File size: 58,179 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 |
"""
Utility function to facilitate testing.
"""
from __future__ import division, absolute_import, print_function
import os
import sys
import re
import operator
import warnings
from functools import partial
import shutil
import contextlib
from tempfile import mkdtemp
from .nosetester import import_nose
from numpy.core import float32, empty, arange, array_repr, ndarray
if sys.version_info[0] >= 3:
from io import StringIO
else:
from StringIO import StringIO
__all__ = ['assert_equal', 'assert_almost_equal', 'assert_approx_equal',
'assert_array_equal', 'assert_array_less', 'assert_string_equal',
'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure',
'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex',
'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings',
'assert_allclose', 'IgnoreException']
verbose = 0
def assert_(val, msg='') :
"""
Assert that works in release mode.
Accepts callable msg to allow deferring evaluation until failure.
The Python built-in ``assert`` does not work when executing code in
optimized mode (the ``-O`` flag) - no byte-code is generated for it.
For documentation on usage, refer to the Python documentation.
"""
if not val :
try:
smsg = msg()
except TypeError:
smsg = msg
raise AssertionError(smsg)
def gisnan(x):
"""like isnan, but always raise an error if type not supported instead of
returning a TypeError object.
Notes
-----
isnan and other ufunc sometimes return a NotImplementedType object instead
of raising any exception. This function is a wrapper to make sure an
exception is always raised.
This should be removed once this problem is solved at the Ufunc level."""
from numpy.core import isnan
st = isnan(x)
if isinstance(st, type(NotImplemented)):
raise TypeError("isnan not supported for this type")
return st
def gisfinite(x):
"""like isfinite, but always raise an error if type not supported instead of
returning a TypeError object.
Notes
-----
isfinite and other ufunc sometimes return a NotImplementedType object instead
of raising any exception. This function is a wrapper to make sure an
exception is always raised.
This should be removed once this problem is solved at the Ufunc level."""
from numpy.core import isfinite, errstate
with errstate(invalid='ignore'):
st = isfinite(x)
if isinstance(st, type(NotImplemented)):
raise TypeError("isfinite not supported for this type")
return st
def gisinf(x):
"""like isinf, but always raise an error if type not supported instead of
returning a TypeError object.
Notes
-----
isinf and other ufunc sometimes return a NotImplementedType object instead
of raising any exception. This function is a wrapper to make sure an
exception is always raised.
This should be removed once this problem is solved at the Ufunc level."""
from numpy.core import isinf, errstate
with errstate(invalid='ignore'):
st = isinf(x)
if isinstance(st, type(NotImplemented)):
raise TypeError("isinf not supported for this type")
return st
def rand(*args):
"""Returns an array of random numbers with the given shape.
This only uses the standard library, so it is useful for testing purposes.
"""
import random
from numpy.core import zeros, float64
results = zeros(args, float64)
f = results.flat
for i in range(len(f)):
f[i] = random.random()
return results
if sys.platform[:5]=='linux':
def jiffies(_proc_pid_stat = '/proc/%s/stat'%(os.getpid()),
_load_time=[]):
""" Return number of jiffies (1/100ths of a second) that this
process has been scheduled in user mode. See man 5 proc. """
import time
if not _load_time:
_load_time.append(time.time())
try:
f=open(_proc_pid_stat, 'r')
l = f.readline().split(' ')
f.close()
return int(l[13])
except:
return int(100*(time.time()-_load_time[0]))
def memusage(_proc_pid_stat = '/proc/%s/stat'%(os.getpid())):
""" Return virtual memory size in bytes of the running python.
"""
try:
f=open(_proc_pid_stat, 'r')
l = f.readline().split(' ')
f.close()
return int(l[22])
except:
return
else:
# os.getpid is not in all platforms available.
# Using time is safe but inaccurate, especially when process
# was suspended or sleeping.
def jiffies(_load_time=[]):
""" Return number of jiffies (1/100ths of a second) that this
process has been scheduled in user mode. [Emulation with time.time]. """
import time
if not _load_time:
_load_time.append(time.time())
return int(100*(time.time()-_load_time[0]))
def memusage():
""" Return memory usage of running python. [Not implemented]"""
raise NotImplementedError
if os.name=='nt' and sys.version[:3] > '2.3':
# Code "stolen" from enthought/debug/memusage.py
def GetPerformanceAttributes(object, counter, instance = None,
inum=-1, format = None, machine=None):
