symmetric and associative. | |
Parameters | |
---------- | |
type1 : dtype or dtype specifier | |
First data type. | |
type2 : dtype or dtype specifier | |
Second data type. | |
Returns | |
------- | |
out : dtype | |
The promoted data type. | |
Notes | |
----- | |
.. versionadded:: 1.6.0 | |
Starting in NumPy 1.9, promote_types function now returns a valid string | |
length when given an integer or float dtype as one argument and a string | |
dtype as another argument. Previously it always returned the input string | |
dtype, even if it wasn't long enough to store the max integer/float value | |
converted to a string. | |
See Also | |
-------- | |
result_type, dtype, can_cast | |
Examples | |
-------- | |
>>> np.promote_types('f4', 'f8') | |
dtype('float64') | |
>>> np.promote_types('i8', 'f4') | |
dtype('float64') | |
>>> np.promote_types('>i8', '<c8') | |
dtype('complex128') | |
>>> np.promote_types('i4', 'S8') | |
dtype('S11') | |
""") | |
add_newdoc('numpy.core.multiarray', 'min_scalar_type', | |
""" | |
min_scalar_type(a) | |
For scalar ``a``, returns the data type with the smallest size | |
and smallest scalar kind which can hold its value. For non-scalar | |
array ``a``, returns the vector's dtype unmodified. | |
Floating point values are not demoted to integers, | |
and complex values are not demoted to floats. | |
Parameters | |
---------- | |
a : scalar or array_like | |
The value whose minimal data type is to be found. | |
Returns | |
------- | |
out : dtype | |
The minimal data type. | |
Notes | |
----- | |
.. versionadded:: 1.6.0 | |
See Also | |
-------- | |
result_type, promote_types, dtype, can_cast | |
Examples | |
-------- | |
>>> np.min_scalar_type(10) | |
dtype('uint8') | |
>>> np.min_scalar_type(-260) | |
dtype('int16') | |
>>> np.min_scalar_type(3.1) | |
dtype('float16') | |
>>> np.min_scalar_type(1e50) | |
dtype('float64') | |
>>> np.min_scalar_type(np.arange(4,dtype='f8')) | |
dtype('float64') | |
""") | |
add_newdoc('numpy.core.multiarray', 'result_type', | |
""" | |
result_type(*arrays_and_dtypes) | |
Returns the type that results from applying the NumPy | |
type promotion rules to the arguments. | |
Type promotion in NumPy works similarly to the rules in languages | |
like C++, with some slight differences. When both scalars and | |
arrays are used, the array's type takes precedence and the actual value | |
of the scalar is taken into account. | |
For example, calculating 3*a, where a is an array of 32-bit floats, | |
intuitively should result in a 32-bit float output. If the 3 is a | |
32-bit integer, the NumPy rules indicate it can't convert losslessly | |
into a 32-bit float, so a 64-bit float should be the result type. | |
By examining the value of the constant, '3', we see that it fits in | |
an 8-bit integer, which can be cast losslessly into the 32-bit float. | |
Parameters | |
---------- | |
arrays_and_dtypes : list of arrays and dtypes | |
The operands of some operation whose result type is needed. | |
Returns | |
------- | |
out : dtype | |
The result type. | |
See also | |
-------- | |
dtype, promote_types, min_scalar_type, can_cast | |
Notes | |
----- | |
.. versionadded:: 1.6.0 | |
The specific algorithm used is as follows. | |
Categories are determined by first checking which of boolean, | |
integer (int/uint), or floating point (float/complex) the maximum | |
kind of all the arrays and the scalars are. | |
If there are only scalars or the maximum category of the scalars | |
is higher than the maximum category of the arrays, | |
the data types are combined with :func:`promote_types` | |
to produce the return value. | |
Otherwise, `min_scalar_type` is called on each array, and | |
the resulting data types are all combined with :func:`promote_types` | |
to produce the return value. | |
The set of int values is not a subset of the uint values for types | |
with the same number of bits, something not reflected in | |
:func:`min_scalar_type`, but handled as a special case in `result_type`. | |
Examples | |
-------- | |
>>> np.result_type(3, np.arange(7, dtype='i1')) | |
dtype('int8') | |
>>> np.result_type('i4', 'c8') | |
dtype('complex128') | |
>>> np.result_type(3.0, -2) | |
dtype('float64') | |
""") | |
add_newdoc('numpy.core.multiarray', 'newbuffer', | |
""" | |
newbuffer(size) | |
Return a new uninitialized buffer object. | |
Parameters | |
---------- | |
size : int | |
Size in bytes of returned buffer object. | |
Returns | |
------- | |
newbuffer : buffer object | |
Returned, uninitialized buffer object of `size` bytes. | |
""") | |
add_newdoc('numpy.core.multiarray', 'getbuffer', | |
""" | |
getbuffer(obj [,offset[, size]]) | |
Create a buffer object from the given object referencing a slice of | |
length size starting at offset. | |
Default is the entire buffer. A read-write buffer is attempted followed | |
by a read-only buffer. | |
Parameters | |
---------- | |
obj : object | |
offset : int, optional | |
size : int, optional | |
Returns | |
------- | |
buffer_obj : buffer | |
Examples | |
-------- | |
>>> buf = np.getbuffer(np.ones(5), 1, 3) | |
>>> len(buf) | |
3 | |
>>> buf[0] | |
'\\x00' | |
>>> buf | |
<read-write buffer for 0x8af1e70, size 3, offset 1 at 0x8ba4ec0> | |
""") | |
add_newdoc('numpy.core', 'dot', | |
""" | |
dot(a, b, out=None) | |
Dot product of two arrays. | |
For 2-D arrays it is equivalent to matrix multiplication, and for 1-D | |
arrays to inner product of vectors (without complex conjugation). For | |
N dimensions it is a sum product over the last axis of `a` and | |
the second-to-last of `b`:: | |
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) | |
Parameters | |
---------- | |
a : array_like | |
First argument. | |
b : array_like | |
Second argument. | |
out : ndarray, optional | |
Output argument. This must have the exact kind that would be returned | |
if it was not used. In particular, it must have the right type, must be | |
C-contiguous, and its dtype must be the dtype that would be returned | |
for `dot(a,b)`. This is a performance feature. Therefore, if these | |
conditions are not met, an exception is raised, instead of attempting | |
to be flexible. | |
Returns | |
------- | |
output : ndarray | |
Returns the dot product of `a` and `b`. If `a` and `b` are both | |
scalars or both 1-D arrays then a scalar is returned; otherwise | |
an array is returned. | |
If `out` is given, then it is returned. | |
Raises | |
------ | |
ValueError | |
If the last dimension of `a` is not the same size as | |
the second-to-last dimension of `b`. | |
See Also | |
-------- | |
vdot : Complex-conjugating dot product. | |
tensordot : Sum products over arbitrary axes. | |
einsum : Einstein summation convention. | |
Examples | |
-------- | |
>>> np.dot(3, 4) | |
12 | |
Neither argument is complex-conjugated: | |
>>> np.dot([2j, 3j], [2j, 3j]) | |
(-13+0j) | |
For 2-D arrays it's the matrix product: | |
>>> a = [[1, 0], [0, 1]] | |
>>> b = [[4, 1], [2, 2]] | |
>>> np.dot(a, b) | |
array([[4, 1], | |
[2, 2]]) | |
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) | |
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) | |
>>> np.dot(a, b)[2,3,2,1,2,2] | |
499128 | |
>>> sum(a[2,3,2,:] * b[1,2,:,2]) | |
499128 | |
""") | |
add_newdoc('numpy.core', 'einsum', | |
""" | |
einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe') | |
Evaluates the Einstein summation convention on the operands. | |
Using the Einstein summation convention, many common multi-dimensional | |
array operations can be represented in a simple fashion. This function | |
provides a way compute such summations. The best way to understand this | |
function is to try the examples below, which show how many common NumPy | |
functions can be implemented as calls to `einsum`. | |
Parameters | |
---------- | |
subscripts : str | |
Specifies the subscripts for summation. | |
operands : list of array_like | |
These are the arrays for the operation. | |
out : ndarray, optional | |
If provided, the calculation is done into this array. | |
dtype : data-type, optional | |
If provided, forces the calculation to use the data type specified. | |
Note that you may have to also give a more liberal `casting` | |
parameter to allow the conversions. | |
order : {'C', 'F', 'A', 'K'}, optional | |
Controls the memory layout of the output. 'C' means it should | |
be C contiguous. 'F' means it should be Fortran contiguous, | |
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. | |
'K' means it should be as close to the layout as the inputs as | |
is possible, including arbitrarily permuted axes. | |
Default is 'K'. | |
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional | |
Controls what kind of data casting may occur. Setting this to | |
'unsafe' is not recommended, as it can adversely affect accumulations. | |
* 'no' means the data types should not be cast at all. | |
* 'equiv' means only byte-order changes are allowed. | |
* 'safe' means only casts which can preserve values are allowed. | |
* 'same_kind' means only safe casts or casts within a kind, | |
like float64 to float32, are allowed. | |
* 'unsafe' means any data conversions may be done. | |
Returns | |
------- | |
output : ndarray | |
The calculation based on the Einstein summation convention. | |
See Also | |
-------- | |
dot, inner, outer, tensordot | |
Notes | |
----- | |
.. versionadded:: 1.6.0 | |
The subscripts string is a comma-separated list of subscript labels, | |
where each label refers to a dimension of the corresponding operand. | |
Repeated subscripts labels in one operand take the diagonal. For example, | |
``np.einsum('ii', a)`` is equivalent to ``np.trace(a)``. | |
Whenever a label is repeated, it is summed, so ``np.einsum('i,i', a, b)`` | |
is equivalent to ``np.inner(a,b)``. If a label appears only once, | |
it is not summed, so ``np.einsum('i', a)`` produces a view of ``a`` | |
with no changes. | |
The order of labels in the output is by default alphabetical. This | |
means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while | |
``np.einsum('ji', a)`` takes its transpose. | |
The output can be controlled by specifying output subscript labels | |
as well. This specifies the label order, and allows summing to | |
be disallowed or forced when desired. The call ``np.einsum('i->', a)`` | |
is like ``np.sum(a, axis=-1)``, and ``np.einsum('ii->i', a)`` | |
is like ``np.diag(a)``. The difference is that `einsum` does not | |
allow broadcasting by default. | |
To enable and control broadcasting, use an ellipsis. Default | |
NumPy-style broadcasting is done by adding an ellipsis | |
to the left of each term, like ``np.einsum('...ii->...i', a)``. | |
To take the trace along the first and last axes, | |
you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix | |
product with the left-most indices instead of rightmost, you can do | |
``np.einsum('ij...,jk...->ik...', a, b)``. | |
When there is only one operand, no axes are summed, and no output | |
parameter is provided, a view into the operand is returned instead | |
of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` | |
produces a view. | |
An alternative way to provide the subscripts and operands is as | |
``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. The examples | |
below have corresponding `einsum` calls with the two parameter methods. | |
Examples | |
-------- | |
>>> a = np.arange(25).reshape(5,5) | |
>>> b = np.arange(5) | |
>>> c = np.arange(6).reshape(2,3) | |
>>> np.einsum('ii', a) | |
60 | |
>>> np.einsum(a, [0,0]) | |
60 | |
>>> np.trace(a) | |
60 | |
>>> np.einsum('ii->i', a) | |
array([ 0, 6, 12, 18, 24]) | |
>>> np.einsum(a, [0,0], [0]) | |
array([ 0, 6, 12, 18, 24]) | |
>>> np.diag(a) | |
array([ 0, 6, 12, 18, 24]) | |
>>> np.einsum('ij,j', a, b) | |
array([ 30, 80, 130, 180, 230]) | |
>>> np.einsum(a, [0,1], b, [1]) | |
array([ 30, 80, 130, 180, 230]) | |
>>> np.dot(a, b) | |
array([ 30, 80, 130, 180, 230]) | |
>>> np.einsum('...j,j', a, b) | |
array([ 30, 80, 130, 180, 230]) | |
>>> np.einsum('ji', c) | |
array([[0, 3], | |
[1, 4], | |
[2, 5]]) | |
>>> np.einsum(c, [1,0]) | |
array([[0, 3], | |
[1, 4], | |
[2, 5]]) | |
>>> c.T | |
array([[0, 3], | |
[1, 4], | |
[2, 5]]) | |
>>> np.einsum('..., ...', 3, c) | |
array([[ 0, 3, 6], | |
[ 9, 12, 15]]) | |
>>> np.einsum(3, [Ellipsis], c, [Ellipsis]) | |
array([[ 0, 3, 6], | |
[ 9, 12, 15]]) | |
>>> np.multiply(3, c) | |
array([[ 0, 3, 6], | |
[ 9, 12, 15]]) | |
>>> np.einsum('i,i', b, b) | |
30 | |
>>> np.einsum(b, [0], b, [0]) | |
30 | |
>>> np.inner(b,b) | |
30 | |
>>> np.einsum('i,j', np.arange(2)+1, b) | |
array([[0, 1, 2, 3, 4], | |
[0, 2, 4, 6, 8]]) | |
>>> np.einsum(np.arange(2)+1, [0], b, [1]) | |
array([[0, 1, 2, 3, 4], | |
[0, 2, 4, 6, 8]]) | |
>>> np.outer(np.arange(2)+1, b) | |
array([[0, 1, 2, 3, 4], | |
[0, 2, 4, 6, 8]]) | |
>>> np.einsum('i...->...', a) | |
array([50, 55, 60, 65, 70]) | |
>>> np.einsum(a, [0,Ellipsis], [Ellipsis]) | |
array([50, 55, 60, 65, 70]) | |
>>> np.sum(a, axis=0) | |
array([50, 55, 60, 65, 70]) | |
>>> a = np.arange(60.).reshape(3,4,5) | |
>>> b = np.arange(24.).reshape(4,3,2) | |
>>> np.einsum('ijk,jil->kl', a, b) | |
array([[ 4400., 4730.], | |
[ 4532., 4874.], | |
[ 4664., 5018.], | |
[ 4796., 5162.], | |
[ 4928., 5306.]]) | |
>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) | |
array([[ 4400., 4730.], | |
[ 4532., 4874.], | |
[ 4664., 5018.], | |
[ 4796., 5162.], | |
[ 4928., 5306.]]) | |
>>> np.tensordot(a,b, axes=([1,0],[0,1])) | |
array([[ 4400., 4730.], | |
[ 4532., 4874.], | |
[ 4664., 5018.], | |
[ 4796., 5162.], | |
[ 4928., 5306.]]) | |
>>> a = np.arange(6).reshape((3,2)) | |
>>> b = np.arange(12).reshape((4,3)) | |
>>> np.einsum('ki,jk->ij', a, b) | |
array([[10, 28, 46, 64], | |
[13, 40, 67, 94]]) | |
>>> np.einsum('ki,...k->i...', a, b) | |
array([[10, 28, 46, 64], | |
[13, 40, 67, 94]]) | |
>>> np.einsum('k...,jk', a, b) | |
array([[10, 28, 46, 64], | |
[13, 40, 67, 94]]) | |
""") | |
add_newdoc('numpy.core', 'alterdot', | |
""" | |
Change `dot`, `vdot`, and `inner` to use accelerated BLAS functions. | |
Typically, as a user of Numpy, you do not explicitly call this function. If | |
Numpy is built with an accelerated BLAS, this function is automatically | |
called when Numpy is imported. | |
When Numpy is built with an accelerated BLAS like ATLAS, these functions | |
are replaced to make use of the faster implementations. The faster | |
implementations only affect float32, float64, complex64, and complex128 | |
arrays. Furthermore, the BLAS API only includes matrix-matrix, | |
matrix-vector, and vector-vector products. Products of arrays with larger | |
dimensionalities use the built in functions and are not accelerated. | |
See Also | |
-------- | |
restoredot : `restoredot` undoes the effects of `alterdot`. | |
""") | |
add_newdoc('numpy.core', 'restoredot', | |
""" | |
Restore `dot`, `vdot`, and `innerproduct` to the default non-BLAS | |
implementations. | |
Typically, the user will only need to call this when troubleshooting and | |
installation problem, reproducing the conditions of a build without an | |
accelerated BLAS, or when being very careful about benchmarking linear | |
algebra operations. | |
See Also | |
-------- | |
alterdot : `restoredot` undoes the effects of `alterdot`. | |
""") | |
add_newdoc('numpy.core', 'vdot', | |
""" | |
vdot(a, b) | |
Return the dot product of two vectors. | |
The vdot(`a`, `b`) function handles complex numbers differently than | |
dot(`a`, `b`). If the first argument is complex the complex conjugate | |
of the first argument is used for the calculation of the dot product. | |
Note that `vdot` handles multidimensional arrays differently than `dot`: | |
it does *not* perform a matrix product, but flattens input arguments | |
to 1-D vectors first. Consequently, it should only be used for vectors. | |
Parameters | |
---------- | |
a : array_like | |
If `a` is complex the complex conjugate is taken before calculation | |
of the dot product. | |
b : array_like | |
Second argument to the dot product. | |
Returns | |
------- | |
output : ndarray | |
Dot product of `a` and `b`. Can be an int, float, or | |
complex depending on the types of `a` and `b`. | |
See Also | |
-------- | |
dot : Return the dot product without using the complex conjugate of the | |
first argument. | |
Examples | |
-------- | |
>>> a = np.array([1+2j,3+4j]) | |
>>> b = np.array([5+6j,7+8j]) | |
>>> np.vdot(a, b) | |
(70-8j) | |
>>> np.vdot(b, a) | |
(70+8j) | |
Note that higher-dimensional arrays are flattened! | |
>>> a = np.array([[1, 4], [5, 6]]) | |
>>> b = np.array([[4, 1], [2, 2]]) | |
>>> np.vdot(a, b) | |
30 | |
>>> np.vdot(b, a) | |
30 | |
>>> 1*4 + 4*1 + 5*2 + 6*2 | |
30 | |
""") | |
############################################################################## | |
# | |
# Documentation for ndarray attributes and methods | |
# | |
############################################################################## | |
############################################################################## | |
# | |
# ndarray object | |
# | |
############################################################################## | |
add_newdoc('numpy.core.multiarray', 'ndarray', | |
""" | |
ndarray(shape, dtype=float, buffer=None, offset=0, | |
strides=None, order=None) | |
An array object represents a multidimensional, homogeneous array | |
of fixed-size items. An associated data-type object describes the | |
format of each element in the array (its byte-order, how many bytes it | |
occupies in memory, whether it is an integer, a floating point number, | |
or something else, etc.) | |
Arrays should be constructed using `array`, `zeros` or `empty` (refer | |
to the See Also section below). The parameters given here refer to | |
a low-level method (`ndarray(...)`) for instantiating an array. | |
For more information, refer to the `numpy` module and examine the | |
the methods and attributes of an array. | |
Parameters | |
---------- | |
(for the __new__ method; see Notes below) | |
shape : tuple of ints | |
Shape of created array. | |
dtype : data-type, optional | |
Any object that can be interpreted as a numpy data type. | |
buffer : object exposing buffer interface, optional | |
Used to fill the array with data. | |
offset : int, optional | |
