File size: 172,492 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 |
# mtrand.pyx -- A Pyrex wrapper of Jean-Sebastien Roy's RandomKit
#
# Copyright 2005 Robert Kern ([email protected])
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
include "Python.pxi"
include "numpy.pxd"
cdef extern from "math.h":
double exp(double x)
double log(double x)
double floor(double x)
double sin(double x)
double cos(double x)
cdef extern from "mtrand_py_helper.h":
object empty_py_bytes(npy_intp length, void **bytes)
cdef extern from "randomkit.h":
ctypedef struct rk_state:
unsigned long key[624]
int pos
int has_gauss
double gauss
ctypedef enum rk_error:
RK_NOERR = 0
RK_ENODEV = 1
RK_ERR_MAX = 2
char *rk_strerror[2]
# 0xFFFFFFFFUL
unsigned long RK_MAX
void rk_seed(unsigned long seed, rk_state *state)
rk_error rk_randomseed(rk_state *state)
unsigned long rk_random(rk_state *state)
long rk_long(rk_state *state) nogil
unsigned long rk_ulong(rk_state *state) nogil
unsigned long rk_interval(unsigned long max, rk_state *state) nogil
double rk_double(rk_state *state) nogil
void rk_fill(void *buffer, size_t size, rk_state *state) nogil
rk_error rk_devfill(void *buffer, size_t size, int strong)
rk_error rk_altfill(void *buffer, size_t size, int strong,
rk_state *state) nogil
double rk_gauss(rk_state *state) nogil
cdef extern from "distributions.h":
# do not need the GIL, but they do need a lock on the state !! */
double rk_normal(rk_state *state, double loc, double scale) nogil
double rk_standard_exponential(rk_state *state) nogil
double rk_exponential(rk_state *state, double scale) nogil
double rk_uniform(rk_state *state, double loc, double scale) nogil
double rk_standard_gamma(rk_state *state, double shape) nogil
double rk_gamma(rk_state *state, double shape, double scale) nogil
double rk_beta(rk_state *state, double a, double b) nogil
double rk_chisquare(rk_state *state, double df) nogil
double rk_noncentral_chisquare(rk_state *state, double df, double nonc) nogil
double rk_f(rk_state *state, double dfnum, double dfden) nogil
double rk_noncentral_f(rk_state *state, double dfnum, double dfden, double nonc) nogil
double rk_standard_cauchy(rk_state *state) nogil
double rk_standard_t(rk_state *state, double df) nogil
double rk_vonmises(rk_state *state, double mu, double kappa) nogil
double rk_pareto(rk_state *state, double a) nogil
double rk_weibull(rk_state *state, double a) nogil
double rk_power(rk_state *state, double a) nogil
double rk_laplace(rk_state *state, double loc, double scale) nogil
double rk_gumbel(rk_state *state, double loc, double scale) nogil
double rk_logistic(rk_state *state, double loc, double scale) nogil
double rk_lognormal(rk_state *state, double mode, double sigma) nogil
double rk_rayleigh(rk_state *state, double mode) nogil
double rk_wald(rk_state *state, double mean, double scale) nogil
double rk_triangular(rk_state *state, double left, double mode, double right) nogil
long rk_binomial(rk_state *state, long n, double p) nogil
long rk_binomial_btpe(rk_state *state, long n, double p) nogil
long rk_binomial_inversion(rk_state *state, long n, double p) nogil
long rk_negative_binomial(rk_state *state, double n, double p) nogil
long rk_poisson(rk_state *state, double lam) nogil
long rk_poisson_mult(rk_state *state, double lam) nogil
long rk_poisson_ptrs(rk_state *state, double lam) nogil
long rk_zipf(rk_state *state, double a) nogil
long rk_geometric(rk_state *state, double p) nogil
long rk_hypergeometric(rk_state *state, long good, long bad, long sample) nogil
long rk_logseries(rk_state *state, double p) nogil
ctypedef double (* rk_cont0)(rk_state *state) nogil
ctypedef double (* rk_cont1)(rk_state *state, double a) nogil
ctypedef double (* rk_cont2)(rk_state *state, double a, double b) nogil
ctypedef double (* rk_cont3)(rk_state *state, double a, double b, double c) nogil
ctypedef long (* rk_disc0)(rk_state *state) nogil
ctypedef long (* rk_discnp)(rk_state *state, long n, double p) nogil
ctypedef long (* rk_discdd)(rk_state *state, double n, double p) nogil
ctypedef long (* rk_discnmN)(rk_state *state, long n, long m, long N) nogil
ctypedef long (* rk_discd)(rk_state *state, double a) nogil
cdef extern from "initarray.h":
void init_by_array(rk_state *self, unsigned long *init_key,
npy_intp key_length)
# Initialize numpy
import_array()
import numpy as np
import operator
import warnings
from threading import Lock
cdef object cont0_array(rk_state *state, rk_cont0 func, object size,
object lock):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state)
else:
array = <ndarray>np.empty(size, np.float64)
length = PyArray_SIZE(array)
array_data = <double *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state)
return array
cdef object cont1_array_sc(rk_state *state, rk_cont1 func, object size, double a,
object lock):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state, a)
else:
array = <ndarray>np.empty(size, np.float64)