# NOTE: Many counters require 2 samples to give accurate results,
# including "% Processor Time" (as by definition, at any instant, a
# thread's CPU usage is either 0 or 100). To read counters like this,
# you should copy this function, but keep the counter open, and call
# CollectQueryData() each time you need to know.
# See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp
# My older explanation for this was that the "AddCounter" process forced
# the CPU to 100%, but the above makes more sense :)
import win32pdh
if format is None: format = win32pdh.PDH_FMT_LONG
path = win32pdh.MakeCounterPath( (machine, object, instance, None, inum, counter) )
hq = win32pdh.OpenQuery()
try:
hc = win32pdh.AddCounter(hq, path)
try:
win32pdh.CollectQueryData(hq)
type, val = win32pdh.GetFormattedCounterValue(hc, format)
return val
finally:
win32pdh.RemoveCounter(hc)
finally:
win32pdh.CloseQuery(hq)
def memusage(processName="python", instance=0):
# from win32pdhutil, part of the win32all package
import win32pdh
return GetPerformanceAttributes("Process", "Virtual Bytes",
processName, instance,
win32pdh.PDH_FMT_LONG, None)
def build_err_msg(arrays, err_msg, header='Items are not equal:',
verbose=True, names=('ACTUAL', 'DESIRED'), precision=8):
msg = ['\n' + header]
if err_msg:
if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header):
msg = [msg[0] + ' ' + err_msg]
else:
msg.append(err_msg)
if verbose:
for i, a in enumerate(arrays):
if isinstance(a, ndarray):
# precision argument is only needed if the objects are ndarrays
r_func = partial(array_repr, precision=precision)
else:
r_func = repr
try:
r = r_func(a)
except:
r = '[repr failed]'
if r.count('\n') > 3:
r = '\n'.join(r.splitlines()[:3])
r += '...'
msg.append(' %s: %s' % (names[i], r))
return '\n'.join(msg)
def assert_equal(actual,desired,err_msg='',verbose=True):
"""
Raises an AssertionError if two objects are not equal.
Given two objects (scalars, lists, tuples, dictionaries or numpy arrays),
check that all elements of these objects are equal. An exception is raised
at the first conflicting values.
Parameters
----------
actual : array_like
The object to check.
desired : array_like
The expected object.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal.
Examples
--------
>>> np.testing.assert_equal([4,5], [4,6])
...
<type 'exceptions.AssertionError'>:
Items are not equal:
item=1
ACTUAL: 5
DESIRED: 6
"""
if isinstance(desired, dict):
if not isinstance(actual, dict) :
raise AssertionError(repr(type(actual)))
assert_equal(len(actual), len(desired), err_msg, verbose)
for k, i in desired.items():
if k not in actual :
raise AssertionError(repr(k))
assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg), verbose)
return
if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
assert_equal(len(actual), len(desired), err_msg, verbose)
for k in range(len(desired)):
assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg), verbose)
return
from numpy.core import ndarray, isscalar, signbit
from numpy.lib import iscomplexobj, real, imag
if isinstance(actual, ndarray) or isinstance(desired, ndarray):
return assert_array_equal(actual, desired, err_msg, verbose)
msg = build_err_msg([actual, desired], err_msg, verbose=verbose)
# Handle complex numbers: separate into real/imag to handle
# nan/inf/negative zero correctly
# XXX: catch ValueError for subclasses of ndarray where iscomplex fail
try:
usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
except ValueError:
usecomplex = False
if usecomplex:
if iscomplexobj(actual):
actualr = real(actual)
actuali = imag(actual)
else:
actualr = actual
actuali = 0
if iscomplexobj(desired):
desiredr = real(desired)
desiredi = imag(desired)
else:
desiredr = desired
desiredi = 0
try:
assert_equal(actualr, desiredr)
assert_equal(actuali, desiredi)
except AssertionError:
raise AssertionError(msg)
# Inf/nan/negative zero handling
try:
# isscalar test to check cases such as [np.nan] != np.nan
if isscalar(desired) != isscalar(actual):
raise AssertionError(msg)
# If one of desired/actual is not finite, handle it specially here:
# check that both are nan if any is a nan, and test for equality
# otherwise
if not (gisfinite(desired) and gisfinite(actual)):
isdesnan = gisnan(desired)
isactnan = gisnan(actual)
if isdesnan or isactnan:
if not (isdesnan and isactnan):
raise AssertionError(msg)
else:
if not desired == actual:
raise AssertionError(msg)
return
elif desired == 0 and actual == 0:
if not signbit(desired) == signbit(actual):
raise AssertionError(msg)
# If TypeError or ValueError raised while using isnan and co, just handle
# as before
except (TypeError, ValueError, NotImplementedError):
pass
# Explicitly use __eq__ for comparison, ticket #2552
if not (desired == actual):
raise AssertionError(msg)
def print_assert_equal(test_string, actual, desired):
"""
Test if two objects are equal, and print an error message if test fails.
The test is performed with ``actual == desired``.
Parameters
----------
test_string : str
The message supplied to AssertionError.
actual : object
The object to test for equality against `desired`.
desired : object
The expected result.
Examples
--------
>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1])
>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2])
Traceback (most recent call last):
...
AssertionError: Test XYZ of func xyz failed
ACTUAL:
[0, 1]
DESIRED:
[0, 2]
"""
import pprint
if not (actual == desired):
msg = StringIO()
msg.write(test_string)
msg.write(' failed\nACTUAL: \n')
pprint.pprint(actual, msg)
msg.write('DESIRED: \n')
pprint.pprint(desired, msg)
raise AssertionError(msg.getvalue())
def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True):
"""
Raises an AssertionError if two items are not equal up to desired
precision.
.. note:: It is recommended to use one of `assert_allclose`,
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
instead of this function for more consistent floating point
comparisons.
The test is equivalent to ``abs(desired-actual) < 0.5 * 10**(-decimal)``.
Given two objects (numbers or ndarrays), check that all elements of these
objects are almost equal. An exception is raised at conflicting values.