Offset of array data in buffer. | |
strides : tuple of ints, optional | |
Strides of data in memory. | |
order : {'C', 'F'}, optional | |
Row-major or column-major order. | |
Attributes | |
---------- | |
T : ndarray | |
Transpose of the array. | |
data : buffer | |
The array's elements, in memory. | |
dtype : dtype object | |
Describes the format of the elements in the array. | |
flags : dict | |
Dictionary containing information related to memory use, e.g., | |
'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc. | |
flat : numpy.flatiter object | |
Flattened version of the array as an iterator. The iterator | |
allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for | |
assignment examples; TODO). | |
imag : ndarray | |
Imaginary part of the array. | |
real : ndarray | |
Real part of the array. | |
size : int | |
Number of elements in the array. | |
itemsize : int | |
The memory use of each array element in bytes. | |
nbytes : int | |
The total number of bytes required to store the array data, | |
i.e., ``itemsize * size``. | |
ndim : int | |
The array's number of dimensions. | |
shape : tuple of ints | |
Shape of the array. | |
strides : tuple of ints | |
The step-size required to move from one element to the next in | |
memory. For example, a contiguous ``(3, 4)`` array of type | |
``int16`` in C-order has strides ``(8, 2)``. This implies that | |
to move from element to element in memory requires jumps of 2 bytes. | |
To move from row-to-row, one needs to jump 8 bytes at a time | |
(``2 * 4``). | |
ctypes : ctypes object | |
Class containing properties of the array needed for interaction | |
with ctypes. | |
base : ndarray | |
If the array is a view into another array, that array is its `base` | |
(unless that array is also a view). The `base` array is where the | |
array data is actually stored. | |
See Also | |
-------- | |
array : Construct an array. | |
zeros : Create an array, each element of which is zero. | |
empty : Create an array, but leave its allocated memory unchanged (i.e., | |
it contains "garbage"). | |
dtype : Create a data-type. | |
Notes | |
----- | |
There are two modes of creating an array using ``__new__``: | |
1. If `buffer` is None, then only `shape`, `dtype`, and `order` | |
are used. | |
2. If `buffer` is an object exposing the buffer interface, then | |
all keywords are interpreted. | |
No ``__init__`` method is needed because the array is fully initialized | |
after the ``__new__`` method. | |
Examples | |
-------- | |
These examples illustrate the low-level `ndarray` constructor. Refer | |
to the `See Also` section above for easier ways of constructing an | |
ndarray. | |
First mode, `buffer` is None: | |
>>> np.ndarray(shape=(2,2), dtype=float, order='F') | |
array([[ -1.13698227e+002, 4.25087011e-303], | |
[ 2.88528414e-306, 3.27025015e-309]]) #random | |
Second mode: | |
>>> np.ndarray((2,), buffer=np.array([1,2,3]), | |
... offset=np.int_().itemsize, | |
... dtype=int) # offset = 1*itemsize, i.e. skip first element | |
array([2, 3]) | |
""") | |
############################################################################## | |
# | |
# ndarray attributes | |
# | |
############################################################################## | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__', | |
"""Array protocol: Python side.""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__', | |
"""None.""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__', | |
"""Array priority.""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__', | |
"""Array protocol: C-struct side.""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_', | |
"""Allow the array to be interpreted as a ctypes object by returning the | |
data-memory location as an integer | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('base', | |
""" | |
Base object if memory is from some other object. | |
Examples | |
-------- | |
The base of an array that owns its memory is None: | |
>>> x = np.array([1,2,3,4]) | |
>>> x.base is None | |
True | |
Slicing creates a view, whose memory is shared with x: | |
>>> y = x[2:] | |
>>> y.base is x | |
True | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes', | |
""" | |
An object to simplify the interaction of the array with the ctypes | |
module. | |
This attribute creates an object that makes it easier to use arrays | |
when calling shared libraries with the ctypes module. The returned | |
object has, among others, data, shape, and strides attributes (see | |
Notes below) which themselves return ctypes objects that can be used | |
as arguments to a shared library. | |
Parameters | |
---------- | |
None | |
Returns | |
------- | |
c : Python object | |
Possessing attributes data, shape, strides, etc. | |
See Also | |
-------- | |
numpy.ctypeslib | |
Notes | |
----- | |
Below are the public attributes of this object which were documented | |
in "Guide to NumPy" (we have omitted undocumented public attributes, | |
as well as documented private attributes): | |
* data: A pointer to the memory area of the array as a Python integer. | |
This memory area may contain data that is not aligned, or not in correct | |
byte-order. The memory area may not even be writeable. The array | |
flags and data-type of this array should be respected when passing this | |
attribute to arbitrary C-code to avoid trouble that can include Python | |
crashing. User Beware! The value of this attribute is exactly the same | |
as self._array_interface_['data'][0]. | |
* shape (c_intp*self.ndim): A ctypes array of length self.ndim where | |
the basetype is the C-integer corresponding to dtype('p') on this | |
platform. This base-type could be c_int, c_long, or c_longlong | |
depending on the platform. The c_intp type is defined accordingly in | |
numpy.ctypeslib. The ctypes array contains the shape of the underlying | |
array. | |
* strides (c_intp*self.ndim): A ctypes array of length self.ndim where | |
the basetype is the same as for the shape attribute. This ctypes array | |
contains the strides information from the underlying array. This strides | |
information is important for showing how many bytes must be jumped to | |
get to the next element in the array. | |
* data_as(obj): Return the data pointer cast to a particular c-types object. | |
For example, calling self._as_parameter_ is equivalent to | |
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a | |
pointer to a ctypes array of floating-point data: | |
self.data_as(ctypes.POINTER(ctypes.c_double)). | |
* shape_as(obj): Return the shape tuple as an array of some other c-types | |
type. For example: self.shape_as(ctypes.c_short). | |
* strides_as(obj): Return the strides tuple as an array of some other | |
c-types type. For example: self.strides_as(ctypes.c_longlong). | |
Be careful using the ctypes attribute - especially on temporary | |
arrays or arrays constructed on the fly. For example, calling | |
``(a+b).ctypes.data_as(ctypes.c_void_p)`` returns a pointer to memory | |
that is invalid because the array created as (a+b) is deallocated | |
before the next Python statement. You can avoid this problem using | |
either ``c=a+b`` or ``ct=(a+b).ctypes``. In the latter case, ct will | |
hold a reference to the array until ct is deleted or re-assigned. | |
If the ctypes module is not available, then the ctypes attribute | |
of array objects still returns something useful, but ctypes objects | |
are not returned and errors may be raised instead. In particular, | |
the object will still have the as parameter attribute which will | |
return an integer equal to the data attribute. | |
Examples | |
-------- | |
>>> import ctypes | |
>>> x | |
array([[0, 1], | |
[2, 3]]) | |
>>> x.ctypes.data | |
30439712 | |
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)) | |
<ctypes.LP_c_long object at 0x01F01300> | |
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents | |
c_long(0) | |
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents | |
c_longlong(4294967296L) | |
>>> x.ctypes.shape | |
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580> | |
>>> x.ctypes.shape_as(ctypes.c_long) | |
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620> | |
>>> x.ctypes.strides | |
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620> | |
>>> x.ctypes.strides_as(ctypes.c_longlong) | |
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300> | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('data', | |
"""Python buffer object pointing to the start of the array's data.""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype', | |
""" | |
Data-type of the array's elements. | |
Parameters | |
---------- | |
None | |
Returns | |
------- | |
d : numpy dtype object | |
See Also | |
-------- | |
numpy.dtype | |
Examples | |
-------- | |
>>> x | |
array([[0, 1], | |
[2, 3]]) | |
>>> x.dtype | |
dtype('int32') | |
>>> type(x.dtype) | |
<type 'numpy.dtype'> | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('imag', | |
""" | |
The imaginary part of the array. | |
Examples | |
-------- | |
>>> x = np.sqrt([1+0j, 0+1j]) | |
>>> x.imag | |
array([ 0. , 0.70710678]) | |
>>> x.imag.dtype | |
dtype('float64') | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize', | |
""" | |
Length of one array element in bytes. | |
Examples | |
-------- | |
>>> x = np.array([1,2,3], dtype=np.float64) | |
>>> x.itemsize | |
8 | |
>>> x = np.array([1,2,3], dtype=np.complex128) | |
>>> x.itemsize | |
16 | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('flags', | |
""" | |
Information about the memory layout of the array. | |
Attributes | |
---------- | |
C_CONTIGUOUS (C) | |
The data is in a single, C-style contiguous segment. | |
F_CONTIGUOUS (F) | |
The data is in a single, Fortran-style contiguous segment. | |
OWNDATA (O) | |
The array owns the memory it uses or borrows it from another object. | |
WRITEABLE (W) | |
The data area can be written to. Setting this to False locks | |
the data, making it read-only. A view (slice, etc.) inherits WRITEABLE | |
from its base array at creation time, but a view of a writeable | |
array may be subsequently locked while the base array remains writeable. | |
(The opposite is not true, in that a view of a locked array may not | |
be made writeable. However, currently, locking a base object does not | |
lock any views that already reference it, so under that circumstance it | |
is possible to alter the contents of a locked array via a previously | |
created writeable view onto it.) Attempting to change a non-writeable | |
array raises a RuntimeError exception. | |
ALIGNED (A) | |
The data and all elements are aligned appropriately for the hardware. | |
UPDATEIFCOPY (U) | |
This array is a copy of some other array. When this array is | |
deallocated, the base array will be updated with the contents of | |
this array. | |
FNC | |
F_CONTIGUOUS and not C_CONTIGUOUS. | |
FORC | |
F_CONTIGUOUS or C_CONTIGUOUS (one-segment test). | |
BEHAVED (B) | |
ALIGNED and WRITEABLE. | |
CARRAY (CA) | |
BEHAVED and C_CONTIGUOUS. | |
FARRAY (FA) | |
BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS. | |
Notes | |
----- | |
The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``), | |
or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag | |
names are only supported in dictionary access. | |
Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by | |
the user, via direct assignment to the attribute or dictionary entry, | |
or by calling `ndarray.setflags`. | |
The array flags cannot be set arbitrarily: | |
- UPDATEIFCOPY can only be set ``False``. | |
- ALIGNED can only be set ``True`` if the data is truly aligned. | |
- WRITEABLE can only be set ``True`` if the array owns its own memory | |
or the ultimate owner of the memory exposes a writeable buffer | |
interface or is a string. | |
Arrays can be both C-style and Fortran-style contiguous simultaneously. | |
This is clear for 1-dimensional arrays, but can also be true for higher | |
dimensional arrays. | |
Even for contiguous arrays a stride for a given dimension | |
``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1`` | |
or the array has no elements. | |
It does *not* generally hold that ``self.strides[-1] == self.itemsize`` | |
for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for | |
Fortran-style contiguous arrays is true. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('flat', | |
""" | |
A 1-D iterator over the array. | |
This is a `numpy.flatiter` instance, which acts similarly to, but is not | |
a subclass of, Python's built-in iterator object. | |
See Also | |
-------- | |
flatten : Return a copy of the array collapsed into one dimension. | |
flatiter | |
Examples | |
-------- | |
>>> x = np.arange(1, 7).reshape(2, 3) | |
>>> x | |
array([[1, 2, 3], | |
[4, 5, 6]]) | |
>>> x.flat[3] | |
4 | |
>>> x.T | |
array([[1, 4], | |
[2, 5], | |
[3, 6]]) | |
>>> x.T.flat[3] | |
5 | |
>>> type(x.flat) | |
<type 'numpy.flatiter'> | |
An assignment example: | |
>>> x.flat = 3; x | |
array([[3, 3, 3], | |
[3, 3, 3]]) | |
>>> x.flat[[1,4]] = 1; x | |
array([[3, 1, 3], | |
[3, 1, 3]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes', | |
""" | |
Total bytes consumed by the elements of the array. | |
Notes | |
----- | |
Does not include memory consumed by non-element attributes of the | |
array object. | |
Examples | |
-------- | |
>>> x = np.zeros((3,5,2), dtype=np.complex128) | |
>>> x.nbytes | |
480 | |
>>> np.prod(x.shape) * x.itemsize | |
480 | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim', | |
""" | |
Number of array dimensions. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3]) | |
>>> x.ndim | |
1 | |
>>> y = np.zeros((2, 3, 4)) | |
>>> y.ndim | |
3 | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('real', | |
""" | |
The real part of the array. | |
Examples | |
-------- | |
>>> x = np.sqrt([1+0j, 0+1j]) | |
>>> x.real | |
array([ 1. , 0.70710678]) | |
>>> x.real.dtype | |
dtype('float64') | |
See Also | |
-------- | |
numpy.real : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('shape', | |
""" | |
Tuple of array dimensions. | |
Notes | |
----- | |
May be used to "reshape" the array, as long as this would not | |
require a change in the total number of elements | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 3, 4]) | |
>>> x.shape | |
(4,) | |
>>> y = np.zeros((2, 3, 4)) | |
>>> y.shape | |
(2, 3, 4) | |
>>> y.shape = (3, 8) | |
>>> y | |
array([[ 0., 0., 0., 0., 0., 0., 0., 0.], | |
[ 0., 0., 0., 0., 0., 0., 0., 0.], | |
[ 0., 0., 0., 0., 0., 0., 0., 0.]]) | |
>>> y.shape = (3, 6) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
ValueError: total size of new array must be unchanged | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('size', | |
""" | |
Number of elements in the array. | |
Equivalent to ``np.prod(a.shape)``, i.e., the product of the array's | |
dimensions. | |
Examples | |
-------- | |
>>> x = np.zeros((3, 5, 2), dtype=np.complex128) | |
>>> x.size | |
30 | |
>>> np.prod(x.shape) | |
30 | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('strides', | |
""" | |
Tuple of bytes to step in each dimension when traversing an array. | |
The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a` | |
is:: | |
offset = sum(np.array(i) * a.strides) | |
A more detailed explanation of strides can be found in the | |
"ndarray.rst" file in the NumPy reference guide. | |
Notes | |
----- | |
Imagine an array of 32-bit integers (each 4 bytes):: | |
x = np.array([[0, 1, 2, 3, 4], | |
[5, 6, 7, 8, 9]], dtype=np.int32) | |
This array is stored in memory as 40 bytes, one after the other | |
(known as a contiguous block of memory). The strides of an array tell | |
us how many bytes we have to skip in memory to move to the next position | |
along a certain axis. For example, we have to skip 4 bytes (1 value) to | |
move to the next column, but 20 bytes (5 values) to get to the same | |
position in the next row. As such, the strides for the array `x` will be | |
``(20, 4)``. | |
See Also | |
-------- | |
numpy.lib.stride_tricks.as_strided | |
Examples | |
-------- | |
>>> y = np.reshape(np.arange(2*3*4), (2,3,4)) | |
>>> y | |
array([[[ 0, 1, 2, 3], | |
[ 4, 5, 6, 7], | |
[ 8, 9, 10, 11]], | |
[[12, 13, 14, 15], | |
[16, 17, 18, 19], | |
[20, 21, 22, 23]]]) | |
>>> y.strides | |
(48, 16, 4) | |
>>> y[1,1,1] | |
17 | |
>>> offset=sum(y.strides * np.array((1,1,1))) | |
>>> offset/y.itemsize | |
17 | |
>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0) | |
>>> x.strides | |
(32, 4, 224, 1344) | |
>>> i = np.array([3,5,2,2]) | |
>>> offset = sum(i * x.strides) | |
>>> x[3,5,2,2] | |
813 | |
>>> offset / x.itemsize | |
813 | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('T', | |
""" | |
Same as self.transpose(), except that self is returned if | |
self.ndim < 2. | |
Examples | |
-------- | |
>>> x = np.array([[1.,2.],[3.,4.]]) | |
>>> x | |
array([[ 1., 2.], | |
[ 3., 4.]]) | |
>>> x.T | |
array([[ 1., 3.], | |
[ 2., 4.]]) | |
>>> x = np.array([1.,2.,3.,4.]) | |
>>> x | |
array([ 1., 2., 3., 4.]) | |
>>> x.T | |
array([ 1., 2., 3., 4.]) | |
""")) | |
############################################################################## | |
# | |
# ndarray methods | |
# | |
############################################################################## | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__', | |
""" a.__array__(|dtype) -> reference if type unchanged, copy otherwise. | |
Returns either a new reference to self if dtype is not given or a new array | |
of provided data type if dtype is different from the current dtype of the | |
array. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__', | |
"""a.__array_prepare__(obj) -> Object of same type as ndarray object obj. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__', | |
"""a.__array_wrap__(obj) -> Object of same type as ndarray object a. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__', | |
"""a.__copy__([order]) | |
Return a copy of the array. | |
Parameters | |
---------- | |
order : {'C', 'F', 'A'}, optional | |
If order is 'C' (False) then the result is contiguous (default). | |
If order is 'Fortran' (True) then the result has fortran order. | |
If order is 'Any' (None) then the result has fortran order | |
