File size: 8,464 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
"""
Decorators for labeling and modifying behavior of test objects.
Decorators that merely return a modified version of the original
function object are straightforward. Decorators that return a new
function object need to use
::
nose.tools.make_decorator(original_function)(decorator)
in returning the decorator, in order to preserve meta-data such as
function name, setup and teardown functions and so on - see
``nose.tools`` for more information.
"""
from __future__ import division, absolute_import, print_function
import warnings
import collections
def slow(t):
"""
Label a test as 'slow'.
The exact definition of a slow test is obviously both subjective and
hardware-dependent, but in general any individual test that requires more
than a second or two should be labeled as slow (the whole suite consits of
thousands of tests, so even a second is significant).
Parameters
----------
t : callable
The test to label as slow.
Returns
-------
t : callable
The decorated test `t`.
Examples
--------
The `numpy.testing` module includes ``import decorators as dec``.
A test can be decorated as slow like this::
from numpy.testing import *
@dec.slow
def test_big(self):
print 'Big, slow test'
"""
t.slow = True
return t
def setastest(tf=True):
"""
Signals to nose that this function is or is not a test.
Parameters
----------
tf : bool
If True, specifies that the decorated callable is a test.
If False, specifies that the decorated callable is not a test.
Default is True.
Notes
-----
This decorator can't use the nose namespace, because it can be
called from a non-test module. See also ``istest`` and ``nottest`` in
``nose.tools``.
Examples
--------
`setastest` can be used in the following way::
from numpy.testing.decorators import setastest
@setastest(False)
def func_with_test_in_name(arg1, arg2):
pass
"""
def set_test(t):
t.__test__ = tf
return t
return set_test
def skipif(skip_condition, msg=None):
"""
Make function raise SkipTest exception if a given condition is true.
If the condition is a callable, it is used at runtime to dynamically
make the decision. This is useful for tests that may require costly
imports, to delay the cost until the test suite is actually executed.
Parameters
----------
skip_condition : bool or callable
Flag to determine whether to skip the decorated test.
msg : str, optional
Message to give on raising a SkipTest exception. Default is None.
Returns
-------
decorator : function
Decorator which, when applied to a function, causes SkipTest
to be raised when `skip_condition` is True, and the function
to be called normally otherwise.
Notes
-----
The decorator itself is decorated with the ``nose.tools.make_decorator``
function in order to transmit function name, and various other metadata.
"""
def skip_decorator(f):
# Local import to avoid a hard nose dependency and only incur the
# import time overhead at actual test-time.
import nose
# Allow for both boolean or callable skip conditions.
if isinstance(skip_condition, collections.Callable):
skip_val = lambda : skip_condition()
else:
skip_val = lambda : skip_condition
def get_msg(func,msg=None):
"""Skip message with information about function being skipped."""
if msg is None:
out = 'Test skipped due to test condition'
else:
out = msg
return "Skipping test: %s: %s" % (func.__name__, out)
# We need to define *two* skippers because Python doesn't allow both
# return with value and yield inside the same function.
def skipper_func(*args, **kwargs):
"""Skipper for normal test functions."""
if skip_val():
raise nose.SkipTest(get_msg(f, msg))
else:
return f(*args, **kwargs)
def skipper_gen(*args, **kwargs):
"""Skipper for test generators."""
if skip_val():
raise nose.SkipTest(get_msg(f, msg))
else:
for x in f(*args, **kwargs):
yield x
# Choose the right skipper to use when building the actual decorator.
if nose.util.isgenerator(f):
skipper = skipper_gen
else:
skipper = skipper_func
return nose.tools.make_decorator(f)(skipper)
return skip_decorator
def knownfailureif(fail_condition, msg=None):
"""
Make function raise KnownFailureTest exception if given condition is true.
If the condition is a callable, it is used at runtime to dynamically
make the decision. This is useful for tests that may require costly
imports, to delay the cost until the test suite is actually executed.
Parameters
----------
fail_condition : bool or callable
Flag to determine whether to mark the decorated test as a known
failure (if True) or not (if False).
msg : str, optional
Message to give on raising a KnownFailureTest exception.
Default is None.
Returns
-------
decorator : function
Decorator, which, when applied to a function, causes SkipTest
to be raised when `skip_condition` is True, and the function
to be called normally otherwise.
Notes
-----
The decorator itself is decorated with the ``nose.tools.make_decorator``
function in order to transmit function name, and various other metadata.
"""
if msg is None:
msg = 'Test skipped due to known failure'
# Allow for both boolean or callable known failure conditions.
if isinstance(fail_condition, collections.Callable):
fail_val = lambda : fail_condition()
else:
fail_val = lambda : fail_condition
def knownfail_decorator(f):
# Local import to avoid a hard nose dependency and only incur the
# import time overhead at actual test-time.
import nose
from .noseclasses import KnownFailureTest
def knownfailer(*args, **kwargs):
if fail_val():
raise KnownFailureTest(msg)
else:
return f(*args, **kwargs)
return nose.tools.make_decorator(f)(knownfailer)
return knownfail_decorator
def deprecated(conditional=True):
"""
Filter deprecation warnings while running the test suite.
This decorator can be used to filter DeprecationWarning's, to avoid
printing them during the test suite run, while checking that the test
actually raises a DeprecationWarning.
Parameters
----------
conditional : bool or callable, optional
Flag to determine whether to mark test as deprecated or not. If the
condition is a callable, it is used at runtime to dynamically make the
decision. Default is True.
Returns
-------
decorator : function
The `deprecated` decorator itself.
Notes
-----
.. versionadded:: 1.4.0
"""
def deprecate_decorator(f):
# Local import to avoid a hard nose dependency and only incur the
# import time overhead at actual test-time.
import nose
from .noseclasses import KnownFailureTest
def _deprecated_imp(*args, **kwargs):
# Poor man's replacement for the with statement
with warnings.catch_warnings(record=True) as l:
warnings.simplefilter('always')
f(*args, **kwargs)
if not len(l) > 0:
raise AssertionError("No warning raised when calling %s"
% f.__name__)
if not l[0].category is DeprecationWarning:
raise AssertionError("First warning for %s is not a " \
"DeprecationWarning( is %s)" % (f.__name__, l[0]))
if isinstance(conditional, collections.Callable):
cond = conditional()
else:
cond = conditional
if cond:
return nose.tools.make_decorator(f)(_deprecated_imp)
else:
return f
return deprecate_decorator
|