For ndarrays this delegates to assert_array_almost_equal
Parameters
----------
actual : array_like
The object to check.
desired : array_like
The expected object.
decimal : int, optional
Desired precision, default is 7.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
>>> import numpy.testing as npt
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
...
<type 'exceptions.AssertionError'>:
Items are not equal:
ACTUAL: 2.3333333333333002
DESIRED: 2.3333333399999998
>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
... np.array([1.0,2.33333334]), decimal=9)
...
<type 'exceptions.AssertionError'>:
Arrays are not almost equal
<BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 2.33333333])
y: array([ 1. , 2.33333334])
"""
from numpy.core import ndarray
from numpy.lib import iscomplexobj, real, imag
# Handle complex numbers: separate into real/imag to handle
# nan/inf/negative zero correctly
# XXX: catch ValueError for subclasses of ndarray where iscomplex fail
try:
usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
except ValueError:
usecomplex = False
def _build_err_msg():
header = ('Arrays are not almost equal to %d decimals' % decimal)
return build_err_msg([actual, desired], err_msg, verbose=verbose,
header=header)
if usecomplex:
if iscomplexobj(actual):
actualr = real(actual)
actuali = imag(actual)
else:
actualr = actual
actuali = 0
if iscomplexobj(desired):
desiredr = real(desired)
desiredi = imag(desired)
else:
desiredr = desired
desiredi = 0
try:
assert_almost_equal(actualr, desiredr, decimal=decimal)
assert_almost_equal(actuali, desiredi, decimal=decimal)
except AssertionError:
raise AssertionError(_build_err_msg())
if isinstance(actual, (ndarray, tuple, list)) \
or isinstance(desired, (ndarray, tuple, list)):
return assert_array_almost_equal(actual, desired, decimal, err_msg)
try:
# If one of desired/actual is not finite, handle it specially here:
# check that both are nan if any is a nan, and test for equality
# otherwise
if not (gisfinite(desired) and gisfinite(actual)):
if gisnan(desired) or gisnan(actual):
if not (gisnan(desired) and gisnan(actual)):
raise AssertionError(_build_err_msg())
else:
if not desired == actual:
raise AssertionError(_build_err_msg())
return
except (NotImplementedError, TypeError):
pass
if round(abs(desired - actual), decimal) != 0 :
raise AssertionError(_build_err_msg())
def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True):
"""
Raises an AssertionError if two items are not equal up to significant
digits.
.. note:: It is recommended to use one of `assert_allclose`,
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
instead of this function for more consistent floating point
comparisons.
Given two numbers, check that they are approximately equal.
Approximately equal is defined as the number of significant digits
that agree.
Parameters
----------
actual : scalar
The object to check.
desired : scalar
The expected object.
significant : int, optional
Desired precision, default is 7.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
significant=8)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
significant=8)
...
<type 'exceptions.AssertionError'>:
Items are not equal to 8 significant digits:
ACTUAL: 1.234567e-021
DESIRED: 1.2345672000000001e-021
the evaluated condition that raises the exception is
>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
True
"""
import numpy as np
(actual, desired) = map(float, (actual, desired))
if desired==actual:
return
# Normalized the numbers to be in range (-10.0,10.0)
# scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
with np.errstate(invalid='ignore'):
scale = 0.5*(np.abs(desired) + np.abs(actual))
scale = np.power(10, np.floor(np.log10(scale)))
try:
sc_desired = desired/scale
except ZeroDivisionError:
sc_desired = 0.0
try:
sc_actual = actual/scale
except ZeroDivisionError:
sc_actual = 0.0
msg = build_err_msg([actual, desired], err_msg,
header='Items are not equal to %d significant digits:' %
significant,
verbose=verbose)
try:
# If one of desired/actual is not finite, handle it specially here:
# check that both are nan if any is a nan, and test for equality
# otherwise
if not (gisfinite(desired) and gisfinite(actual)):
if gisnan(desired) or gisnan(actual):
if not (gisnan(desired) and gisnan(actual)):
raise AssertionError(msg)
else:
if not desired == actual:
raise AssertionError(msg)
return
except (TypeError, NotImplementedError):
pass
if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)) :
raise AssertionError(msg)
def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
header='', precision=6):
from numpy.core import array, isnan, isinf, any, all, inf
x = array(x, copy=False, subok=True)
y = array(y, copy=False, subok=True)
def isnumber(x):
return x.dtype.char in '?bhilqpBHILQPefdgFDG'
def chk_same_position(x_id, y_id, hasval='nan'):
"""Handling nan/inf: check that x and y have the nan/inf at the same
locations."""