only if the array already is in fortran order. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__', | |
"""a.__deepcopy__() -> Deep copy of array. | |
Used if copy.deepcopy is called on an array. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__', | |
"""a.__reduce__() | |
For pickling. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__', | |
"""a.__setstate__(version, shape, dtype, isfortran, rawdata) | |
For unpickling. | |
Parameters | |
---------- | |
version : int | |
optional pickle version. If omitted defaults to 0. | |
shape : tuple | |
dtype : data-type | |
isFortran : bool | |
rawdata : string or list | |
a binary string with the data (or a list if 'a' is an object array) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('all', | |
""" | |
a.all(axis=None, out=None) | |
Returns True if all elements evaluate to True. | |
Refer to `numpy.all` for full documentation. | |
See Also | |
-------- | |
numpy.all : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('any', | |
""" | |
a.any(axis=None, out=None) | |
Returns True if any of the elements of `a` evaluate to True. | |
Refer to `numpy.any` for full documentation. | |
See Also | |
-------- | |
numpy.any : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax', | |
""" | |
a.argmax(axis=None, out=None) | |
Return indices of the maximum values along the given axis. | |
Refer to `numpy.argmax` for full documentation. | |
See Also | |
-------- | |
numpy.argmax : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin', | |
""" | |
a.argmin(axis=None, out=None) | |
Return indices of the minimum values along the given axis of `a`. | |
Refer to `numpy.argmin` for detailed documentation. | |
See Also | |
-------- | |
numpy.argmin : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort', | |
""" | |
a.argsort(axis=-1, kind='quicksort', order=None) | |
Returns the indices that would sort this array. | |
Refer to `numpy.argsort` for full documentation. | |
See Also | |
-------- | |
numpy.argsort : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition', | |
""" | |
a.argpartition(kth, axis=-1, kind='introselect', order=None) | |
Returns the indices that would partition this array. | |
Refer to `numpy.argpartition` for full documentation. | |
.. versionadded:: 1.8.0 | |
See Also | |
-------- | |
numpy.argpartition : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('astype', | |
""" | |
a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) | |
Copy of the array, cast to a specified type. | |
Parameters | |
---------- | |
dtype : str or dtype | |
Typecode or data-type to which the array is cast. | |
order : {'C', 'F', 'A', 'K'}, optional | |
Controls the memory layout order of the result. | |
'C' means C order, 'F' means Fortran order, 'A' | |
means 'F' order if all the arrays are Fortran contiguous, | |
'C' order otherwise, and 'K' means as close to the | |
order the array elements appear in memory as possible. | |
Default is 'K'. | |
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional | |
Controls what kind of data casting may occur. Defaults to 'unsafe' | |
for backwards compatibility. | |
* 'no' means the data types should not be cast at all. | |
* 'equiv' means only byte-order changes are allowed. | |
* 'safe' means only casts which can preserve values are allowed. | |
* 'same_kind' means only safe casts or casts within a kind, | |
like float64 to float32, are allowed. | |
* 'unsafe' means any data conversions may be done. | |
subok : bool, optional | |
If True, then sub-classes will be passed-through (default), otherwise | |
the returned array will be forced to be a base-class array. | |
copy : bool, optional | |
By default, astype always returns a newly allocated array. If this | |
is set to false, and the `dtype`, `order`, and `subok` | |
requirements are satisfied, the input array is returned instead | |
of a copy. | |
Returns | |
------- | |
arr_t : ndarray | |
Unless `copy` is False and the other conditions for returning the input | |
array are satisfied (see description for `copy` input paramter), `arr_t` | |
is a new array of the same shape as the input array, with dtype, order | |
given by `dtype`, `order`. | |
Notes | |
----- | |
Starting in NumPy 1.9, astype method now returns an error if the string | |
dtype to cast to is not long enough in 'safe' casting mode to hold the max | |
value of integer/float array that is being casted. Previously the casting | |
was allowed even if the result was truncated. | |
Raises | |
------ | |
ComplexWarning | |
When casting from complex to float or int. To avoid this, | |
one should use ``a.real.astype(t)``. | |
Examples | |
-------- | |
>>> x = np.array([1, 2, 2.5]) | |
>>> x | |
array([ 1. , 2. , 2.5]) | |
>>> x.astype(int) | |
array([1, 2, 2]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap', | |
""" | |
a.byteswap(inplace) | |
Swap the bytes of the array elements | |
Toggle between low-endian and big-endian data representation by | |
returning a byteswapped array, optionally swapped in-place. | |
Parameters | |
---------- | |
inplace : bool, optional | |
If ``True``, swap bytes in-place, default is ``False``. | |
Returns | |
------- | |
out : ndarray | |
The byteswapped array. If `inplace` is ``True``, this is | |
a view to self. | |
Examples | |
-------- | |
>>> A = np.array([1, 256, 8755], dtype=np.int16) | |
>>> map(hex, A) | |
['0x1', '0x100', '0x2233'] | |
>>> A.byteswap(True) | |
array([ 256, 1, 13090], dtype=int16) | |
>>> map(hex, A) | |
['0x100', '0x1', '0x3322'] | |
Arrays of strings are not swapped | |
>>> A = np.array(['ceg', 'fac']) | |
>>> A.byteswap() | |
array(['ceg', 'fac'], | |
dtype='|S3') | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('choose', | |
""" | |
a.choose(choices, out=None, mode='raise') | |
Use an index array to construct a new array from a set of choices. | |
Refer to `numpy.choose` for full documentation. | |
See Also | |
-------- | |
numpy.choose : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('clip', | |
""" | |
a.clip(a_min, a_max, out=None) | |
Return an array whose values are limited to ``[a_min, a_max]``. | |
Refer to `numpy.clip` for full documentation. | |
See Also | |
-------- | |
numpy.clip : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('compress', | |
""" | |
a.compress(condition, axis=None, out=None) | |
Return selected slices of this array along given axis. | |
Refer to `numpy.compress` for full documentation. | |
See Also | |
-------- | |
numpy.compress : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('conj', | |
""" | |
a.conj() | |
Complex-conjugate all elements. | |
Refer to `numpy.conjugate` for full documentation. | |
See Also | |
-------- | |
numpy.conjugate : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate', | |
""" | |
a.conjugate() | |
Return the complex conjugate, element-wise. | |
Refer to `numpy.conjugate` for full documentation. | |
See Also | |
-------- | |
numpy.conjugate : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('copy', | |
""" | |
a.copy(order='C') | |
Return a copy of the array. | |
Parameters | |
---------- | |
order : {'C', 'F', 'A', 'K'}, optional | |
Controls the memory layout of the copy. 'C' means C-order, | |
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, | |
'C' otherwise. 'K' means match the layout of `a` as closely | |
as possible. (Note that this function and :func:numpy.copy are very | |
similar, but have different default values for their order= | |
arguments.) | |
See also | |
-------- | |
numpy.copy | |
numpy.copyto | |
Examples | |
-------- | |
>>> x = np.array([[1,2,3],[4,5,6]], order='F') | |
>>> y = x.copy() | |
>>> x.fill(0) | |
>>> x | |
array([[0, 0, 0], | |
[0, 0, 0]]) | |
>>> y | |
array([[1, 2, 3], | |
[4, 5, 6]]) | |
>>> y.flags['C_CONTIGUOUS'] | |
True | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod', | |
""" | |
a.cumprod(axis=None, dtype=None, out=None) | |
Return the cumulative product of the elements along the given axis. | |
Refer to `numpy.cumprod` for full documentation. | |
See Also | |
-------- | |
numpy.cumprod : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum', | |
""" | |
a.cumsum(axis=None, dtype=None, out=None) | |
Return the cumulative sum of the elements along the given axis. | |
Refer to `numpy.cumsum` for full documentation. | |
See Also | |
-------- | |
numpy.cumsum : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal', | |
""" | |
a.diagonal(offset=0, axis1=0, axis2=1) | |
Return specified diagonals. In NumPy 1.9 the returned array is a | |
read-only view instead of a copy as in previous NumPy versions. In | |
NumPy 1.10 the read-only restriction will be removed. | |
Refer to :func:`numpy.diagonal` for full documentation. | |
See Also | |
-------- | |
numpy.diagonal : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('dot', | |
""" | |
a.dot(b, out=None) | |
Dot product of two arrays. | |
Refer to `numpy.dot` for full documentation. | |
See Also | |
-------- | |
numpy.dot : equivalent function | |
Examples | |
-------- | |
>>> a = np.eye(2) | |
>>> b = np.ones((2, 2)) * 2 | |
>>> a.dot(b) | |
array([[ 2., 2.], | |
[ 2., 2.]]) | |
This array method can be conveniently chained: | |
>>> a.dot(b).dot(b) | |
array([[ 8., 8.], | |
[ 8., 8.]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('dump', | |
"""a.dump(file) | |
Dump a pickle of the array to the specified file. | |
The array can be read back with pickle.load or numpy.load. | |
Parameters | |
---------- | |
file : str | |
A string naming the dump file. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps', | |
""" | |
a.dumps() | |
Returns the pickle of the array as a string. | |
pickle.loads or numpy.loads will convert the string back to an array. | |
Parameters | |
---------- | |
None | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('fill', | |
""" | |
a.fill(value) | |
Fill the array with a scalar value. | |
Parameters | |
---------- | |
value : scalar | |
All elements of `a` will be assigned this value. | |
Examples | |
-------- | |
>>> a = np.array([1, 2]) | |
>>> a.fill(0) | |
>>> a | |
array([0, 0]) | |
>>> a = np.empty(2) | |
>>> a.fill(1) | |
>>> a | |
array([ 1., 1.]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten', | |
""" | |
a.flatten(order='C') | |
Return a copy of the array collapsed into one dimension. | |
Parameters | |
---------- | |
order : {'C', 'F', 'A'}, optional | |
Whether to flatten in C (row-major), Fortran (column-major) order, | |
or preserve the C/Fortran ordering from `a`. | |
The default is 'C'. | |
Returns | |
------- | |
y : ndarray | |
A copy of the input array, flattened to one dimension. | |
See Also | |
-------- | |
ravel : Return a flattened array. | |
flat : A 1-D flat iterator over the array. | |
Examples | |
-------- | |
>>> a = np.array([[1,2], [3,4]]) | |
>>> a.flatten() | |
array([1, 2, 3, 4]) | |
>>> a.flatten('F') | |
array([1, 3, 2, 4]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield', | |
""" | |
a.getfield(dtype, offset=0) | |
Returns a field of the given array as a certain type. | |
A field is a view of the array data with a given data-type. The values in | |
the view are determined by the given type and the offset into the current | |
array in bytes. The offset needs to be such that the view dtype fits in the | |
array dtype; for example an array of dtype complex128 has 16-byte elements. | |
If taking a view with a 32-bit integer (4 bytes), the offset needs to be | |
between 0 and 12 bytes. | |
Parameters | |
---------- | |
dtype : str or dtype | |
The data type of the view. The dtype size of the view can not be larger | |
than that of the array itself. | |
offset : int | |
Number of bytes to skip before beginning the element view. | |
Examples | |
-------- | |
>>> x = np.diag([1.+1.j]*2) | |
>>> x[1, 1] = 2 + 4.j | |
>>> x | |
array([[ 1.+1.j, 0.+0.j], | |
[ 0.+0.j, 2.+4.j]]) | |
>>> x.getfield(np.float64) | |
array([[ 1., 0.], | |
[ 0., 2.]]) | |
By choosing an offset of 8 bytes we can select the complex part of the | |
array for our view: | |
>>> x.getfield(np.float64, offset=8) | |
array([[ 1., 0.], | |
[ 0., 4.]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('item', | |
""" | |
a.item(*args) | |
Copy an element of an array to a standard Python scalar and return it. | |
Parameters | |
---------- | |
\\*args : Arguments (variable number and type) | |
* none: in this case, the method only works for arrays | |
with one element (`a.size == 1`), which element is | |
copied into a standard Python scalar object and returned. | |
* int_type: this argument is interpreted as a flat index into | |
the array, specifying which element to copy and return. | |
* tuple of int_types: functions as does a single int_type argument, | |
except that the argument is interpreted as an nd-index into the | |
array. | |
Returns | |
------- | |
z : Standard Python scalar object | |
A copy of the specified element of the array as a suitable | |
Python scalar | |
Notes | |
----- | |
When the data type of `a` is longdouble or clongdouble, item() returns | |
a scalar array object because there is no available Python scalar that | |
would not lose information. Void arrays return a buffer object for item(), | |
unless fields are defined, in which case a tuple is returned. | |
`item` is very similar to a[args], except, instead of an array scalar, | |
a standard Python scalar is returned. This can be useful for speeding up | |
access to elements of the array and doing arithmetic on elements of the | |
array using Python's optimized math. | |
Examples | |
-------- | |
>>> x = np.random.randint(9, size=(3, 3)) | |
>>> x | |
array([[3, 1, 7], | |
[2, 8, 3], | |
[8, 5, 3]]) | |
>>> x.item(3) | |
2 | |
>>> x.item(7) | |
5 | |
>>> x.item((0, 1)) | |
1 | |
>>> x.item((2, 2)) | |
3 | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset', | |
""" | |
a.itemset(*args) | |
Insert scalar into an array (scalar is cast to array's dtype, if possible) | |
There must be at least 1 argument, and define the last argument | |
as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster | |
than ``a[args] = item``. The item should be a scalar value and `args` | |
must select a single item in the array `a`. | |
Parameters | |
---------- | |
\*args : Arguments | |
If one argument: a scalar, only used in case `a` is of size 1. | |
If two arguments: the last argument is the value to be set | |
and must be a scalar, the first argument specifies a single array | |
element location. It is either an int or a tuple. | |
Notes | |
----- | |
Compared to indexing syntax, `itemset` provides some speed increase | |
for placing a scalar into a particular location in an `ndarray`, | |
if you must do this. However, generally this is discouraged: | |
among other problems, it complicates the appearance of the code. | |
Also, when using `itemset` (and `item`) inside a loop, be sure | |
to assign the methods to a local variable to avoid the attribute | |
look-up at each loop iteration. | |
Examples | |
-------- | |
>>> x = np.random.randint(9, size=(3, 3)) | |
>>> x | |
array([[3, 1, 7], | |
[2, 8, 3], | |
[8, 5, 3]]) | |
>>> x.itemset(4, 0) | |
>>> x.itemset((2, 2), 9) | |
>>> x | |
array([[3, 1, 7], | |
[2, 0, 3], | |
[8, 5, 9]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('setasflat', | |
""" | |
a.setasflat(arr) | |
Equivalent to a.flat = arr.flat, but is generally more efficient. | |
This function does not check for overlap, so if ``arr`` and ``a`` | |
are viewing the same data with different strides, the results will | |
be unpredictable. | |
Parameters | |
---------- | |
arr : array_like | |
The array to copy into a. | |
Examples | |
-------- | |
>>> a = np.arange(2*4).reshape(2,4)[:,:-1]; a | |
array([[0, 1, 2], | |
[4, 5, 6]]) | |
>>> b = np.arange(3*3, dtype='f4').reshape(3,3).T[::-1,:-1]; b | |
array([[ 2., 5.], | |
[ 1., 4.], | |
[ 0., 3.]], dtype=float32) | |
>>> a.setasflat(b) | |
>>> a | |
array([[2, 5, 1], | |
[4, 0, 3]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('max', | |
""" | |
a.max(axis=None, out=None) | |
Return the maximum along a given axis. | |
Refer to `numpy.amax` for full documentation. | |
See Also | |
-------- | |
numpy.amax : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('mean', | |
""" | |
a.mean(axis=None, dtype=None, out=None) | |
Returns the average of the array elements along given axis. | |
Refer to `numpy.mean` for full documentation. | |
See Also | |
-------- | |
numpy.mean : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('min', | |
""" | |
a.min(axis=None, out=None) | |
Return the minimum along a given axis. | |
Refer to `numpy.amin` for full documentation. | |
See Also | |
-------- | |
numpy.amin : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'may_share_memory', | |
""" | |
Determine if two arrays can share memory | |
The memory-bounds of a and b are computed. If they overlap then | |
this function returns True. Otherwise, it returns False. | |
A return of True does not necessarily mean that the two arrays | |
share any element. It just means that they *might*. | |
Parameters | |
---------- | |
a, b : ndarray | |
Returns | |
------- | |
out : bool | |
Examples | |
-------- | |
>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) | |
False | |
""") | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder', | |
""" | |
arr.newbyteorder(new_order='S') | |
Return the array with the same data viewed with a different byte order. | |
Equivalent to:: | |
arr.view(arr.dtype.newbytorder(new_order)) | |
Changes are also made in all fields and sub-arrays of the array data | |
type. | |
Parameters | |
---------- | |
new_order : string, optional | |
Byte order to force; a value from the byte order specifications | |
above. `new_order` codes can be any of:: | |
* 'S' - swap dtype from current to opposite endian | |
* {'<', 'L'} - little endian | |
* {'>', 'B'} - big endian | |
* {'=', 'N'} - native order | |
* {'|', 'I'} - ignore (no change to byte order) | |
The default value ('S') results in swapping the current | |
byte order. The code does a case-insensitive check on the first | |
letter of `new_order` for the alternatives above. For example, | |
any of 'B' or 'b' or 'biggish' are valid to specify big-endian. | |
Returns | |
------- | |
new_arr : array | |