length = PyArray_SIZE(array)
array_data = <double *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, a)
return array
cdef object cont1_array(rk_state *state, rk_cont1 func, object size,
ndarray oa, object lock):
cdef double *array_data
cdef double *oa_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef flatiter itera
cdef broadcast multi
if size is None:
array = <ndarray>PyArray_SimpleNew(PyArray_NDIM(oa),
PyArray_DIMS(oa) , NPY_DOUBLE)
length = PyArray_SIZE(array)
array_data = <double *>PyArray_DATA(array)
itera = <flatiter>PyArray_IterNew(<object>oa)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, (<double *>(itera.dataptr))[0])
PyArray_ITER_NEXT(itera)
else:
array = <ndarray>np.empty(size, np.float64)
array_data = <double *>PyArray_DATA(array)
multi = <broadcast>PyArray_MultiIterNew(2, <void *>array,
<void *>oa)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
with lock, nogil:
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, oa_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
return array
cdef object cont2_array_sc(rk_state *state, rk_cont2 func, object size, double a,
double b, object lock):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state, a, b)
else:
array = <ndarray>np.empty(size, np.float64)
length = PyArray_SIZE(array)
array_data = <double *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, a, b)
return array
cdef object cont2_array(rk_state *state, rk_cont2 func, object size,
ndarray oa, ndarray ob, object lock):
cdef double *array_data
cdef double *oa_data
cdef double *ob_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(2, <void *>oa, <void *>ob)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE)
array_data = <double *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 0)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, oa_data[0], ob_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>np.empty(size, np.float64)
array_data = <double *>PyArray_DATA(array)
multi = <broadcast>PyArray_MultiIterNew(3, <void*>array, <void *>oa, <void *>ob)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
with lock, nogil:
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, oa_data[0], ob_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
PyArray_MultiIter_NEXTi(multi, 2)
return array
cdef object cont3_array_sc(rk_state *state, rk_cont3 func, object size, double a,
double b, double c, object lock):
cdef double *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state, a, b, c)
else:
array = <ndarray>np.empty(size, np.float64)
length = PyArray_SIZE(array)
array_data = <double *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, a, b, c)
return array
cdef object cont3_array(rk_state *state, rk_cont3 func, object size,
ndarray oa, ndarray ob, ndarray oc, object lock):
cdef double *array_data
cdef double *oa_data
cdef double *ob_data
cdef double *oc_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(3, <void *>oa, <void *>ob, <void *>oc)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_DOUBLE)
array_data = <double *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 0)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 1)
oc_data = <double *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>np.empty(size, np.float64)
array_data = <double *>PyArray_DATA(array)
multi = <broadcast>PyArray_MultiIterNew(4, <void*>array, <void *>oa,
<void *>ob, <void *>oc)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
with lock, nogil:
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
ob_data = <double *>PyArray_MultiIter_DATA(multi, 2)
oc_data = <double *>PyArray_MultiIter_DATA(multi, 3)
array_data[i] = func(state, oa_data[0], ob_data[0], oc_data[0])
PyArray_MultiIter_NEXT(multi)
return array
cdef object disc0_array(rk_state *state, rk_disc0 func, object size, object lock):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state)
else:
array = <ndarray>np.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state)
return array
cdef object discnp_array_sc(rk_state *state, rk_discnp func, object size,
long n, double p, object lock):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state, n, p)
else:
array = <ndarray>np.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, n, p)
return array
cdef object discnp_array(rk_state *state, rk_discnp func, object size,
ndarray on, ndarray op, object lock):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef double *op_data
cdef long *on_data
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(2, <void *>on, <void *>op)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 0)
op_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, on_data[0], op_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>np.empty(size, int)
array_data = <long *>PyArray_DATA(array)
multi = <broadcast>PyArray_MultiIterNew(3, <void*>array, <void *>on, <void *>op)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