try:
assert_array_equal(x_id, y_id)
except AssertionError:
msg = build_err_msg([x, y],
err_msg + '\nx and y %s location mismatch:' \
% (hasval), verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
raise AssertionError(msg)
try:
cond = (x.shape==() or y.shape==()) or x.shape == y.shape
if not cond:
msg = build_err_msg([x, y],
err_msg
+ '\n(shapes %s, %s mismatch)' % (x.shape,
y.shape),
verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
if not cond :
raise AssertionError(msg)
if isnumber(x) and isnumber(y):
x_isnan, y_isnan = isnan(x), isnan(y)
x_isinf, y_isinf = isinf(x), isinf(y)
# Validate that the special values are in the same place
if any(x_isnan) or any(y_isnan):
chk_same_position(x_isnan, y_isnan, hasval='nan')
if any(x_isinf) or any(y_isinf):
# Check +inf and -inf separately, since they are different
chk_same_position(x == +inf, y == +inf, hasval='+inf')
chk_same_position(x == -inf, y == -inf, hasval='-inf')
# Combine all the special values
x_id, y_id = x_isnan, y_isnan
x_id |= x_isinf
y_id |= y_isinf
# Only do the comparison if actual values are left
if all(x_id):
return
if any(x_id):
val = comparison(x[~x_id], y[~y_id])
else:
val = comparison(x, y)
else:
val = comparison(x, y)
if isinstance(val, bool):
cond = val
reduced = [0]
else:
reduced = val.ravel()
cond = reduced.all()
reduced = reduced.tolist()
if not cond:
match = 100-100.0*reduced.count(1)/len(reduced)
msg = build_err_msg([x, y],
err_msg
+ '\n(mismatch %s%%)' % (match,),
verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
if not cond :
raise AssertionError(msg)
except ValueError as e:
import traceback
efmt = traceback.format_exc()
header = 'error during assertion:\n\n%s\n\n%s' % (efmt, header)
msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
raise ValueError(msg)
def assert_array_equal(x, y, err_msg='', verbose=True):
"""
Raises an AssertionError if two array_like objects are not equal.
Given two array_like objects, check that the shape is equal and all
elements of these objects are equal. An exception is raised at
shape mismatch or conflicting values. In contrast to the standard usage
in numpy, NaNs are compared like numbers, no assertion is raised if
both objects have NaNs in the same positions.
The usual caution for verifying equality with floating point numbers is
advised.
Parameters
----------
x : array_like
The actual object to check.
y : array_like
The desired, expected object.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired objects are not equal.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
The first assert does not raise an exception:
>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
... [np.exp(0),2.33333, np.nan])
Assert fails with numerical inprecision with floats:
>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan])
...
<type 'exceptions.ValueError'>:
AssertionError:
Arrays are not equal
<BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 3.14159265, NaN])
y: array([ 1. , 3.14159265, NaN])
Use `assert_allclose` or one of the nulp (number of floating point values)
functions for these cases instead:
>>> np.testing.assert_allclose([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan],
... rtol=1e-10, atol=0)
"""
assert_array_compare(operator.__eq__, x, y, err_msg=err_msg,
verbose=verbose, header='Arrays are not equal')
def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
"""
Raises an AssertionError if two objects are not equal up to desired
precision.
.. note:: It is recommended to use one of `assert_allclose`,
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
instead of this function for more consistent floating point
comparisons.
The test verifies identical shapes and verifies values with
``abs(desired-actual) < 0.5 * 10**(-decimal)``.
Given two array_like objects, check that the shape is equal and all
elements of these objects are almost equal. An exception is raised at
shape mismatch or conflicting values. In contrast to the standard usage
in numpy, NaNs are compared like numbers, no assertion is raised if
both objects have NaNs in the same positions.
Parameters
----------
x : array_like
The actual object to check.
y : array_like
The desired, expected object.
decimal : int, optional
Desired precision, default is 6.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
the first assert does not raise an exception
>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
[1.0,2.333,np.nan])
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33339,np.nan], decimal=5)
...
<type 'exceptions.AssertionError'>:
AssertionError:
Arrays are not almost equal
<BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 2.33333, NaN])
y: array([ 1. , 2.33339, NaN])
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33333, 5], decimal=5)
<type 'exceptions.ValueError'>:
ValueError:
Arrays are not almost equal
x: array([ 1. , 2.33333, NaN])
y: array([ 1. , 2.33333, 5. ])
"""
from numpy.core import around, number, float_, result_type, array
from numpy.core.numerictypes import issubdtype
from numpy.core.fromnumeric import any as npany
def compare(x, y):
try:
if npany(gisinf(x)) or npany( gisinf(y)):
xinfid = gisinf(x)
yinfid = gisinf(y)
if not xinfid == yinfid:
return False
# if one item, x and y is +- inf
if x.size == y.size == 1:
return x == y
x = x[~xinfid]
y = y[~yinfid]
except (TypeError, NotImplementedError):
pass
# make sure y is an inexact type to avoid abs(MIN_INT); will cause
# casting of x later.
dtype = result_type(y, 1.)
y = array(y, dtype=dtype, copy=False, subok=True)
z = abs(x-y)
if not issubdtype(z.dtype, number):
z = z.astype(float_) # handle object arrays
return around(z, decimal) <= 10.0**(-decimal)
assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
header=('Arrays are not almost equal to %d decimals' % decimal),
precision=decimal)
def assert_array_less(x, y, err_msg='', verbose=True):
"""
Raises an AssertionError if two array_like objects are not ordered by less
than.
Given two array_like objects, check that the shape is equal and all
elements of the first object are strictly smaller than those of the
second object. An exception is raised at shape mismatch or incorrectly
ordered values. Shape mismatch does not raise if an object has zero
dimension. In contrast to the standard usage in numpy, NaNs are
compared, no assertion is raised if both objects have NaNs in the same
positions.