New array object with the dtype reflecting given change to the | |
byte order. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero', | |
""" | |
a.nonzero() | |
Return the indices of the elements that are non-zero. | |
Refer to `numpy.nonzero` for full documentation. | |
See Also | |
-------- | |
numpy.nonzero : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('prod', | |
""" | |
a.prod(axis=None, dtype=None, out=None) | |
Return the product of the array elements over the given axis | |
Refer to `numpy.prod` for full documentation. | |
See Also | |
-------- | |
numpy.prod : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp', | |
""" | |
a.ptp(axis=None, out=None) | |
Peak to peak (maximum - minimum) value along a given axis. | |
Refer to `numpy.ptp` for full documentation. | |
See Also | |
-------- | |
numpy.ptp : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('put', | |
""" | |
a.put(indices, values, mode='raise') | |
Set ``a.flat[n] = values[n]`` for all `n` in indices. | |
Refer to `numpy.put` for full documentation. | |
See Also | |
-------- | |
numpy.put : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'copyto', | |
""" | |
copyto(dst, src, casting='same_kind', where=None, preservena=False) | |
Copies values from one array to another, broadcasting as necessary. | |
Raises a TypeError if the `casting` rule is violated, and if | |
`where` is provided, it selects which elements to copy. | |
.. versionadded:: 1.7.0 | |
Parameters | |
---------- | |
dst : ndarray | |
The array into which values are copied. | |
src : array_like | |
The array from which values are copied. | |
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional | |
Controls what kind of data casting may occur when copying. | |
* 'no' means the data types should not be cast at all. | |
* 'equiv' means only byte-order changes are allowed. | |
* 'safe' means only casts which can preserve values are allowed. | |
* 'same_kind' means only safe casts or casts within a kind, | |
like float64 to float32, are allowed. | |
* 'unsafe' means any data conversions may be done. | |
where : array_like of bool, optional | |
A boolean array which is broadcasted to match the dimensions | |
of `dst`, and selects elements to copy from `src` to `dst` | |
wherever it contains the value True. | |
preservena : bool, optional | |
If set to True, leaves any NA values in `dst` untouched. This | |
is similar to the "hard mask" feature in numpy.ma. | |
""") | |
add_newdoc('numpy.core.multiarray', 'putmask', | |
""" | |
putmask(a, mask, values) | |
Changes elements of an array based on conditional and input values. | |
Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. | |
If `values` is not the same size as `a` and `mask` then it will repeat. | |
This gives behavior different from ``a[mask] = values``. | |
.. note:: The `putmask` functionality is also provided by `copyto`, which | |
can be significantly faster and in addition is NA-aware | |
(`preservena` keyword). Replacing `putmask` with | |
``np.copyto(a, values, where=mask)`` is recommended. | |
Parameters | |
---------- | |
a : array_like | |
Target array. | |
mask : array_like | |
Boolean mask array. It has to be the same shape as `a`. | |
values : array_like | |
Values to put into `a` where `mask` is True. If `values` is smaller | |
than `a` it will be repeated. | |
See Also | |
-------- | |
place, put, take, copyto | |
Examples | |
-------- | |
>>> x = np.arange(6).reshape(2, 3) | |
>>> np.putmask(x, x>2, x**2) | |
>>> x | |
array([[ 0, 1, 2], | |
[ 9, 16, 25]]) | |
If `values` is smaller than `a` it is repeated: | |
>>> x = np.arange(5) | |
>>> np.putmask(x, x>1, [-33, -44]) | |
>>> x | |
array([ 0, 1, -33, -44, -33]) | |
""") | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel', | |
""" | |
a.ravel([order]) | |
Return a flattened array. | |
Refer to `numpy.ravel` for full documentation. | |
See Also | |
-------- | |
numpy.ravel : equivalent function | |
ndarray.flat : a flat iterator on the array. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat', | |
""" | |
a.repeat(repeats, axis=None) | |
Repeat elements of an array. | |
Refer to `numpy.repeat` for full documentation. | |
See Also | |
-------- | |
numpy.repeat : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape', | |
""" | |
a.reshape(shape, order='C') | |
Returns an array containing the same data with a new shape. | |
Refer to `numpy.reshape` for full documentation. | |
See Also | |
-------- | |
numpy.reshape : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('resize', | |
""" | |
a.resize(new_shape, refcheck=True) | |
Change shape and size of array in-place. | |
Parameters | |
---------- | |
new_shape : tuple of ints, or `n` ints | |
Shape of resized array. | |
refcheck : bool, optional | |
If False, reference count will not be checked. Default is True. | |
Returns | |
------- | |
None | |
Raises | |
------ | |
ValueError | |
If `a` does not own its own data or references or views to it exist, | |
and the data memory must be changed. | |
SystemError | |
If the `order` keyword argument is specified. This behaviour is a | |
bug in NumPy. | |
See Also | |
-------- | |
resize : Return a new array with the specified shape. | |
Notes | |
----- | |
This reallocates space for the data area if necessary. | |
Only contiguous arrays (data elements consecutive in memory) can be | |
resized. | |
The purpose of the reference count check is to make sure you | |
do not use this array as a buffer for another Python object and then | |
reallocate the memory. However, reference counts can increase in | |
other ways so if you are sure that you have not shared the memory | |
for this array with another Python object, then you may safely set | |
`refcheck` to False. | |
Examples | |
-------- | |
Shrinking an array: array is flattened (in the order that the data are | |
stored in memory), resized, and reshaped: | |
>>> a = np.array([[0, 1], [2, 3]], order='C') | |
>>> a.resize((2, 1)) | |
>>> a | |
array([[0], | |
[1]]) | |
>>> a = np.array([[0, 1], [2, 3]], order='F') | |
>>> a.resize((2, 1)) | |
>>> a | |
array([[0], | |
[2]]) | |
Enlarging an array: as above, but missing entries are filled with zeros: | |
>>> b = np.array([[0, 1], [2, 3]]) | |
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple | |
>>> b | |
array([[0, 1, 2], | |
[3, 0, 0]]) | |
Referencing an array prevents resizing... | |
>>> c = a | |
>>> a.resize((1, 1)) | |
Traceback (most recent call last): | |
... | |
ValueError: cannot resize an array that has been referenced ... | |
Unless `refcheck` is False: | |
>>> a.resize((1, 1), refcheck=False) | |
>>> a | |
array([[0]]) | |
>>> c | |
array([[0]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('round', | |
""" | |
a.round(decimals=0, out=None) | |
Return `a` with each element rounded to the given number of decimals. | |
Refer to `numpy.around` for full documentation. | |
See Also | |
-------- | |
numpy.around : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted', | |
""" | |
a.searchsorted(v, side='left', sorter=None) | |
Find indices where elements of v should be inserted in a to maintain order. | |
For full documentation, see `numpy.searchsorted` | |
See Also | |
-------- | |
numpy.searchsorted : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield', | |
""" | |
a.setfield(val, dtype, offset=0) | |
Put a value into a specified place in a field defined by a data-type. | |
Place `val` into `a`'s field defined by `dtype` and beginning `offset` | |
bytes into the field. | |
Parameters | |
---------- | |
val : object | |
Value to be placed in field. | |
dtype : dtype object | |
Data-type of the field in which to place `val`. | |
offset : int, optional | |
The number of bytes into the field at which to place `val`. | |
Returns | |
------- | |
None | |
See Also | |
-------- | |
getfield | |
Examples | |
-------- | |
>>> x = np.eye(3) | |
>>> x.getfield(np.float64) | |
array([[ 1., 0., 0.], | |
[ 0., 1., 0.], | |
[ 0., 0., 1.]]) | |
>>> x.setfield(3, np.int32) | |
>>> x.getfield(np.int32) | |
array([[3, 3, 3], | |
[3, 3, 3], | |
[3, 3, 3]]) | |
>>> x | |
array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323], | |
[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323], | |
[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]]) | |
>>> x.setfield(np.eye(3), np.int32) | |
>>> x | |
array([[ 1., 0., 0.], | |
[ 0., 1., 0.], | |
[ 0., 0., 1.]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags', | |
""" | |
a.setflags(write=None, align=None, uic=None) | |
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively. | |
These Boolean-valued flags affect how numpy interprets the memory | |
area used by `a` (see Notes below). The ALIGNED flag can only | |
be set to True if the data is actually aligned according to the type. | |
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE | |
can only be set to True if the array owns its own memory, or the | |
ultimate owner of the memory exposes a writeable buffer interface, | |
or is a string. (The exception for string is made so that unpickling | |
can be done without copying memory.) | |
Parameters | |
---------- | |
write : bool, optional | |
Describes whether or not `a` can be written to. | |
align : bool, optional | |
Describes whether or not `a` is aligned properly for its type. | |
uic : bool, optional | |
Describes whether or not `a` is a copy of another "base" array. | |
Notes | |
----- | |
Array flags provide information about how the memory area used | |
for the array is to be interpreted. There are 6 Boolean flags | |
in use, only three of which can be changed by the user: | |
UPDATEIFCOPY, WRITEABLE, and ALIGNED. | |
WRITEABLE (W) the data area can be written to; | |
ALIGNED (A) the data and strides are aligned appropriately for the hardware | |
(as determined by the compiler); | |
UPDATEIFCOPY (U) this array is a copy of some other array (referenced | |
by .base). When this array is deallocated, the base array will be | |
updated with the contents of this array. | |
All flags can be accessed using their first (upper case) letter as well | |
as the full name. | |
Examples | |
-------- | |
>>> y | |
array([[3, 1, 7], | |
[2, 0, 0], | |
[8, 5, 9]]) | |
>>> y.flags | |
C_CONTIGUOUS : True | |
F_CONTIGUOUS : False | |
OWNDATA : True | |
WRITEABLE : True | |
ALIGNED : True | |
UPDATEIFCOPY : False | |
>>> y.setflags(write=0, align=0) | |
>>> y.flags | |
C_CONTIGUOUS : True | |
F_CONTIGUOUS : False | |
OWNDATA : True | |
WRITEABLE : False | |
ALIGNED : False | |
UPDATEIFCOPY : False | |
>>> y.setflags(uic=1) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
ValueError: cannot set UPDATEIFCOPY flag to True | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('sort', | |
""" | |
a.sort(axis=-1, kind='quicksort', order=None) | |
Sort an array, in-place. | |
Parameters | |
---------- | |
axis : int, optional | |
Axis along which to sort. Default is -1, which means sort along the | |
last axis. | |
kind : {'quicksort', 'mergesort', 'heapsort'}, optional | |
Sorting algorithm. Default is 'quicksort'. | |
order : list, optional | |
When `a` is an array with fields defined, this argument specifies | |
which fields to compare first, second, etc. Not all fields need be | |
specified. | |
See Also | |
-------- | |
numpy.sort : Return a sorted copy of an array. | |
argsort : Indirect sort. | |
lexsort : Indirect stable sort on multiple keys. | |
searchsorted : Find elements in sorted array. | |
partition: Partial sort. | |
Notes | |
----- | |
See ``sort`` for notes on the different sorting algorithms. | |
Examples | |
-------- | |
>>> a = np.array([[1,4], [3,1]]) | |
>>> a.sort(axis=1) | |
>>> a | |
array([[1, 4], | |
[1, 3]]) | |
>>> a.sort(axis=0) | |
>>> a | |
array([[1, 3], | |
[1, 4]]) | |
Use the `order` keyword to specify a field to use when sorting a | |
structured array: | |
>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)]) | |
>>> a.sort(order='y') | |
>>> a | |
array([('c', 1), ('a', 2)], | |
dtype=[('x', '|S1'), ('y', '<i4')]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('partition', | |
""" | |
a.partition(kth, axis=-1, kind='introselect', order=None) | |
Rearranges the elements in the array in such a way that value of the | |
element in kth position is in the position it would be in a sorted array. | |
All elements smaller than the kth element are moved before this element and | |
all equal or greater are moved behind it. The ordering of the elements in | |
the two partitions is undefined. | |
.. versionadded:: 1.8.0 | |
Parameters | |
---------- | |
kth : int or sequence of ints | |
Element index to partition by. The kth element value will be in its | |
final sorted position and all smaller elements will be moved before it | |
and all equal or greater elements behind it. | |
The order all elements in the partitions is undefined. | |
If provided with a sequence of kth it will partition all elements | |
indexed by kth of them into their sorted position at once. | |
axis : int, optional | |
Axis along which to sort. Default is -1, which means sort along the | |
last axis. | |
kind : {'introselect'}, optional | |
Selection algorithm. Default is 'introselect'. | |
order : list, optional | |
When `a` is an array with fields defined, this argument specifies | |
which fields to compare first, second, etc. Not all fields need be | |
specified. | |
See Also | |
-------- | |
numpy.partition : Return a parititioned copy of an array. | |
argpartition : Indirect partition. | |
sort : Full sort. | |
Notes | |
----- | |
See ``np.partition`` for notes on the different algorithms. | |
Examples | |
-------- | |
>>> a = np.array([3, 4, 2, 1]) | |
>>> a.partition(a, 3) | |
>>> a | |
array([2, 1, 3, 4]) | |
>>> a.partition((1, 3)) | |
array([1, 2, 3, 4]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze', | |
""" | |
a.squeeze(axis=None) | |
Remove single-dimensional entries from the shape of `a`. | |
Refer to `numpy.squeeze` for full documentation. | |
See Also | |
-------- | |
numpy.squeeze : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('std', | |
""" | |
a.std(axis=None, dtype=None, out=None, ddof=0) | |
Returns the standard deviation of the array elements along given axis. | |
Refer to `numpy.std` for full documentation. | |
See Also | |
-------- | |
numpy.std : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('sum', | |
""" | |
a.sum(axis=None, dtype=None, out=None) | |
Return the sum of the array elements over the given axis. | |
Refer to `numpy.sum` for full documentation. | |
See Also | |
-------- | |
numpy.sum : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes', | |
""" | |
a.swapaxes(axis1, axis2) | |
Return a view of the array with `axis1` and `axis2` interchanged. | |
Refer to `numpy.swapaxes` for full documentation. | |
See Also | |
-------- | |
numpy.swapaxes : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('take', | |
""" | |
a.take(indices, axis=None, out=None, mode='raise') | |
Return an array formed from the elements of `a` at the given indices. | |
Refer to `numpy.take` for full documentation. | |
See Also | |
-------- | |
numpy.take : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile', | |
""" | |
a.tofile(fid, sep="", format="%s") | |
Write array to a file as text or binary (default). | |
Data is always written in 'C' order, independent of the order of `a`. | |
The data produced by this method can be recovered using the function | |
fromfile(). | |
Parameters | |
---------- | |
fid : file or str | |
An open file object, or a string containing a filename. | |
sep : str | |
Separator between array items for text output. | |
If "" (empty), a binary file is written, equivalent to | |
``file.write(a.tobytes())``. | |
format : str | |
Format string for text file output. | |
Each entry in the array is formatted to text by first converting | |
it to the closest Python type, and then using "format" % item. | |
Notes | |
----- | |
This is a convenience function for quick storage of array data. | |
Information on endianness and precision is lost, so this method is not a | |
good choice for files intended to archive data or transport data between | |
machines with different endianness. Some of these problems can be overcome | |
by outputting the data as text files, at the expense of speed and file | |
size. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist', | |
""" | |
a.tolist() | |
Return the array as a (possibly nested) list. | |
Return a copy of the array data as a (nested) Python list. | |
Data items are converted to the nearest compatible Python type. | |
Parameters | |
---------- | |
none | |
Returns | |
------- | |
y : list | |
The possibly nested list of array elements. | |
Notes | |
----- | |
The array may be recreated, ``a = np.array(a.tolist())``. | |
Examples | |
-------- | |
>>> a = np.array([1, 2]) | |
>>> a.tolist() | |
[1, 2] | |
>>> a = np.array([[1, 2], [3, 4]]) | |
>>> list(a) | |
[array([1, 2]), array([3, 4])] | |
>>> a.tolist() | |
[[1, 2], [3, 4]] | |
""")) | |
tobytesdoc = """ | |
a.{name}(order='C') | |
Construct Python bytes containing the raw data bytes in the array. | |
Constructs Python bytes showing a copy of the raw contents of | |
data memory. The bytes object can be produced in either 'C' or 'Fortran', | |
or 'Any' order (the default is 'C'-order). 'Any' order means C-order | |
unless the F_CONTIGUOUS flag in the array is set, in which case it | |
means 'Fortran' order. | |
{deprecated} | |
Parameters | |
---------- | |
order : {{'C', 'F', None}}, optional | |
Order of the data for multidimensional arrays: | |
C, Fortran, or the same as for the original array. | |
Returns | |
------- | |
s : bytes | |
Python bytes exhibiting a copy of `a`'s raw data. | |
Examples | |
-------- | |
>>> x = np.array([[0, 1], [2, 3]]) | |
>>> x.tobytes() | |
b'\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x03\\x00\\x00\\x00' | |
>>> x.tobytes('C') == x.tobytes() | |
True | |
>>> x.tobytes('F') | |
b'\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x03\\x00\\x00\\x00' | |
""" | |
add_newdoc('numpy.core.multiarray', 'ndarray', | |
('tostring', tobytesdoc.format(name='tostring', | |
deprecated= | |
'This function is a compatibility ' | |
'alias for tobytes. Despite its ' | |