with lock, nogil:
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 1)
op_data = <double *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, on_data[0], op_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
PyArray_MultiIter_NEXTi(multi, 2)
return array
cdef object discdd_array_sc(rk_state *state, rk_discdd func, object size,
double n, double p, object lock):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state, n, p)
else:
array = <ndarray>np.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, n, p)
return array
cdef object discdd_array(rk_state *state, rk_discdd func, object size,
ndarray on, ndarray op, object lock):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef double *op_data
cdef double *on_data
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(2, <void *>on, <void *>op)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < multi.size:
on_data = <double *>PyArray_MultiIter_DATA(multi, 0)
op_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, on_data[0], op_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>np.empty(size, int)
array_data = <long *>PyArray_DATA(array)
multi = <broadcast>PyArray_MultiIterNew(3, <void*>array, <void *>on, <void *>op)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
with lock, nogil:
for i from 0 <= i < multi.size:
on_data = <double *>PyArray_MultiIter_DATA(multi, 1)
op_data = <double *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, on_data[0], op_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
PyArray_MultiIter_NEXTi(multi, 2)
return array
cdef object discnmN_array_sc(rk_state *state, rk_discnmN func, object size,
long n, long m, long N, object lock):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state, n, m, N)
else:
array = <ndarray>np.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, n, m, N)
return array
cdef object discnmN_array(rk_state *state, rk_discnmN func, object size,
ndarray on, ndarray om, ndarray oN, object lock):
cdef long *array_data
cdef long *on_data
cdef long *om_data
cdef long *oN_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
if size is None:
multi = <broadcast> PyArray_MultiIterNew(3, <void *>on, <void *>om, <void *>oN)
array = <ndarray> PyArray_SimpleNew(multi.nd, multi.dimensions, NPY_LONG)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 0)
om_data = <long *>PyArray_MultiIter_DATA(multi, 1)
oN_data = <long *>PyArray_MultiIter_DATA(multi, 2)
array_data[i] = func(state, on_data[0], om_data[0], oN_data[0])
PyArray_MultiIter_NEXT(multi)
else:
array = <ndarray>np.empty(size, int)
array_data = <long *>PyArray_DATA(array)
multi = <broadcast>PyArray_MultiIterNew(4, <void*>array, <void *>on, <void *>om,
<void *>oN)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
with lock, nogil:
for i from 0 <= i < multi.size:
on_data = <long *>PyArray_MultiIter_DATA(multi, 1)
om_data = <long *>PyArray_MultiIter_DATA(multi, 2)
oN_data = <long *>PyArray_MultiIter_DATA(multi, 3)
array_data[i] = func(state, on_data[0], om_data[0], oN_data[0])
PyArray_MultiIter_NEXT(multi)
return array
cdef object discd_array_sc(rk_state *state, rk_discd func, object size,
double a, object lock):
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if size is None:
return func(state, a)
else:
array = <ndarray>np.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>PyArray_DATA(array)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, a)
return array
cdef object discd_array(rk_state *state, rk_discd func, object size, ndarray oa,
object lock):
cdef long *array_data
cdef double *oa_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
cdef broadcast multi
cdef flatiter itera
if size is None:
array = <ndarray>PyArray_SimpleNew(PyArray_NDIM(oa),
PyArray_DIMS(oa), NPY_LONG)
length = PyArray_SIZE(array)
array_data = <long *>PyArray_DATA(array)
itera = <flatiter>PyArray_IterNew(<object>oa)
with lock, nogil:
for i from 0 <= i < length:
array_data[i] = func(state, (<double *>(itera.dataptr))[0])
PyArray_ITER_NEXT(itera)
else:
array = <ndarray>np.empty(size, int)
array_data = <long *>PyArray_DATA(array)
multi = <broadcast>PyArray_MultiIterNew(2, <void *>array, <void *>oa)
if (multi.size != PyArray_SIZE(array)):
raise ValueError("size is not compatible with inputs")
with lock, nogil:
for i from 0 <= i < multi.size:
oa_data = <double *>PyArray_MultiIter_DATA(multi, 1)
array_data[i] = func(state, oa_data[0])
PyArray_MultiIter_NEXTi(multi, 1)
return array
cdef double kahan_sum(double *darr, npy_intp n):
cdef double c, y, t, sum
cdef npy_intp i
sum = darr[0]
c = 0.0
for i from 1 <= i < n:
y = darr[i] - c
t = sum + y
c = (t-sum) - y
sum = t
return sum
def _shape_from_size(size, d):
if size is None:
shape = (d,)
else:
try:
shape = (operator.index(size), d)
except TypeError:
shape = tuple(size) + (d,)
return shape
cdef class RandomState:
"""
RandomState(seed=None)
Container for the Mersenne Twister pseudo-random number generator.