Parameters
----------
x : array_like
The smaller object to check.
y : array_like
The larger object to compare.
err_msg : string
The error message to be printed in case of failure.
verbose : bool
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired objects are not equal.
See Also
--------
assert_array_equal: tests objects for equality
assert_array_almost_equal: test objects for equality up to precision
Examples
--------
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
x: array([ 1., 1., NaN])
y: array([ 1., 2., NaN])
>>> np.testing.assert_array_less([1.0, 4.0], 3)
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
x: array([ 1., 4.])
y: array(3)
>>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(shapes (3,), (1,) mismatch)
x: array([ 1., 2., 3.])
y: array([4])
"""
assert_array_compare(operator.__lt__, x, y, err_msg=err_msg,
verbose=verbose,
header='Arrays are not less-ordered')
def runstring(astr, dict):
exec(astr, dict)
def assert_string_equal(actual, desired):
"""
Test if two strings are equal.
If the given strings are equal, `assert_string_equal` does nothing.
If they are not equal, an AssertionError is raised, and the diff
between the strings is shown.
Parameters
----------
actual : str
The string to test for equality against the expected string.
desired : str
The expected string.
Examples
--------
>>> np.testing.assert_string_equal('abc', 'abc')
>>> np.testing.assert_string_equal('abc', 'abcd')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
...
AssertionError: Differences in strings:
- abc+ abcd? +
"""
# delay import of difflib to reduce startup time
import difflib
if not isinstance(actual, str) :
raise AssertionError(repr(type(actual)))
if not isinstance(desired, str):
raise AssertionError(repr(type(desired)))
if re.match(r'\A'+desired+r'\Z', actual, re.M):
return
diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1)))
diff_list = []
while diff:
d1 = diff.pop(0)
if d1.startswith(' '):
continue
if d1.startswith('- '):
l = [d1]
d2 = diff.pop(0)
if d2.startswith('? '):
l.append(d2)
d2 = diff.pop(0)
if not d2.startswith('+ ') :
raise AssertionError(repr(d2))
l.append(d2)
d3 = diff.pop(0)
if d3.startswith('? '):
l.append(d3)
else:
diff.insert(0, d3)
if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]):
continue
diff_list.extend(l)
continue
raise AssertionError(repr(d1))
if not diff_list:
return
msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip()
if actual != desired :
raise AssertionError(msg)
def rundocs(filename=None, raise_on_error=True):
"""
Run doctests found in the given file.
By default `rundocs` raises an AssertionError on failure.
Parameters
----------
filename : str
The path to the file for which the doctests are run.
raise_on_error : bool
Whether to raise an AssertionError when a doctest fails. Default is
True.
Notes
-----
The doctests can be run by the user/developer by adding the ``doctests``
argument to the ``test()`` call. For example, to run all tests (including
doctests) for `numpy.lib`:
>>> np.lib.test(doctests=True) #doctest: +SKIP
"""
import doctest, imp
if filename is None:
f = sys._getframe(1)
filename = f.f_globals['__file__']
name = os.path.splitext(os.path.basename(filename))[0]
path = [os.path.dirname(filename)]
file, pathname, description = imp.find_module(name, path)
try:
m = imp.load_module(name, file, pathname, description)
finally:
file.close()
tests = doctest.DocTestFinder().find(m)
runner = doctest.DocTestRunner(verbose=False)
msg = []
if raise_on_error:
out = lambda s: msg.append(s)
else:
out = None
for test in tests:
runner.run(test, out=out)
if runner.failures > 0 and raise_on_error:
raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg))
def raises(*args,**kwargs):
nose = import_nose()
return nose.tools.raises(*args,**kwargs)
def assert_raises(*args,**kwargs):
"""
assert_raises(exception_class, callable, *args, **kwargs)
Fail unless an exception of class exception_class is thrown
by callable when invoked with arguments args and keyword
arguments kwargs. If a different type of exception is
thrown, it will not be caught, and the test case will be
deemed to have suffered an error, exactly as for an
unexpected exception.
"""
nose = import_nose()
return nose.tools.assert_raises(*args,**kwargs)
assert_raises_regex_impl = None
def assert_raises_regex(exception_class, expected_regexp,
callable_obj=None, *args, **kwargs):
"""
Fail unless an exception of class exception_class and with message that
matches expected_regexp is thrown by callable when invoked with arguments
args and keyword arguments kwargs.
Name of this function adheres to Python 3.2+ reference, but should work in
all versions down to 2.6.
"""
nose = import_nose()
global assert_raises_regex_impl
if assert_raises_regex_impl is None:
try:
# Python 3.2+
assert_raises_regex_impl = nose.tools.assert_raises_regex
except AttributeError:
try:
# 2.7+
assert_raises_regex_impl = nose.tools.assert_raises_regexp
except AttributeError:
# 2.6
# This class is copied from Python2.7 stdlib almost verbatim
class _AssertRaisesContext(object):
"""A context manager used to implement TestCase.assertRaises* methods."""