'name it returns bytes not ' | |
'strings.'))) | |
add_newdoc('numpy.core.multiarray', 'ndarray', | |
('tobytes', tobytesdoc.format(name='tobytes', | |
deprecated='.. versionadded:: 1.9.0'))) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('trace', | |
""" | |
a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) | |
Return the sum along diagonals of the array. | |
Refer to `numpy.trace` for full documentation. | |
See Also | |
-------- | |
numpy.trace : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose', | |
""" | |
a.transpose(*axes) | |
Returns a view of the array with axes transposed. | |
For a 1-D array, this has no effect. (To change between column and | |
row vectors, first cast the 1-D array into a matrix object.) | |
For a 2-D array, this is the usual matrix transpose. | |
For an n-D array, if axes are given, their order indicates how the | |
axes are permuted (see Examples). If axes are not provided and | |
``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then | |
``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``. | |
Parameters | |
---------- | |
axes : None, tuple of ints, or `n` ints | |
* None or no argument: reverses the order of the axes. | |
* tuple of ints: `i` in the `j`-th place in the tuple means `a`'s | |
`i`-th axis becomes `a.transpose()`'s `j`-th axis. | |
* `n` ints: same as an n-tuple of the same ints (this form is | |
intended simply as a "convenience" alternative to the tuple form) | |
Returns | |
------- | |
out : ndarray | |
View of `a`, with axes suitably permuted. | |
See Also | |
-------- | |
ndarray.T : Array property returning the array transposed. | |
Examples | |
-------- | |
>>> a = np.array([[1, 2], [3, 4]]) | |
>>> a | |
array([[1, 2], | |
[3, 4]]) | |
>>> a.transpose() | |
array([[1, 3], | |
[2, 4]]) | |
>>> a.transpose((1, 0)) | |
array([[1, 3], | |
[2, 4]]) | |
>>> a.transpose(1, 0) | |
array([[1, 3], | |
[2, 4]]) | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('var', | |
""" | |
a.var(axis=None, dtype=None, out=None, ddof=0) | |
Returns the variance of the array elements, along given axis. | |
Refer to `numpy.var` for full documentation. | |
See Also | |
-------- | |
numpy.var : equivalent function | |
""")) | |
add_newdoc('numpy.core.multiarray', 'ndarray', ('view', | |
""" | |
a.view(dtype=None, type=None) | |
New view of array with the same data. | |
Parameters | |
---------- | |
dtype : data-type or ndarray sub-class, optional | |
Data-type descriptor of the returned view, e.g., float32 or int16. The | |
default, None, results in the view having the same data-type as `a`. | |
This argument can also be specified as an ndarray sub-class, which | |
then specifies the type of the returned object (this is equivalent to | |
setting the ``type`` parameter). | |
type : Python type, optional | |
Type of the returned view, e.g., ndarray or matrix. Again, the | |
default None results in type preservation. | |
Notes | |
----- | |
``a.view()`` is used two different ways: | |
``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view | |
of the array's memory with a different data-type. This can cause a | |
reinterpretation of the bytes of memory. | |
``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just | |
returns an instance of `ndarray_subclass` that looks at the same array | |
(same shape, dtype, etc.) This does not cause a reinterpretation of the | |
memory. | |
For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of | |
bytes per entry than the previous dtype (for example, converting a | |
regular array to a structured array), then the behavior of the view | |
cannot be predicted just from the superficial appearance of ``a`` (shown | |
by ``print(a)``). It also depends on exactly how ``a`` is stored in | |
memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus | |
defined as a slice or transpose, etc., the view may give different | |
results. | |
Examples | |
-------- | |
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) | |
Viewing array data using a different type and dtype: | |
>>> y = x.view(dtype=np.int16, type=np.matrix) | |
>>> y | |
matrix([[513]], dtype=int16) | |
>>> print type(y) | |
<class 'numpy.matrixlib.defmatrix.matrix'> | |
Creating a view on a structured array so it can be used in calculations | |
>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) | |
>>> xv = x.view(dtype=np.int8).reshape(-1,2) | |
>>> xv | |
array([[1, 2], | |
[3, 4]], dtype=int8) | |
>>> xv.mean(0) | |
array([ 2., 3.]) | |
Making changes to the view changes the underlying array | |
>>> xv[0,1] = 20 | |
>>> print x | |
[(1, 20) (3, 4)] | |
Using a view to convert an array to a record array: | |
>>> z = x.view(np.recarray) | |
>>> z.a | |
array([1], dtype=int8) | |
Views share data: | |
>>> x[0] = (9, 10) | |
>>> z[0] | |
(9, 10) | |
Views that change the dtype size (bytes per entry) should normally be | |
avoided on arrays defined by slices, transposes, fortran-ordering, etc.: | |
>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16) | |
>>> y = x[:, 0:2] | |
>>> y | |
array([[1, 2], | |
[4, 5]], dtype=int16) | |
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
ValueError: new type not compatible with array. | |
>>> z = y.copy() | |
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) | |
array([[(1, 2)], | |
[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')]) | |
""")) | |
############################################################################## | |
# | |
# umath functions | |
# | |
############################################################################## | |
add_newdoc('numpy.core.umath', 'frompyfunc', | |
""" | |
frompyfunc(func, nin, nout) | |
Takes an arbitrary Python function and returns a Numpy ufunc. | |
Can be used, for example, to add broadcasting to a built-in Python | |
function (see Examples section). | |
Parameters | |
---------- | |
func : Python function object | |
An arbitrary Python function. | |
nin : int | |
The number of input arguments. | |
nout : int | |
The number of objects returned by `func`. | |
Returns | |
------- | |
out : ufunc | |
Returns a Numpy universal function (``ufunc``) object. | |
Notes | |
----- | |
The returned ufunc always returns PyObject arrays. | |
Examples | |
-------- | |
Use frompyfunc to add broadcasting to the Python function ``oct``: | |
>>> oct_array = np.frompyfunc(oct, 1, 1) | |
>>> oct_array(np.array((10, 30, 100))) | |
array([012, 036, 0144], dtype=object) | |
>>> np.array((oct(10), oct(30), oct(100))) # for comparison | |
array(['012', '036', '0144'], | |
dtype='|S4') | |
""") | |
add_newdoc('numpy.core.umath', 'geterrobj', | |
""" | |
geterrobj() | |
Return the current object that defines floating-point error handling. | |
The error object contains all information that defines the error handling | |
behavior in Numpy. `geterrobj` is used internally by the other | |
functions that get and set error handling behavior (`geterr`, `seterr`, | |
`geterrcall`, `seterrcall`). | |
Returns | |
------- | |
errobj : list | |
The error object, a list containing three elements: | |
[internal numpy buffer size, error mask, error callback function]. | |
The error mask is a single integer that holds the treatment information | |
on all four floating point errors. The information for each error type | |
is contained in three bits of the integer. If we print it in base 8, we | |
can see what treatment is set for "invalid", "under", "over", and | |
"divide" (in that order). The printed string can be interpreted with | |
* 0 : 'ignore' | |
* 1 : 'warn' | |
* 2 : 'raise' | |
* 3 : 'call' | |
* 4 : 'print' | |
* 5 : 'log' | |
See Also | |
-------- | |
seterrobj, seterr, geterr, seterrcall, geterrcall | |
getbufsize, setbufsize | |
Notes | |
----- | |
For complete documentation of the types of floating-point exceptions and | |
treatment options, see `seterr`. | |
Examples | |
-------- | |
>>> np.geterrobj() # first get the defaults | |
[10000, 0, None] | |
>>> def err_handler(type, flag): | |
... print "Floating point error (%s), with flag %s" % (type, flag) | |
... | |
>>> old_bufsize = np.setbufsize(20000) | |
>>> old_err = np.seterr(divide='raise') | |
>>> old_handler = np.seterrcall(err_handler) | |
>>> np.geterrobj() | |
[20000, 2, <function err_handler at 0x91dcaac>] | |
>>> old_err = np.seterr(all='ignore') | |
>>> np.base_repr(np.geterrobj()[1], 8) | |
'0' | |
>>> old_err = np.seterr(divide='warn', over='log', under='call', | |
invalid='print') | |
>>> np.base_repr(np.geterrobj()[1], 8) | |
'4351' | |
""") | |
add_newdoc('numpy.core.umath', 'seterrobj', | |
""" | |
seterrobj(errobj) | |
Set the object that defines floating-point error handling. | |
The error object contains all information that defines the error handling | |
behavior in Numpy. `seterrobj` is used internally by the other | |
functions that set error handling behavior (`seterr`, `seterrcall`). | |
Parameters | |
---------- | |
errobj : list | |
The error object, a list containing three elements: | |
[internal numpy buffer size, error mask, error callback function]. | |
The error mask is a single integer that holds the treatment information | |
on all four floating point errors. The information for each error type | |
is contained in three bits of the integer. If we print it in base 8, we | |
can see what treatment is set for "invalid", "under", "over", and | |
"divide" (in that order). The printed string can be interpreted with | |
* 0 : 'ignore' | |
* 1 : 'warn' | |
* 2 : 'raise' | |
* 3 : 'call' | |
* 4 : 'print' | |
* 5 : 'log' | |
See Also | |
-------- | |
geterrobj, seterr, geterr, seterrcall, geterrcall | |
getbufsize, setbufsize | |
Notes | |
----- | |
For complete documentation of the types of floating-point exceptions and | |
treatment options, see `seterr`. | |
Examples | |
-------- | |
>>> old_errobj = np.geterrobj() # first get the defaults | |
>>> old_errobj | |
[10000, 0, None] | |
>>> def err_handler(type, flag): | |
... print "Floating point error (%s), with flag %s" % (type, flag) | |
... | |
>>> new_errobj = [20000, 12, err_handler] | |
>>> np.seterrobj(new_errobj) | |
>>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn') | |
'14' | |
>>> np.geterr() | |
{'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'} | |
>>> np.geterrcall() is err_handler | |
True | |
""") | |
############################################################################## | |
# | |
# lib._compiled_base functions | |
# | |
############################################################################## | |
add_newdoc('numpy.lib._compiled_base', 'digitize', | |
""" | |
digitize(x, bins, right=False) | |
Return the indices of the bins to which each value in input array belongs. | |
Each index ``i`` returned is such that ``bins[i-1] <= x < bins[i]`` if | |
`bins` is monotonically increasing, or ``bins[i-1] > x >= bins[i]`` if | |
`bins` is monotonically decreasing. If values in `x` are beyond the | |
bounds of `bins`, 0 or ``len(bins)`` is returned as appropriate. If right | |
is True, then the right bin is closed so that the index ``i`` is such | |
that ``bins[i-1] < x <= bins[i]`` or bins[i-1] >= x > bins[i]`` if `bins` | |
is monotonically increasing or decreasing, respectively. | |
Parameters | |
---------- | |
x : array_like | |
Input array to be binned. It has to be 1-dimensional. | |
bins : array_like | |
Array of bins. It has to be 1-dimensional and monotonic. | |
right : bool, optional | |
Indicating whether the intervals include the right or the left bin | |
edge. Default behavior is (right==False) indicating that the interval | |
does not include the right edge. The left bin and is open in this | |
case. Ie., bins[i-1] <= x < bins[i] is the default behavior for | |
monotonically increasing bins. | |
Returns | |
------- | |
out : ndarray of ints | |
Output array of indices, of same shape as `x`. | |
Raises | |
------ | |
ValueError | |
If the input is not 1-dimensional, or if `bins` is not monotonic. | |
TypeError | |
If the type of the input is complex. | |
See Also | |
-------- | |
bincount, histogram, unique | |
Notes | |
----- | |
If values in `x` are such that they fall outside the bin range, | |
attempting to index `bins` with the indices that `digitize` returns | |
will result in an IndexError. | |
Examples | |
-------- | |
>>> x = np.array([0.2, 6.4, 3.0, 1.6]) | |
>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) | |
>>> inds = np.digitize(x, bins) | |
>>> inds | |
array([1, 4, 3, 2]) | |
>>> for n in range(x.size): | |
... print bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]] | |
... | |
0.0 <= 0.2 < 1.0 | |
4.0 <= 6.4 < 10.0 | |
2.5 <= 3.0 < 4.0 | |
1.0 <= 1.6 < 2.5 | |
>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.]) | |
>>> bins = np.array([0,5,10,15,20]) | |
>>> np.digitize(x,bins,right=True) | |
array([1, 2, 3, 4, 4]) | |
>>> np.digitize(x,bins,right=False) | |
array([1, 3, 3, 4, 5]) | |
""") | |
add_newdoc('numpy.lib._compiled_base', 'bincount', | |
""" | |
bincount(x, weights=None, minlength=None) | |
Count number of occurrences of each value in array of non-negative ints. | |
The number of bins (of size 1) is one larger than the largest value in | |
`x`. If `minlength` is specified, there will be at least this number | |
of bins in the output array (though it will be longer if necessary, | |
depending on the contents of `x`). | |
Each bin gives the number of occurrences of its index value in `x`. | |
If `weights` is specified the input array is weighted by it, i.e. if a | |
value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead | |
of ``out[n] += 1``. | |
Parameters | |
---------- | |
x : array_like, 1 dimension, nonnegative ints | |
Input array. | |
weights : array_like, optional | |
Weights, array of the same shape as `x`. | |
minlength : int, optional | |
.. versionadded:: 1.6.0 | |
A minimum number of bins for the output array. | |
Returns | |
------- | |
out : ndarray of ints | |
The result of binning the input array. | |
The length of `out` is equal to ``np.amax(x)+1``. | |
Raises | |
------ | |
ValueError | |
If the input is not 1-dimensional, or contains elements with negative | |
values, or if `minlength` is non-positive. | |
TypeError | |
If the type of the input is float or complex. | |
See Also | |
-------- | |
histogram, digitize, unique | |
Examples | |
-------- | |
>>> np.bincount(np.arange(5)) | |
array([1, 1, 1, 1, 1]) | |
>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) | |
array([1, 3, 1, 1, 0, 0, 0, 1]) | |
>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) | |
>>> np.bincount(x).size == np.amax(x)+1 | |
True | |
The input array needs to be of integer dtype, otherwise a | |
TypeError is raised: | |
>>> np.bincount(np.arange(5, dtype=np.float)) | |
Traceback (most recent call last): | |
File "<stdin>", line 1, in <module> | |
TypeError: array cannot be safely cast to required type | |
A possible use of ``bincount`` is to perform sums over | |
variable-size chunks of an array, using the ``weights`` keyword. | |
>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights | |
>>> x = np.array([0, 1, 1, 2, 2, 2]) | |
>>> np.bincount(x, weights=w) | |
array([ 0.3, 0.7, 1.1]) | |
""") | |
add_newdoc('numpy.lib._compiled_base', 'ravel_multi_index', | |
""" | |
ravel_multi_index(multi_index, dims, mode='raise', order='C') | |
Converts a tuple of index arrays into an array of flat | |
indices, applying boundary modes to the multi-index. | |
Parameters | |
---------- | |
multi_index : tuple of array_like | |
A tuple of integer arrays, one array for each dimension. | |
dims : tuple of ints | |
The shape of array into which the indices from ``multi_index`` apply. | |
mode : {'raise', 'wrap', 'clip'}, optional | |
Specifies how out-of-bounds indices are handled. Can specify | |
either one mode or a tuple of modes, one mode per index. | |
* 'raise' -- raise an error (default) | |
* 'wrap' -- wrap around | |
* 'clip' -- clip to the range | |
In 'clip' mode, a negative index which would normally | |
wrap will clip to 0 instead. | |
order : {'C', 'F'}, optional | |
Determines whether the multi-index should be viewed as indexing in | |
C (row-major) order or FORTRAN (column-major) order. | |
Returns | |
------- | |
raveled_indices : ndarray | |
An array of indices into the flattened version of an array | |
of dimensions ``dims``. | |
See Also | |
-------- | |
unravel_index | |
Notes | |
----- | |
.. versionadded:: 1.6.0 | |
Examples | |
-------- | |
>>> arr = np.array([[3,6,6],[4,5,1]]) | |
>>> np.ravel_multi_index(arr, (7,6)) | |
array([22, 41, 37]) | |
>>> np.ravel_multi_index(arr, (7,6), order='F') | |
array([31, 41, 13]) | |
>>> np.ravel_multi_index(arr, (4,6), mode='clip') | |
array([22, 23, 19]) | |
>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) | |
array([12, 13, 13]) | |
>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) | |
1621 | |
""") | |
add_newdoc('numpy.lib._compiled_base', 'unravel_index', | |
""" | |
unravel_index(indices, dims, order='C') | |
Converts a flat index or array of flat indices into a tuple | |
of coordinate arrays. | |
Parameters | |
---------- | |
indices : array_like | |
An integer array whose elements are indices into the flattened | |
version of an array of dimensions ``dims``. Before version 1.6.0, | |
this function accepted just one index value. | |
dims : tuple of ints | |
The shape of the array to use for unraveling ``indices``. | |
order : {'C', 'F'}, optional | |
.. versionadded:: 1.6.0 | |
Determines whether the indices should be viewed as indexing in | |
C (row-major) order or FORTRAN (column-major) order. | |
Returns | |
------- | |
unraveled_coords : tuple of ndarray | |
Each array in the tuple has the same shape as the ``indices`` | |
array. | |
See Also | |
-------- | |
ravel_multi_index | |
Examples | |
-------- | |
>>> np.unravel_index([22, 41, 37], (7,6)) | |
(array([3, 6, 6]), array([4, 5, 1])) | |
>>> np.unravel_index([31, 41, 13], (7,6), order='F') | |
(array([3, 6, 6]), array([4, 5, 1])) | |
>>> np.unravel_index(1621, (6,7,8,9)) | |
(3, 1, 4, 1) | |
""") | |
add_newdoc('numpy.lib._compiled_base', 'add_docstring', | |
""" | |
add_docstring(obj, docstring) | |
Add a docstring to a built-in obj if possible. | |
If the obj already has a docstring raise a RuntimeError | |