def __init__(self, expected, expected_regexp=None):
self.expected = expected
self.expected_regexp = expected_regexp
def failureException(self, msg):
return AssertionError(msg)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, tb):
if exc_type is None:
try:
exc_name = self.expected.__name__
except AttributeError:
exc_name = str(self.expected)
raise self.failureException(
"{0} not raised".format(exc_name))
if not issubclass(exc_type, self.expected):
# let unexpected exceptions pass through
return False
self.exception = exc_value # store for later retrieval
if self.expected_regexp is None:
return True
expected_regexp = self.expected_regexp
if isinstance(expected_regexp, basestring):
expected_regexp = re.compile(expected_regexp)
if not expected_regexp.search(str(exc_value)):
raise self.failureException(
'"%s" does not match "%s"' %
(expected_regexp.pattern, str(exc_value)))
return True
def impl(cls, regex, callable_obj, *a, **kw):
mgr = _AssertRaisesContext(cls, regex)
if callable_obj is None:
return mgr
with mgr:
callable_obj(*a, **kw)
assert_raises_regex_impl = impl
return assert_raises_regex_impl(exception_class, expected_regexp,
callable_obj, *args, **kwargs)
def decorate_methods(cls, decorator, testmatch=None):
"""
Apply a decorator to all methods in a class matching a regular expression.
The given decorator is applied to all public methods of `cls` that are
matched by the regular expression `testmatch`
(``testmatch.search(methodname)``). Methods that are private, i.e. start
with an underscore, are ignored.
Parameters
----------
cls : class
Class whose methods to decorate.
decorator : function
Decorator to apply to methods
testmatch : compiled regexp or str, optional
The regular expression. Default value is None, in which case the
nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``)
is used.
If `testmatch` is a string, it is compiled to a regular expression
first.
"""
if testmatch is None:
testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)
else:
testmatch = re.compile(testmatch)
cls_attr = cls.__dict__
# delayed import to reduce startup time
from inspect import isfunction
methods = [_m for _m in cls_attr.values() if isfunction(_m)]
for function in methods:
try:
if hasattr(function, 'compat_func_name'):
funcname = function.compat_func_name
else:
funcname = function.__name__
except AttributeError:
# not a function
continue
if testmatch.search(funcname) and not funcname.startswith('_'):
setattr(cls, funcname, decorator(function))
return
def measure(code_str,times=1,label=None):
"""
Return elapsed time for executing code in the namespace of the caller.
The supplied code string is compiled with the Python builtin ``compile``.
The precision of the timing is 10 milli-seconds. If the code will execute
fast on this timescale, it can be executed many times to get reasonable
timing accuracy.
Parameters
----------
code_str : str
The code to be timed.
times : int, optional
The number of times the code is executed. Default is 1. The code is
only compiled once.
label : str, optional
A label to identify `code_str` with. This is passed into ``compile``
as the second argument (for run-time error messages).
Returns
-------
elapsed : float
Total elapsed time in seconds for executing `code_str` `times` times.
Examples
--------
>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)',
... times=times)
>>> print "Time for a single execution : ", etime / times, "s"
Time for a single execution : 0.005 s
"""
frame = sys._getframe(1)
locs, globs = frame.f_locals, frame.f_globals
code = compile(code_str,
'Test name: %s ' % label,
'exec')
i = 0
elapsed = jiffies()
while i < times:
i += 1
exec(code, globs, locs)
elapsed = jiffies() - elapsed
return 0.01*elapsed
def _assert_valid_refcount(op):
"""
Check that ufuncs don't mishandle refcount of object `1`.
Used in a few regression tests.
"""
import numpy as np
a = np.arange(100 * 100)
b = np.arange(100*100).reshape(100, 100)
c = b
i = 1
rc = sys.getrefcount(i)
for j in range(15):
d = op(b, c)
assert_(sys.getrefcount(i) >= rc)
def assert_allclose(actual, desired, rtol=1e-7, atol=0,
err_msg='', verbose=True):
"""
Raises an AssertionError if two objects are not equal up to desired
tolerance.
The test is equivalent to ``allclose(actual, desired, rtol, atol)``.
It compares the difference between `actual` and `desired` to
``atol + rtol * abs(desired)``.
.. versionadded:: 1.5.0
Parameters
----------
actual : array_like
Array obtained.
desired : array_like
Array desired.
rtol : float, optional
Relative tolerance.
atol : float, optional
Absolute tolerance.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_array_almost_equal_nulp, assert_array_max_ulp
Examples
--------
>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> assert_allclose(x, y, rtol=1e-5, atol=0)
"""
import numpy as np
def compare(x, y):
return np.allclose(x, y, rtol=rtol, atol=atol)
actual, desired = np.asanyarray(actual), np.asanyarray(desired)
header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol)
assert_array_compare(compare, actual, desired, err_msg=str(err_msg),
verbose=verbose, header=header)
def assert_array_almost_equal_nulp(x, y, nulp=1):
"""
Compare two arrays relatively to their spacing.
This is a relatively robust method to compare two arrays whose amplitude
is variable.
Parameters
----------
x, y : array_like
Input arrays.
nulp : int, optional
The maximum number of unit in the last place for tolerance (see Notes).
Default is 1.
Returns
-------
None
Raises
------
AssertionError
If the spacing between `x` and `y` for one or more elements is larger
than `nulp`.
See Also
--------
assert_array_max_ulp : Check that all items of arrays differ in at most
N Units in the Last Place.
spacing : Return the distance between x and the nearest adjacent number.
Notes
-----
An assertion is raised if the following condition is not met::
abs(x - y) <= nulps * spacing(max(abs(x), abs(y)))
Examples
--------
>>> x = np.array([1., 1e-10, 1e-20])
>>> eps = np.finfo(x.dtype).eps
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
Traceback (most recent call last):
...
AssertionError: X and Y are not equal to 1 ULP (max is 2)
"""
import numpy as np
ax = np.abs(x)
ay = np.abs(y)
ref = nulp * np.spacing(np.where(ax > ay, ax, ay))
if not np.all(np.abs(x-y) <= ref):
if np.iscomplexobj(x) or np.iscomplexobj(y):
msg = "X and Y are not equal to %d ULP" % nulp
else:
max_nulp = np.max(nulp_diff(x, y))
msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp)
raise AssertionError(msg)
def assert_array_max_ulp(a, b, maxulp=1, dtype=None):
"""
Check that all items of arrays differ in at most N Units in the Last Place.
Parameters
----------
a, b : array_like
Input arrays to be compared.
maxulp : int, optional
The maximum number of units in the last place that elements of `a` and
`b` can differ. Default is 1.
dtype : dtype, optional
Data-type to convert `a` and `b` to if given. Default is None.
Returns
-------
ret : ndarray
Array containing number of representable floating point numbers between
items in `a` and `b`.
Raises
------
AssertionError
If one or more elements differ by more than `maxulp`.
See Also
--------
assert_array_almost_equal_nulp : Compare two arrays relatively to their
spacing.
Examples
--------
>>> a = np.linspace(0., 1., 100)
>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))
"""
import numpy as np
ret = nulp_diff(a, b, dtype)
if not np.all(ret <= maxulp):
raise AssertionError("Arrays are not almost equal up to %g ULP" % \
maxulp)
return ret
def nulp_diff(x, y, dtype=None):
"""For each item in x and y, return the number of representable floating
points between them.
Parameters
----------
x : array_like
first input array
y : array_like
second input array
Returns
-------
nulp : array_like
number of representable floating point numbers between each item in x
and y.
Examples
--------
# By definition, epsilon is the smallest number such as 1 + eps != 1, so
# there should be exactly one ULP between 1 and 1 + eps
>>> nulp_diff(1, 1 + np.finfo(x.dtype).eps)
1.0
"""
import numpy as np
if dtype:
x = np.array(x, dtype=dtype)
y = np.array(y, dtype=dtype)
else:
x = np.array(x)
y = np.array(y)
t = np.common_type(x, y)
if np.iscomplexobj(x) or np.iscomplexobj(y):
raise NotImplementedError("_nulp not implemented for complex array")
x = np.array(x, dtype=t)
y = np.array(y, dtype=t)
if not x.shape == y.shape:
raise ValueError("x and y do not have the same shape: %s - %s" % \
(x.shape, y.shape))
def _diff(rx, ry, vdt):
diff = np.array(rx-ry, dtype=vdt)
return np.abs(diff)
rx = integer_repr(x)
ry = integer_repr(y)
return _diff(rx, ry, t)
def _integer_repr(x, vdt, comp):
# Reinterpret binary representation of the float as sign-magnitude:
# take into account two-complement representation
# See also
# http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
rx = x.view(vdt)
if not (rx.size == 1):
rx[rx < 0] = comp - rx[rx<0]
else:
if rx < 0:
rx = comp - rx
return rx
def integer_repr(x):
"""Return the signed-magnitude interpretation of the binary representation of
x."""
import numpy as np
if x.dtype == np.float32:
return _integer_repr(x, np.int32, np.int32(-2**31))
elif x.dtype == np.float64:
return _integer_repr(x, np.int64, np.int64(-2**63))
else:
raise ValueError("Unsupported dtype %s" % x.dtype)
# The following two classes are copied from python 2.6 warnings module (context
# manager)
class WarningMessage(object):
"""
Holds the result of a single showwarning() call.
Deprecated in 1.8.0
Notes
-----
`WarningMessage` is copied from the Python 2.6 warnings module,
so it can be used in NumPy with older Python versions.
"""
_WARNING_DETAILS = ("message", "category", "filename", "lineno", "file",
"line")
def __init__(self, message, category, filename, lineno, file=None,
line=None):
local_values = locals()
for attr in self._WARNING_DETAILS:
setattr(self, attr, local_values[attr])
if category:
self._category_name = category.__name__
else:
self._category_name = None
def __str__(self):
return ("{message : %r, category : %r, filename : %r, lineno : %s, "
"line : %r}" % (self.message, self._category_name,
self.filename, self.lineno, self.line))
class WarningManager(object):
"""
A context manager that copies and restores the warnings filter upon
exiting the context.
The 'record' argument specifies whether warnings should be captured by a
custom implementation of ``warnings.showwarning()`` and be appended to a
list returned by the context manager. Otherwise None is returned by the
context manager. The objects appended to the list are arguments whose
attributes mirror the arguments to ``showwarning()``.
The 'module' argument is to specify an alternative module to the module
named 'warnings' and imported under that name. This argument is only useful
when testing the warnings module itself.
Deprecated in 1.8.0
Notes
-----
`WarningManager` is a copy of the ``catch_warnings`` context manager
from the Python 2.6 warnings module, with slight modifications.