If this routine does not know how to add a docstring to the object | |
raise a TypeError | |
""") | |
add_newdoc('numpy.lib._compiled_base', 'add_newdoc_ufunc', | |
""" | |
add_ufunc_docstring(ufunc, new_docstring) | |
Replace the docstring for a ufunc with new_docstring. | |
This method will only work if the current docstring for | |
the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.) | |
Parameters | |
---------- | |
ufunc : numpy.ufunc | |
A ufunc whose current doc is NULL. | |
new_docstring : string | |
The new docstring for the ufunc. | |
Notes | |
----- | |
This method allocates memory for new_docstring on | |
the heap. Technically this creates a mempory leak, since this | |
memory will not be reclaimed until the end of the program | |
even if the ufunc itself is removed. However this will only | |
be a problem if the user is repeatedly creating ufuncs with | |
no documentation, adding documentation via add_newdoc_ufunc, | |
and then throwing away the ufunc. | |
""") | |
add_newdoc('numpy.lib._compiled_base', 'packbits', | |
""" | |
packbits(myarray, axis=None) | |
Packs the elements of a binary-valued array into bits in a uint8 array. | |
The result is padded to full bytes by inserting zero bits at the end. | |
Parameters | |
---------- | |
myarray : array_like | |
An integer type array whose elements should be packed to bits. | |
axis : int, optional | |
The dimension over which bit-packing is done. | |
``None`` implies packing the flattened array. | |
Returns | |
------- | |
packed : ndarray | |
Array of type uint8 whose elements represent bits corresponding to the | |
logical (0 or nonzero) value of the input elements. The shape of | |
`packed` has the same number of dimensions as the input (unless `axis` | |
is None, in which case the output is 1-D). | |
See Also | |
-------- | |
unpackbits: Unpacks elements of a uint8 array into a binary-valued output | |
array. | |
Examples | |
-------- | |
>>> a = np.array([[[1,0,1], | |
... [0,1,0]], | |
... [[1,1,0], | |
... [0,0,1]]]) | |
>>> b = np.packbits(a, axis=-1) | |
>>> b | |
array([[[160],[64]],[[192],[32]]], dtype=uint8) | |
Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, | |
and 32 = 0010 0000. | |
""") | |
add_newdoc('numpy.lib._compiled_base', 'unpackbits', | |
""" | |
unpackbits(myarray, axis=None) | |
Unpacks elements of a uint8 array into a binary-valued output array. | |
Each element of `myarray` represents a bit-field that should be unpacked | |
into a binary-valued output array. The shape of the output array is either | |
1-D (if `axis` is None) or the same shape as the input array with unpacking | |
done along the axis specified. | |
Parameters | |
---------- | |
myarray : ndarray, uint8 type | |
Input array. | |
axis : int, optional | |
Unpacks along this axis. | |
Returns | |
------- | |
unpacked : ndarray, uint8 type | |
The elements are binary-valued (0 or 1). | |
See Also | |
-------- | |
packbits : Packs the elements of a binary-valued array into bits in a uint8 | |
array. | |
Examples | |
-------- | |
>>> a = np.array([[2], [7], [23]], dtype=np.uint8) | |
>>> a | |
array([[ 2], | |
[ 7], | |
[23]], dtype=uint8) | |
>>> b = np.unpackbits(a, axis=1) | |
>>> b | |
array([[0, 0, 0, 0, 0, 0, 1, 0], | |
[0, 0, 0, 0, 0, 1, 1, 1], | |
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) | |
""") | |
############################################################################## | |
# | |
# Documentation for ufunc attributes and methods | |
# | |
############################################################################## | |
############################################################################## | |
# | |
# ufunc object | |
# | |
############################################################################## | |
add_newdoc('numpy.core', 'ufunc', | |
""" | |
Functions that operate element by element on whole arrays. | |
To see the documentation for a specific ufunc, use np.info(). For | |
example, np.info(np.sin). Because ufuncs are written in C | |
(for speed) and linked into Python with NumPy's ufunc facility, | |
Python's help() function finds this page whenever help() is called | |
on a ufunc. | |
A detailed explanation of ufuncs can be found in the "ufuncs.rst" | |
file in the NumPy reference guide. | |
Unary ufuncs: | |
============= | |
op(X, out=None) | |
Apply op to X elementwise | |
Parameters | |
---------- | |
X : array_like | |
Input array. | |
out : array_like | |
An array to store the output. Must be the same shape as `X`. | |
Returns | |
------- | |
r : array_like | |
`r` will have the same shape as `X`; if out is provided, `r` | |
will be equal to out. | |
Binary ufuncs: | |
============== | |
op(X, Y, out=None) | |
Apply `op` to `X` and `Y` elementwise. May "broadcast" to make | |
the shapes of `X` and `Y` congruent. | |
The broadcasting rules are: | |
* Dimensions of length 1 may be prepended to either array. | |
* Arrays may be repeated along dimensions of length 1. | |
Parameters | |
---------- | |
X : array_like | |
First input array. | |
Y : array_like | |
Second input array. | |
out : array_like | |
An array to store the output. Must be the same shape as the | |
output would have. | |
Returns | |
------- | |
r : array_like | |
The return value; if out is provided, `r` will be equal to out. | |
""") | |
############################################################################## | |
# | |
# ufunc attributes | |
# | |
############################################################################## | |
add_newdoc('numpy.core', 'ufunc', ('identity', | |
""" | |
The identity value. | |
Data attribute containing the identity element for the ufunc, if it has one. | |
If it does not, the attribute value is None. | |
Examples | |
-------- | |
>>> np.add.identity | |
0 | |
>>> np.multiply.identity | |
1 | |
>>> np.power.identity | |
1 | |
>>> print np.exp.identity | |
None | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('nargs', | |
""" | |
The number of arguments. | |
Data attribute containing the number of arguments the ufunc takes, including | |
optional ones. | |
Notes | |
----- | |
Typically this value will be one more than what you might expect because all | |
ufuncs take the optional "out" argument. | |
Examples | |
-------- | |
>>> np.add.nargs | |
3 | |
>>> np.multiply.nargs | |
3 | |
>>> np.power.nargs | |
3 | |
>>> np.exp.nargs | |
2 | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('nin', | |
""" | |
The number of inputs. | |
Data attribute containing the number of arguments the ufunc treats as input. | |
Examples | |
-------- | |
>>> np.add.nin | |
2 | |
>>> np.multiply.nin | |
2 | |
>>> np.power.nin | |
2 | |
>>> np.exp.nin | |
1 | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('nout', | |
""" | |
The number of outputs. | |
Data attribute containing the number of arguments the ufunc treats as output. | |
Notes | |
----- | |
Since all ufuncs can take output arguments, this will always be (at least) 1. | |
Examples | |
-------- | |
>>> np.add.nout | |
1 | |
>>> np.multiply.nout | |
1 | |
>>> np.power.nout | |
1 | |
>>> np.exp.nout | |
1 | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('ntypes', | |
""" | |
The number of types. | |
The number of numerical NumPy types - of which there are 18 total - on which | |
the ufunc can operate. | |
See Also | |
-------- | |
numpy.ufunc.types | |
Examples | |
-------- | |
>>> np.add.ntypes | |
18 | |
>>> np.multiply.ntypes | |
18 | |
>>> np.power.ntypes | |
17 | |
>>> np.exp.ntypes | |
7 | |
>>> np.remainder.ntypes | |
14 | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('types', | |
""" | |
Returns a list with types grouped input->output. | |
Data attribute listing the data-type "Domain-Range" groupings the ufunc can | |
deliver. The data-types are given using the character codes. | |
See Also | |
-------- | |
numpy.ufunc.ntypes | |
Examples | |
-------- | |
>>> np.add.types | |
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', | |
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', | |
'GG->G', 'OO->O'] | |
>>> np.multiply.types | |
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', | |
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', | |
'GG->G', 'OO->O'] | |
>>> np.power.types | |
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', | |
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G', | |
'OO->O'] | |
>>> np.exp.types | |
['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O'] | |
>>> np.remainder.types | |
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L', | |
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O'] | |
""")) | |
############################################################################## | |
# | |
# ufunc methods | |
# | |
############################################################################## | |
add_newdoc('numpy.core', 'ufunc', ('reduce', | |
""" | |
reduce(a, axis=0, dtype=None, out=None, keepdims=False) | |
Reduces `a`'s dimension by one, by applying ufunc along one axis. | |
Let :math:`a.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then | |
:math:`ufunc.reduce(a, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` = | |
the result of iterating `j` over :math:`range(N_i)`, cumulatively applying | |
ufunc to each :math:`a[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`. | |
For a one-dimensional array, reduce produces results equivalent to: | |
:: | |
r = op.identity # op = ufunc | |
for i in range(len(A)): | |
r = op(r, A[i]) | |
return r | |
For example, add.reduce() is equivalent to sum(). | |
Parameters | |
---------- | |
a : array_like | |
The array to act on. | |
axis : None or int or tuple of ints, optional | |
Axis or axes along which a reduction is performed. | |
The default (`axis` = 0) is perform a reduction over the first | |
dimension of the input array. `axis` may be negative, in | |
which case it counts from the last to the first axis. | |
.. versionadded:: 1.7.0 | |
If this is `None`, a reduction is performed over all the axes. | |
If this is a tuple of ints, a reduction is performed on multiple | |
axes, instead of a single axis or all the axes as before. | |
For operations which are either not commutative or not associative, | |
doing a reduction over multiple axes is not well-defined. The | |
ufuncs do not currently raise an exception in this case, but will | |
likely do so in the future. | |
dtype : data-type code, optional | |
The type used to represent the intermediate results. Defaults | |
to the data-type of the output array if this is provided, or | |
the data-type of the input array if no output array is provided. | |
out : ndarray, optional | |
A location into which the result is stored. If not provided, a | |
freshly-allocated array is returned. | |
keepdims : bool, optional | |
If this is set to True, the axes which are reduced are left | |
in the result as dimensions with size one. With this option, | |
the result will broadcast correctly against the original `arr`. | |
.. versionadded:: 1.7.0 | |
Returns | |
------- | |
r : ndarray | |
The reduced array. If `out` was supplied, `r` is a reference to it. | |
Examples | |
-------- | |
>>> np.multiply.reduce([2,3,5]) | |
30 | |
A multi-dimensional array example: | |
>>> X = np.arange(8).reshape((2,2,2)) | |
>>> X | |
array([[[0, 1], | |
[2, 3]], | |
[[4, 5], | |
[6, 7]]]) | |
>>> np.add.reduce(X, 0) | |
array([[ 4, 6], | |
[ 8, 10]]) | |
>>> np.add.reduce(X) # confirm: default axis value is 0 | |
array([[ 4, 6], | |
[ 8, 10]]) | |
>>> np.add.reduce(X, 1) | |
array([[ 2, 4], | |
[10, 12]]) | |
>>> np.add.reduce(X, 2) | |
array([[ 1, 5], | |
[ 9, 13]]) | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('accumulate', | |
""" | |
accumulate(array, axis=0, dtype=None, out=None) | |
Accumulate the result of applying the operator to all elements. | |
For a one-dimensional array, accumulate produces results equivalent to:: | |
r = np.empty(len(A)) | |
t = op.identity # op = the ufunc being applied to A's elements | |
for i in range(len(A)): | |
t = op(t, A[i]) | |
r[i] = t | |
return r | |
For example, add.accumulate() is equivalent to np.cumsum(). | |
For a multi-dimensional array, accumulate is applied along only one | |
axis (axis zero by default; see Examples below) so repeated use is | |
necessary if one wants to accumulate over multiple axes. | |
Parameters | |
---------- | |
array : array_like | |
The array to act on. | |
axis : int, optional | |
The axis along which to apply the accumulation; default is zero. | |
dtype : data-type code, optional | |
The data-type used to represent the intermediate results. Defaults | |
to the data-type of the output array if such is provided, or the | |
the data-type of the input array if no output array is provided. | |
out : ndarray, optional | |
A location into which the result is stored. If not provided a | |
freshly-allocated array is returned. | |
Returns | |
------- | |
r : ndarray | |
The accumulated values. If `out` was supplied, `r` is a reference to | |
`out`. | |
Examples | |
-------- | |
1-D array examples: | |
>>> np.add.accumulate([2, 3, 5]) | |
array([ 2, 5, 10]) | |
>>> np.multiply.accumulate([2, 3, 5]) | |
array([ 2, 6, 30]) | |
2-D array examples: | |
>>> I = np.eye(2) | |
>>> I | |
array([[ 1., 0.], | |
[ 0., 1.]]) | |
Accumulate along axis 0 (rows), down columns: | |
>>> np.add.accumulate(I, 0) | |
array([[ 1., 0.], | |
[ 1., 1.]]) | |
>>> np.add.accumulate(I) # no axis specified = axis zero | |
array([[ 1., 0.], | |
[ 1., 1.]]) | |
Accumulate along axis 1 (columns), through rows: | |
>>> np.add.accumulate(I, 1) | |
array([[ 1., 1.], | |
[ 0., 1.]]) | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('reduceat', | |
""" | |
reduceat(a, indices, axis=0, dtype=None, out=None) | |
Performs a (local) reduce with specified slices over a single axis. | |
For i in ``range(len(indices))``, `reduceat` computes | |
``ufunc.reduce(a[indices[i]:indices[i+1]])``, which becomes the i-th | |
generalized "row" parallel to `axis` in the final result (i.e., in a | |
2-D array, for example, if `axis = 0`, it becomes the i-th row, but if | |
`axis = 1`, it becomes the i-th column). There are three exceptions to this: | |
* when ``i = len(indices) - 1`` (so for the last index), | |
``indices[i+1] = a.shape[axis]``. | |
* if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is | |
simply ``a[indices[i]]``. | |
* if ``indices[i] >= len(a)`` or ``indices[i] < 0``, an error is raised. | |
The shape of the output depends on the size of `indices`, and may be | |
larger than `a` (this happens if ``len(indices) > a.shape[axis]``). | |
Parameters | |
---------- | |
a : array_like | |
The array to act on. | |
indices : array_like | |
Paired indices, comma separated (not colon), specifying slices to | |
reduce. | |
axis : int, optional | |
The axis along which to apply the reduceat. | |
dtype : data-type code, optional | |
The type used to represent the intermediate results. Defaults | |
to the data type of the output array if this is provided, or | |
the data type of the input array if no output array is provided. | |
out : ndarray, optional | |
A location into which the result is stored. If not provided a | |
freshly-allocated array is returned. | |
Returns | |
------- | |
r : ndarray | |
The reduced values. If `out` was supplied, `r` is a reference to | |
`out`. | |
Notes | |
----- | |
A descriptive example: | |
If `a` is 1-D, the function `ufunc.accumulate(a)` is the same as | |
``ufunc.reduceat(a, indices)[::2]`` where `indices` is | |
``range(len(array) - 1)`` with a zero placed | |
in every other element: | |
``indices = zeros(2 * len(a) - 1)``, ``indices[1::2] = range(1, len(a))``. | |
Don't be fooled by this attribute's name: `reduceat(a)` is not | |
necessarily smaller than `a`. | |
Examples | |
-------- | |
To take the running sum of four successive values: | |
>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2] | |
array([ 6, 10, 14, 18]) | |
A 2-D example: | |
>>> x = np.linspace(0, 15, 16).reshape(4,4) | |
>>> x | |
array([[ 0., 1., 2., 3.], | |
[ 4., 5., 6., 7.], | |
[ 8., 9., 10., 11.], | |
[ 12., 13., 14., 15.]]) | |
:: | |
# reduce such that the result has the following five rows: | |
# [row1 + row2 + row3] | |
# [row4] | |
# [row2] | |
# [row3] | |
# [row1 + row2 + row3 + row4] | |
>>> np.add.reduceat(x, [0, 3, 1, 2, 0]) | |
array([[ 12., 15., 18., 21.], | |
[ 12., 13., 14., 15.], | |
[ 4., 5., 6., 7.], | |
[ 8., 9., 10., 11.], | |
[ 24., 28., 32., 36.]]) | |
:: | |
# reduce such that result has the following two columns: | |
# [col1 * col2 * col3, col4] | |
>>> np.multiply.reduceat(x, [0, 3], 1) | |
array([[ 0., 3.], | |
[ 120., 7.], | |
[ 720., 11.], | |
[ 2184., 15.]]) | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('outer', | |
""" | |
outer(A, B) | |
Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`. | |
Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of | |
``op.outer(A, B)`` is an array of dimension M + N such that: | |
.. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] = | |
op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}]) | |
For `A` and `B` one-dimensional, this is equivalent to:: | |
r = empty(len(A),len(B)) | |
for i in range(len(A)): | |
for j in range(len(B)): | |
r[i,j] = op(A[i], B[j]) # op = ufunc in question | |
Parameters | |
---------- | |
A : array_like | |
First array | |
B : array_like | |
Second array | |
Returns | |
------- | |
r : ndarray | |
Output array | |
See Also | |
-------- | |
numpy.outer | |
Examples | |
-------- | |
>>> np.multiply.outer([1, 2, 3], [4, 5, 6]) | |
array([[ 4, 5, 6], | |
[ 8, 10, 12], | |
[12, 15, 18]]) | |
A multi-dimensional example: | |
>>> A = np.array([[1, 2, 3], [4, 5, 6]]) | |
>>> A.shape | |
(2, 3) | |
>>> B = np.array([[1, 2, 3, 4]]) | |
>>> B.shape | |
(1, 4) | |
>>> C = np.multiply.outer(A, B) | |
>>> C.shape; C | |
(2, 3, 1, 4) | |
array([[[[ 1, 2, 3, 4]], | |
[[ 2, 4, 6, 8]], | |
[[ 3, 6, 9, 12]]], | |
[[[ 4, 8, 12, 16]], | |
[[ 5, 10, 15, 20]], | |
[[ 6, 12, 18, 24]]]]) | |
""")) | |
add_newdoc('numpy.core', 'ufunc', ('at', | |
""" | |
at(a, indices, b=None) | |
Performs unbuffered in place operation on operand 'a' for elements | |
specified by 'indices'. For addition ufunc, this method is equivalent to | |