It is copied so it can be used in NumPy with older Python versions.
"""
def __init__(self, record=False, module=None):
self._record = record
if module is None:
self._module = sys.modules['warnings']
else:
self._module = module
self._entered = False
def __enter__(self):
if self._entered:
raise RuntimeError("Cannot enter %r twice" % self)
self._entered = True
self._filters = self._module.filters
self._module.filters = self._filters[:]
self._showwarning = self._module.showwarning
if self._record:
log = []
def showwarning(*args, **kwargs):
log.append(WarningMessage(*args, **kwargs))
self._module.showwarning = showwarning
return log
else:
return None
def __exit__(self):
if not self._entered:
raise RuntimeError("Cannot exit %r without entering first" % self)
self._module.filters = self._filters
self._module.showwarning = self._showwarning
def assert_warns(warning_class, func, *args, **kw):
"""
Fail unless the given callable throws the specified warning.
A warning of class warning_class should be thrown by the callable when
invoked with arguments args and keyword arguments kwargs.
If a different type of warning is thrown, it will not be caught, and the
test case will be deemed to have suffered an error.
.. versionadded:: 1.4.0
Parameters
----------
warning_class : class
The class defining the warning that `func` is expected to throw.
func : callable
The callable to test.
\\*args : Arguments
Arguments passed to `func`.
\\*\\*kwargs : Kwargs
Keyword arguments passed to `func`.
Returns
-------
The value returned by `func`.
"""
with warnings.catch_warnings(record=True) as l:
warnings.simplefilter('always')
result = func(*args, **kw)
if not len(l) > 0:
raise AssertionError("No warning raised when calling %s"
% func.__name__)
if not l[0].category is warning_class:
raise AssertionError("First warning for %s is not a " \
"%s( is %s)" % (func.__name__, warning_class, l[0]))
return result
def assert_no_warnings(func, *args, **kw):
"""
Fail if the given callable produces any warnings.
.. versionadded:: 1.7.0
Parameters
----------
func : callable
The callable to test.
\\*args : Arguments
Arguments passed to `func`.
\\*\\*kwargs : Kwargs
Keyword arguments passed to `func`.
Returns
-------
The value returned by `func`.
"""
with warnings.catch_warnings(record=True) as l:
warnings.simplefilter('always')
result = func(*args, **kw)
if len(l) > 0:
raise AssertionError("Got warnings when calling %s: %s"
% (func.__name__, l))
return result
def _gen_alignment_data(dtype=float32, type='binary', max_size=24):
"""
generator producing data with different alignment and offsets
to test simd vectorization
Parameters
----------
dtype : dtype
data type to produce
type : string
'unary': create data for unary operations, creates one input
and output array
'binary': create data for unary operations, creates two input
and output array
max_size : integer
maximum size of data to produce
Returns
-------
if type is 'unary' yields one output, one input array and a message
containing information on the data
if type is 'binary' yields one output array, two input array and a message
containing information on the data
"""
ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s'
bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s'
for o in range(3):
for s in range(o + 2, max(o + 3, max_size)):
if type == 'unary':
inp = lambda : arange(s, dtype=dtype)[o:]
out = empty((s,), dtype=dtype)[o:]
yield out, inp(), ufmt % (o, o, s, dtype, 'out of place')
yield inp(), inp(), ufmt % (o, o, s, dtype, 'in place')
yield out[1:], inp()[:-1], ufmt % \
(o + 1, o, s - 1, dtype, 'out of place')
yield out[:-1], inp()[1:], ufmt % \
(o, o + 1, s - 1, dtype, 'out of place')
yield inp()[:-1], inp()[1:], ufmt % \
(o, o + 1, s - 1, dtype, 'aliased')
yield inp()[1:], inp()[:-1], ufmt % \
(o + 1, o, s - 1, dtype, 'aliased')
if type == 'binary':
inp1 = lambda :arange(s, dtype=dtype)[o:]
inp2 = lambda :arange(s, dtype=dtype)[o:]
out = empty((s,), dtype=dtype)[o:]
yield out, inp1(), inp2(), bfmt % \
(o, o, o, s, dtype, 'out of place')
yield inp1(), inp1(), inp2(), bfmt % \
(o, o, o, s, dtype, 'in place1')
yield inp2(), inp1(), inp2(), bfmt % \
(o, o, o, s, dtype, 'in place2')
yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \
(o + 1, o, o, s - 1, dtype, 'out of place')
yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \
(o, o + 1, o, s - 1, dtype, 'out of place')
yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \
(o, o, o + 1, s - 1, dtype, 'out of place')
yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \
(o + 1, o, o, s - 1, dtype, 'aliased')
yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \
(o, o + 1, o, s - 1, dtype, 'aliased')
yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \
(o, o, o + 1, s - 1, dtype, 'aliased')
class IgnoreException(Exception):
"Ignoring this exception due to disabled feature"
@contextlib.contextmanager
def tempdir(*args, **kwargs):
"""Context manager to provide a temporary test folder.
All arguments are passed as this to the underlying tempfile.mkdtemp
function.
"""
tmpdir = mkdtemp(*args, **kwargs)
yield tmpdir
shutil.rmtree(tmpdir)
|