`a[indices] += b`, except that results are accumulated for elements that | |
are indexed more than once. For example, `a[[0,0]] += 1` will only | |
increment the first element once because of buffering, whereas | |
`add.at(a, [0,0], 1)` will increment the first element twice. | |
.. versionadded:: 1.8.0 | |
Parameters | |
---------- | |
a : array_like | |
The array to perform in place operation on. | |
indices : array_like or tuple | |
Array like index object or slice object for indexing into first | |
operand. If first operand has multiple dimensions, indices can be a | |
tuple of array like index objects or slice objects. | |
b : array_like | |
Second operand for ufuncs requiring two operands. Operand must be | |
broadcastable over first operand after indexing or slicing. | |
Examples | |
-------- | |
Set items 0 and 1 to their negative values: | |
>>> a = np.array([1, 2, 3, 4]) | |
>>> np.negative.at(a, [0, 1]) | |
>>> print(a) | |
array([-1, -2, 3, 4]) | |
:: | |
Increment items 0 and 1, and increment item 2 twice: | |
>>> a = np.array([1, 2, 3, 4]) | |
>>> np.add.at(a, [0, 1, 2, 2], 1) | |
>>> print(a) | |
array([2, 3, 5, 4]) | |
:: | |
Add items 0 and 1 in first array to second array, | |
and store results in first array: | |
>>> a = np.array([1, 2, 3, 4]) | |
>>> b = np.array([1, 2]) | |
>>> np.add.at(a, [0, 1], b) | |
>>> print(a) | |
array([2, 4, 3, 4]) | |
""")) | |
############################################################################## | |
# | |
# Documentation for dtype attributes and methods | |
# | |
############################################################################## | |
############################################################################## | |
# | |
# dtype object | |
# | |
############################################################################## | |
add_newdoc('numpy.core.multiarray', 'dtype', | |
""" | |
dtype(obj, align=False, copy=False) | |
Create a data type object. | |
A numpy array is homogeneous, and contains elements described by a | |
dtype object. A dtype object can be constructed from different | |
combinations of fundamental numeric types. | |
Parameters | |
---------- | |
obj | |
Object to be converted to a data type object. | |
align : bool, optional | |
Add padding to the fields to match what a C compiler would output | |
for a similar C-struct. Can be ``True`` only if `obj` is a dictionary | |
or a comma-separated string. If a struct dtype is being created, | |
this also sets a sticky alignment flag ``isalignedstruct``. | |
copy : bool, optional | |
Make a new copy of the data-type object. If ``False``, the result | |
may just be a reference to a built-in data-type object. | |
See also | |
-------- | |
result_type | |
Examples | |
-------- | |
Using array-scalar type: | |
>>> np.dtype(np.int16) | |
dtype('int16') | |
Record, one field name 'f1', containing int16: | |
>>> np.dtype([('f1', np.int16)]) | |
dtype([('f1', '<i2')]) | |
Record, one field named 'f1', in itself containing a record with one field: | |
>>> np.dtype([('f1', [('f1', np.int16)])]) | |
dtype([('f1', [('f1', '<i2')])]) | |
Record, two fields: the first field contains an unsigned int, the | |
second an int32: | |
>>> np.dtype([('f1', np.uint), ('f2', np.int32)]) | |
dtype([('f1', '<u4'), ('f2', '<i4')]) | |
Using array-protocol type strings: | |
>>> np.dtype([('a','f8'),('b','S10')]) | |
dtype([('a', '<f8'), ('b', '|S10')]) | |
Using comma-separated field formats. The shape is (2,3): | |
>>> np.dtype("i4, (2,3)f8") | |
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))]) | |
Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void`` | |
is a flexible type, here of size 10: | |
>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)]) | |
dtype([('hello', '<i4', 3), ('world', '|V10')]) | |
Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are | |
the offsets in bytes: | |
>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) | |
dtype(('<i2', [('x', '|i1'), ('y', '|i1')])) | |
Using dictionaries. Two fields named 'gender' and 'age': | |
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) | |
dtype([('gender', '|S1'), ('age', '|u1')]) | |
Offsets in bytes, here 0 and 25: | |
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) | |
dtype([('surname', '|S25'), ('age', '|u1')]) | |
""") | |
############################################################################## | |
# | |
# dtype attributes | |
# | |
############################################################################## | |
add_newdoc('numpy.core.multiarray', 'dtype', ('alignment', | |
""" | |
The required alignment (bytes) of this data-type according to the compiler. | |
More information is available in the C-API section of the manual. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder', | |
""" | |
A character indicating the byte-order of this data-type object. | |
One of: | |
=== ============== | |
'=' native | |
'<' little-endian | |
'>' big-endian | |
'|' not applicable | |
=== ============== | |
All built-in data-type objects have byteorder either '=' or '|'. | |
Examples | |
-------- | |
>>> dt = np.dtype('i2') | |
>>> dt.byteorder | |
'=' | |
>>> # endian is not relevant for 8 bit numbers | |
>>> np.dtype('i1').byteorder | |
'|' | |
>>> # or ASCII strings | |
>>> np.dtype('S2').byteorder | |
'|' | |
>>> # Even if specific code is given, and it is native | |
>>> # '=' is the byteorder | |
>>> import sys | |
>>> sys_is_le = sys.byteorder == 'little' | |
>>> native_code = sys_is_le and '<' or '>' | |
>>> swapped_code = sys_is_le and '>' or '<' | |
>>> dt = np.dtype(native_code + 'i2') | |
>>> dt.byteorder | |
'=' | |
>>> # Swapped code shows up as itself | |
>>> dt = np.dtype(swapped_code + 'i2') | |
>>> dt.byteorder == swapped_code | |
True | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('char', | |
"""A unique character code for each of the 21 different built-in types.""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('descr', | |
""" | |
Array-interface compliant full description of the data-type. | |
The format is that required by the 'descr' key in the | |
`__array_interface__` attribute. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('fields', | |
""" | |
Dictionary of named fields defined for this data type, or ``None``. | |
The dictionary is indexed by keys that are the names of the fields. | |
Each entry in the dictionary is a tuple fully describing the field:: | |
(dtype, offset[, title]) | |
If present, the optional title can be any object (if it is a string | |
or unicode then it will also be a key in the fields dictionary, | |
otherwise it's meta-data). Notice also that the first two elements | |
of the tuple can be passed directly as arguments to the ``ndarray.getfield`` | |
and ``ndarray.setfield`` methods. | |
See Also | |
-------- | |
ndarray.getfield, ndarray.setfield | |
Examples | |
-------- | |
>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) | |
>>> print dt.fields | |
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)} | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('flags', | |
""" | |
Bit-flags describing how this data type is to be interpreted. | |
Bit-masks are in `numpy.core.multiarray` as the constants | |
`ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`, | |
`NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation | |
of these flags is in C-API documentation; they are largely useful | |
for user-defined data-types. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject', | |
""" | |
Boolean indicating whether this dtype contains any reference-counted | |
objects in any fields or sub-dtypes. | |
Recall that what is actually in the ndarray memory representing | |
the Python object is the memory address of that object (a pointer). | |
Special handling may be required, and this attribute is useful for | |
distinguishing data types that may contain arbitrary Python objects | |
and data-types that won't. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin', | |
""" | |
Integer indicating how this dtype relates to the built-in dtypes. | |
Read-only. | |
= ======================================================================== | |
0 if this is a structured array type, with fields | |
1 if this is a dtype compiled into numpy (such as ints, floats etc) | |
2 if the dtype is for a user-defined numpy type | |
A user-defined type uses the numpy C-API machinery to extend | |
numpy to handle a new array type. See | |
:ref:`user.user-defined-data-types` in the Numpy manual. | |
= ======================================================================== | |
Examples | |
-------- | |
>>> dt = np.dtype('i2') | |
>>> dt.isbuiltin | |
1 | |
>>> dt = np.dtype('f8') | |
>>> dt.isbuiltin | |
1 | |
>>> dt = np.dtype([('field1', 'f8')]) | |
>>> dt.isbuiltin | |
0 | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('isnative', | |
""" | |
Boolean indicating whether the byte order of this dtype is native | |
to the platform. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct', | |
""" | |
Boolean indicating whether the dtype is a struct which maintains | |
field alignment. This flag is sticky, so when combining multiple | |
structs together, it is preserved and produces new dtypes which | |
are also aligned. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize', | |
""" | |
The element size of this data-type object. | |
For 18 of the 21 types this number is fixed by the data-type. | |
For the flexible data-types, this number can be anything. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('kind', | |
""" | |
A character code (one of 'biufcOSUV') identifying the general kind of data. | |
= ====================== | |
b boolean | |
i signed integer | |
u unsigned integer | |
f floating-point | |
c complex floating-point | |
O object | |
S (byte-)string | |
U Unicode | |
V void | |
= ====================== | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('name', | |
""" | |
A bit-width name for this data-type. | |
Un-sized flexible data-type objects do not have this attribute. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('names', | |
""" | |
Ordered list of field names, or ``None`` if there are no fields. | |
The names are ordered according to increasing byte offset. This can be | |
used, for example, to walk through all of the named fields in offset order. | |
Examples | |
-------- | |
>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) | |
>>> dt.names | |
('name', 'grades') | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('num', | |
""" | |
A unique number for each of the 21 different built-in types. | |
These are roughly ordered from least-to-most precision. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('shape', | |
""" | |
Shape tuple of the sub-array if this data type describes a sub-array, | |
and ``()`` otherwise. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('str', | |
"""The array-protocol typestring of this data-type object.""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype', | |
""" | |
Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and | |
None otherwise. | |
The *shape* is the fixed shape of the sub-array described by this | |
data type, and *item_dtype* the data type of the array. | |
If a field whose dtype object has this attribute is retrieved, | |
then the extra dimensions implied by *shape* are tacked on to | |
the end of the retrieved array. | |
""")) | |
add_newdoc('numpy.core.multiarray', 'dtype', ('type', | |
"""The type object used to instantiate a scalar of this data-type.""")) | |
############################################################################## | |
# | |
# dtype methods | |
# | |
############################################################################## | |
add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder', | |
""" | |
newbyteorder(new_order='S') | |
Return a new dtype with a different byte order. | |
Changes are also made in all fields and sub-arrays of the data type. | |
Parameters | |
---------- | |
new_order : string, optional | |
Byte order to force; a value from the byte order | |
specifications below. The default value ('S') results in | |
swapping the current byte order. | |
`new_order` codes can be any of:: | |
* 'S' - swap dtype from current to opposite endian | |
* {'<', 'L'} - little endian | |
* {'>', 'B'} - big endian | |
* {'=', 'N'} - native order | |
* {'|', 'I'} - ignore (no change to byte order) | |
The code does a case-insensitive check on the first letter of | |
`new_order` for these alternatives. For example, any of '>' | |
or 'B' or 'b' or 'brian' are valid to specify big-endian. | |
Returns | |
------- | |
new_dtype : dtype | |
New dtype object with the given change to the byte order. | |
Notes | |
----- | |
Changes are also made in all fields and sub-arrays of the data type. | |
Examples | |
-------- | |
>>> import sys | |
>>> sys_is_le = sys.byteorder == 'little' | |
>>> native_code = sys_is_le and '<' or '>' | |
>>> swapped_code = sys_is_le and '>' or '<' | |
>>> native_dt = np.dtype(native_code+'i2') | |
>>> swapped_dt = np.dtype(swapped_code+'i2') | |
>>> native_dt.newbyteorder('S') == swapped_dt | |
True | |
>>> native_dt.newbyteorder() == swapped_dt | |
True | |
>>> native_dt == swapped_dt.newbyteorder('S') | |
True | |
>>> native_dt == swapped_dt.newbyteorder('=') | |
True | |
>>> native_dt == swapped_dt.newbyteorder('N') | |
True | |
>>> native_dt == native_dt.newbyteorder('|') | |
True | |
>>> np.dtype('<i2') == native_dt.newbyteorder('<') | |
True | |
>>> np.dtype('<i2') == native_dt.newbyteorder('L') | |
True | |
>>> np.dtype('>i2') == native_dt.newbyteorder('>') | |
True | |
>>> np.dtype('>i2') == native_dt.newbyteorder('B') | |
True | |
""")) | |
############################################################################## | |
# | |
# Datetime-related Methods | |
# | |
############################################################################## | |
add_newdoc('numpy.core.multiarray', 'busdaycalendar', | |
""" | |
busdaycalendar(weekmask='1111100', holidays=None) | |
A business day calendar object that efficiently stores information | |
defining valid days for the busday family of functions. | |
The default valid days are Monday through Friday ("business days"). | |
A busdaycalendar object can be specified with any set of weekly | |
valid days, plus an optional "holiday" dates that always will be invalid. | |
Once a busdaycalendar object is created, the weekmask and holidays | |
cannot be modified. | |
.. versionadded:: 1.7.0 | |
Parameters | |
---------- | |
weekmask : str or array_like of bool, optional | |
A seven-element array indicating which of Monday through Sunday are | |
valid days. May be specified as a length-seven list or array, like | |
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string | |
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for | |
weekdays, optionally separated by white space. Valid abbreviations | |
are: Mon Tue Wed Thu Fri Sat Sun | |
holidays : array_like of datetime64[D], optional | |
An array of dates to consider as invalid dates, no matter which | |
weekday they fall upon. Holiday dates may be specified in any | |
order, and NaT (not-a-time) dates are ignored. This list is | |
saved in a normalized form that is suited for fast calculations | |
of valid days. | |
Returns | |
------- | |
out : busdaycalendar | |
A business day calendar object containing the specified | |
weekmask and holidays values. | |
See Also | |
-------- | |
is_busday : Returns a boolean array indicating valid days. | |
busday_offset : Applies an offset counted in valid days. | |
busday_count : Counts how many valid days are in a half-open date range. | |
Attributes | |
---------- | |
Note: once a busdaycalendar object is created, you cannot modify the | |
weekmask or holidays. The attributes return copies of internal data. | |
weekmask : (copy) seven-element array of bool | |
holidays : (copy) sorted array of datetime64[D] | |
Examples | |
-------- | |
>>> # Some important days in July | |
... bdd = np.busdaycalendar( | |
... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) | |
>>> # Default is Monday to Friday weekdays | |
... bdd.weekmask | |
array([ True, True, True, True, True, False, False], dtype='bool') | |
>>> # Any holidays already on the weekend are removed | |
... bdd.holidays | |
array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]') | |
""") | |
add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask', | |
"""A copy of the seven-element boolean mask indicating valid days.""")) | |
add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays', | |
"""A copy of the holiday array indicating additional invalid days.""")) | |
add_newdoc('numpy.core.multiarray', 'is_busday', | |
""" | |
is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None) | |
Calculates which of the given dates are valid days, and which are not. | |
.. versionadded:: 1.7.0 | |
Parameters | |
---------- | |
dates : array_like of datetime64[D] | |
The array of dates to process. | |
weekmask : str or array_like of bool, optional | |
A seven-element array indicating which of Monday through Sunday are | |
valid days. May be specified as a length-seven list or array, like | |
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string | |
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for | |
weekdays, optionally separated by white space. Valid abbreviations | |
are: Mon Tue Wed Thu Fri Sat Sun | |
holidays : array_like of datetime64[D], optional | |
An array of dates to consider as invalid dates. They may be | |
specified in any order, and NaT (not-a-time) dates are ignored. | |
This list is saved in a normalized form that is suited for | |
fast calculations of valid days. | |
busdaycal : busdaycalendar, optional | |
A `busdaycalendar` object which specifies the valid days. If this | |
parameter is provided, neither weekmask nor holidays may be | |
provided. | |
out : array of bool, optional | |
If provided, this array is filled with the result. | |
Returns | |
------- | |
out : array of bool | |
An array with the same shape as ``dates``, containing True for | |
each valid day, and False for each invalid day. | |
See Also | |
-------- | |
busdaycalendar: An object that specifies a custom set of valid days. | |
busday_offset : Applies an offset counted in valid days. | |
busday_count : Counts how many valid days are in a half-open date range. | |
Examples | |
-------- | |
>>> # The weekdays are Friday, Saturday, and Monday | |
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], | |
... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) | |
array([False, False, True], dtype='bool') | |
""") | |
add_newdoc('numpy.core.multiarray', 'busday_offset', | |
""" | |
busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None) | |
First adjusts the date to fall on a valid day according to | |
the ``roll`` rule, then applies offsets to the given dates | |
counted in valid days. | |
.. versionadded:: 1.7.0 | |
Parameters | |
---------- | |
dates : array_like of datetime64[D] | |
The array of dates to process. | |
offsets : array_like of int | |
The array of offsets, which is broadcast with ``dates``. | |
roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional | |
How to treat dates that do not fall on a valid day. The default | |
is 'raise'. | |
* 'raise' means to raise an exception for an invalid day. | |
* 'nat' means to return a NaT (not-a-time) for an invalid day. | |
* 'forward' and 'following' mean to take the first valid day | |
later in time. | |
* 'backward' and 'preceding' mean to take the first valid day | |
earlier in time. | |
* 'modifiedfollowing' means to take the first valid day | |
later in time unless it is across a Month boundary, in which | |
case to take the first valid day earlier in time. | |
* 'modifiedpreceding' means to take the first valid day | |
earlier in time unless it is across a Month boundary, in which | |
case to take the first valid day later in time. | |
weekmask : str or array_like of bool, optional | |
A seven-element array indicating which of Monday through Sunday are | |
valid days. May be specified as a length-seven list or array, like | |
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string | |
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for | |
weekdays, optionally separated by white space. Valid abbreviations | |
are: Mon Tue Wed Thu Fri Sat Sun | |
holidays : array_like of datetime64[D], optional | |
An array of dates to consider as invalid dates. They may be | |
specified in any order, and NaT (not-a-time) dates are ignored. | |
This list is saved in a normalized form that is suited for | |
fast calculations of valid days. | |
busdaycal : busdaycalendar, optional | |
A `busdaycalendar` object which specifies the valid days. If this | |
parameter is provided, neither weekmask nor holidays may be | |
provided. | |
out : array of datetime64[D], optional | |
If provided, this array is filled with the result. | |
Returns | |
------- | |
out : array of datetime64[D] | |
An array with a shape from broadcasting ``dates`` and ``offsets`` | |
together, containing the dates with offsets applied. | |
See Also | |
-------- | |
busdaycalendar: An object that specifies a custom set of valid days. | |
is_busday : Returns a boolean array indicating valid days. | |
busday_count : Counts how many valid days are in a half-open date range. | |
Examples | |
-------- | |
>>> # First business day in October 2011 (not accounting for holidays) | |
... np.busday_offset('2011-10', 0, roll='forward') | |
numpy.datetime64('2011-10-03','D') | |
>>> # Last business day in February 2012 (not accounting for holidays) | |
... np.busday_offset('2012-03', -1, roll='forward') | |
numpy.datetime64('2012-02-29','D') | |
>>> # Third Wednesday in January 2011 | |
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed') | |
numpy.datetime64('2011-01-19','D') | |
>>> # 2012 Mother's Day in Canada and the U.S. | |
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') | |
numpy.datetime64('2012-05-13','D') | |
>>> # First business day on or after a date | |
... np.busday_offset('2011-03-20', 0, roll='forward') | |
numpy.datetime64('2011-03-21','D') | |
>>> np.busday_offset('2011-03-22', 0, roll='forward') | |
numpy.datetime64('2011-03-22','D') | |
>>> # First business day after a date | |
... np.busday_offset('2011-03-20', 1, roll='backward') | |
numpy.datetime64('2011-03-21','D') | |
>>> np.busday_offset('2011-03-22', 1, roll='backward') | |
numpy.datetime64('2011-03-23','D') | |
""") | |
add_newdoc('numpy.core.multiarray', 'busday_count', | |
""" | |
busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None) | |
Counts the number of valid days between `begindates` and | |
`enddates`, not including the day of `enddates`. | |
If ``enddates`` specifies a date value that is earlier than the | |
corresponding ``begindates`` date value, the count will be negative. | |
.. versionadded:: 1.7.0 | |
Parameters | |
---------- | |
begindates : array_like of datetime64[D] | |
The array of the first dates for counting. | |
enddates : array_like of datetime64[D] | |
The array of the end dates for counting, which are excluded | |
from the count themselves. | |
weekmask : str or array_like of bool, optional | |
A seven-element array indicating which of Monday through Sunday are | |
valid days. May be specified as a length-seven list or array, like | |
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string | |
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for | |
weekdays, optionally separated by white space. Valid abbreviations | |
are: Mon Tue Wed Thu Fri Sat Sun | |
holidays : array_like of datetime64[D], optional | |
An array of dates to consider as invalid dates. They may be | |
specified in any order, and NaT (not-a-time) dates are ignored. | |
This list is saved in a normalized form that is suited for | |
fast calculations of valid days. | |
busdaycal : busdaycalendar, optional | |
A `busdaycalendar` object which specifies the valid days. If this | |
parameter is provided, neither weekmask nor holidays may be | |
provided. | |
out : array of int, optional | |
If provided, this array is filled with the result. | |
Returns | |
------- | |
out : array of int | |
An array with a shape from broadcasting ``begindates`` and ``enddates`` | |
together, containing the number of valid days between | |
the begin and end dates. | |
See Also | |
-------- | |
busdaycalendar: An object that specifies a custom set of valid days. | |
is_busday : Returns a boolean array indicating valid days. | |
busday_offset : Applies an offset counted in valid days. | |
Examples | |
-------- | |
>>> # Number of weekdays in January 2011 | |
... np.busday_count('2011-01', '2011-02') | |
21 | |
>>> # Number of weekdays in 2011 | |
... np.busday_count('2011', '2012') | |
260 | |
>>> # Number of Saturdays in 2011 | |
... np.busday_count('2011', '2012', weekmask='Sat') | |
53 | |
""") | |
############################################################################## | |
# | |
# nd_grid instances | |
# | |
############################################################################## | |
add_newdoc('numpy.lib.index_tricks', 'mgrid', | |
""" | |
`nd_grid` instance which returns a dense multi-dimensional "meshgrid". | |
An instance of `numpy.lib.index_tricks.nd_grid` which returns an dense | |
(or fleshed out) mesh-grid when indexed, so that each returned argument | |
has the same shape. The dimensions and number of the output arrays are | |
equal to the number of indexing dimensions. If the step length is not a | |
complex number, then the stop is not inclusive. | |
However, if the step length is a **complex number** (e.g. 5j), then | |
the integer part of its magnitude is interpreted as specifying the | |
number of points to create between the start and stop values, where | |
the stop value **is inclusive**. | |
Returns | |
---------- | |
mesh-grid `ndarrays` all of the same dimensions | |
See Also | |
-------- | |
numpy.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects | |
ogrid : like mgrid but returns open (not fleshed out) mesh grids | |
r_ : array concatenator | |
Examples | |
-------- | |
>>> np.mgrid[0:5,0:5] | |
array([[[0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1], | |
[2, 2, 2, 2, 2], | |
[3, 3, 3, 3, 3], | |
[4, 4, 4, 4, 4]], | |
[[0, 1, 2, 3, 4], | |
[0, 1, 2, 3, 4], | |
[0, 1, 2, 3, 4], | |
[0, 1, 2, 3, 4], | |
[0, 1, 2, 3, 4]]]) | |
>>> np.mgrid[-1:1:5j] | |
array([-1. , -0.5, 0. , 0.5, 1. ]) | |
""") | |
add_newdoc('numpy.lib.index_tricks', 'ogrid', | |
""" | |
`nd_grid` instance which returns an open multi-dimensional "meshgrid". | |
An instance of `numpy.lib.index_tricks.nd_grid` which returns an open | |
(i.e. not fleshed out) mesh-grid when indexed, so that only one dimension | |
of each returned array is greater than 1. The dimension and number of the | |
output arrays are equal to the number of indexing dimensions. If the step | |
length is not a complex number, then the stop is not inclusive. | |
However, if the step length is a **complex number** (e.g. 5j), then | |
the integer part of its magnitude is interpreted as specifying the | |
number of points to create between the start and stop values, where | |
the stop value **is inclusive**. | |
Returns | |
---------- | |
mesh-grid `ndarrays` with only one dimension :math:`\\neq 1` | |
See Also | |
-------- | |
np.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects | |
mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids | |
r_ : array concatenator | |
Examples | |
-------- | |
>>> from numpy import ogrid | |
>>> ogrid[-1:1:5j] | |
array([-1. , -0.5, 0. , 0.5, 1. ]) | |
>>> ogrid[0:5,0:5] | |
[array([[0], | |
[1], | |
[2], | |
[3], | |
[4]]), array([[0, 1, 2, 3, 4]])] | |
""") | |
############################################################################## | |
# | |
# Documentation for `generic` attributes and methods | |
# | |
############################################################################## | |
add_newdoc('numpy.core.numerictypes', 'generic', | |
""" | |
Base class for numpy scalar types. | |
Class from which most (all?) numpy scalar types are derived. For | |
consistency, exposes the same API as `ndarray`, despite many | |
consequent attributes being either "get-only," or completely irrelevant. | |
This is the class from which it is strongly suggested users should derive | |
custom scalar types. | |
""") | |
# Attributes | |
add_newdoc('numpy.core.numerictypes', 'generic', ('T', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class so as to | |
provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('base', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class so as to | |
a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('data', | |
"""Pointer to start of data.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('dtype', | |
"""Get array data-descriptor.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('flags', | |
"""The integer value of flags.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('flat', | |
"""A 1-D view of the scalar.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('imag', | |
"""The imaginary part of the scalar.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize', | |
"""The length of one element in bytes.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes', | |
"""The length of the scalar in bytes.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('ndim', | |
"""The number of array dimensions.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('real', | |
"""The real part of the scalar.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('shape', | |
"""Tuple of array dimensions.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('size', | |
"""The number of elements in the gentype.""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('strides', | |
"""Tuple of bytes steps in each dimension.""")) | |
# Methods | |
add_newdoc('numpy.core.numerictypes', 'generic', ('all', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('any', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('argmax', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('argmin', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('argsort', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('astype', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('byteswap', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class so as to | |
provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('choose', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('clip', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('compress', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('conjugate', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('copy', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('cumprod', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('cumsum', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('diagonal', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('dump', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('dumps', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('fill', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('flatten', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('getfield', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('item', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('itemset', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('max', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('mean', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('min', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder', | |
""" | |
newbyteorder(new_order='S') | |
Return a new `dtype` with a different byte order. | |
Changes are also made in all fields and sub-arrays of the data type. | |
The `new_order` code can be any from the following: | |
* {'<', 'L'} - little endian | |
* {'>', 'B'} - big endian | |
* {'=', 'N'} - native order | |
* 'S' - swap dtype from current to opposite endian | |
* {'|', 'I'} - ignore (no change to byte order) | |
Parameters | |
---------- | |
new_order : str, optional | |
Byte order to force; a value from the byte order specifications | |
above. The default value ('S') results in swapping the current | |
byte order. The code does a case-insensitive check on the first | |
letter of `new_order` for the alternatives above. For example, | |
any of 'B' or 'b' or 'biggish' are valid to specify big-endian. | |
Returns | |
------- | |
new_dtype : dtype | |
New `dtype` object with the given change to the byte order. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('nonzero', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('prod', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('ptp', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('put', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('ravel', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('repeat', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('reshape', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('resize', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('round', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('searchsorted', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('setfield', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('setflags', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class so as to | |
provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('sort', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('squeeze', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('std', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('sum', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('swapaxes', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('take', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('tofile', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('tolist', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('tostring', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('trace', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('transpose', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('var', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
add_newdoc('numpy.core.numerictypes', 'generic', ('view', | |
""" | |
Not implemented (virtual attribute) | |
Class generic exists solely to derive numpy scalars from, and possesses, | |
albeit unimplemented, all the attributes of the ndarray class | |
so as to provide a uniform API. | |
See Also | |
-------- | |
The corresponding attribute of the derived class of interest. | |
""")) | |
############################################################################## | |
# | |
# Documentation for other scalar classes | |
# | |
############################################################################## | |
add_newdoc('numpy.core.numerictypes', 'bool_', | |
"""Numpy's Boolean type. Character code: ``?``. Alias: bool8""") | |
add_newdoc('numpy.core.numerictypes', 'complex64', | |
""" | |
Complex number type composed of two 32 bit floats. Character code: 'F'. | |
""") | |
add_newdoc('numpy.core.numerictypes', 'complex128', | |
""" | |
Complex number type composed of two 64 bit floats. Character code: 'D'. | |
Python complex compatible. | |
""") | |
add_newdoc('numpy.core.numerictypes', 'complex256', | |
""" | |
Complex number type composed of two 128-bit floats. Character code: 'G'. | |
""") | |
add_newdoc('numpy.core.numerictypes', 'float32', | |
""" | |
32-bit floating-point number. Character code 'f'. C float compatible. | |
""") | |
add_newdoc('numpy.core.numerictypes', 'float64', | |
""" | |
64-bit floating-point number. Character code 'd'. Python float compatible. | |
""") | |
add_newdoc('numpy.core.numerictypes', 'float96', | |
""" | |
""") | |
add_newdoc('numpy.core.numerictypes', 'float128', | |
""" | |
128-bit floating-point number. Character code: 'g'. C long float | |
compatible. | |
""") | |
add_newdoc('numpy.core.numerictypes', 'int8', | |
"""8-bit integer. Character code ``b``. C char compatible.""") | |
add_newdoc('numpy.core.numerictypes', 'int16', | |
"""16-bit integer. Character code ``h``. C short compatible.""") | |
add_newdoc('numpy.core.numerictypes', 'int32', | |
"""32-bit integer. Character code 'i'. C int compatible.""") | |
add_newdoc('numpy.core.numerictypes', 'int64', | |
"""64-bit integer. Character code 'l'. Python int compatible.""") | |
add_newdoc('numpy.core.numerictypes', 'object_', | |
"""Any Python object. Character code: 'O'.""") | |