`RandomState` exposes a number of methods for generating random numbers
drawn from a variety of probability distributions. In addition to the
distribution-specific arguments, each method takes a keyword argument
`size` that defaults to ``None``. If `size` is ``None``, then a single
value is generated and returned. If `size` is an integer, then a 1-D
array filled with generated values is returned. If `size` is a tuple,
then an array with that shape is filled and returned.
Parameters
----------
seed : {None, int, array_like}, optional
Random seed initializing the pseudo-random number generator.
Can be an integer, an array (or other sequence) of integers of
any length, or ``None`` (the default).
If `seed` is ``None``, then `RandomState` will try to read data from
``/dev/urandom`` (or the Windows analogue) if available or seed from
the clock otherwise.
Notes
-----
The Python stdlib module "random" also contains a Mersenne Twister
pseudo-random number generator with a number of methods that are similar
to the ones available in `RandomState`. `RandomState`, besides being
NumPy-aware, has the advantage that it provides a much larger number
of probability distributions to choose from.
"""
cdef rk_state *internal_state
cdef object lock
poisson_lam_max = np.iinfo('l').max - np.sqrt(np.iinfo('l').max)*10
def __init__(self, seed=None):
self.internal_state = <rk_state*>PyMem_Malloc(sizeof(rk_state))
self.seed(seed)
self.lock = Lock()
def __dealloc__(self):
if self.internal_state != NULL:
PyMem_Free(self.internal_state)
self.internal_state = NULL
def seed(self, seed=None):
"""
seed(seed=None)
Seed the generator.
This method is called when `RandomState` is initialized. It can be
called again to re-seed the generator. For details, see `RandomState`.
Parameters
----------
seed : int or array_like, optional
Seed for `RandomState`.
Must be convertable to 32 bit unsigned integers.
See Also
--------
RandomState
"""
cdef rk_error errcode
cdef ndarray obj "arrayObject_obj"
try:
if seed is None:
errcode = rk_randomseed(self.internal_state)
else:
idx = operator.index(seed)
if idx > int(2**32 - 1) or idx < 0:
raise ValueError("Seed must be between 0 and 4294967295")
rk_seed(idx, self.internal_state)
except TypeError:
obj = np.asarray(seed).astype(np.int64, casting='safe')
if ((obj > int(2**32 - 1)) | (obj < 0)).any():
raise ValueError("Seed must be between 0 and 4294967295")
obj = obj.astype('L', casting='unsafe')
init_by_array(self.internal_state, <unsigned long *>PyArray_DATA(obj),
PyArray_DIM(obj, 0))
def get_state(self):
"""
get_state()
Return a tuple representing the internal state of the generator.
For more details, see `set_state`.
Returns
-------
out : tuple(str, ndarray of 624 uints, int, int, float)
The returned tuple has the following items:
1. the string 'MT19937'.
2. a 1-D array of 624 unsigned integer keys.
3. an integer ``pos``.
4. an integer ``has_gauss``.
5. a float ``cached_gaussian``.
See Also
--------
set_state
Notes
-----
`set_state` and `get_state` are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.
"""
cdef ndarray state "arrayObject_state"
state = <ndarray>np.empty(624, np.uint)
memcpy(<void*>PyArray_DATA(state), <void*>(self.internal_state.key), 624*sizeof(long))
state = <ndarray>np.asarray(state, np.uint32)
return ('MT19937', state, self.internal_state.pos,
self.internal_state.has_gauss, self.internal_state.gauss)
def set_state(self, state):
"""
set_state(state)
Set the internal state of the generator from a tuple.
For use if one has reason to manually (re-)set the internal state of the
"Mersenne Twister"[1]_ pseudo-random number generating algorithm.
Parameters
----------
state : tuple(str, ndarray of 624 uints, int, int, float)
The `state` tuple has the following items:
1. the string 'MT19937', specifying the Mersenne Twister algorithm.
2. a 1-D array of 624 unsigned integers ``keys``.
3. an integer ``pos``.
4. an integer ``has_gauss``.
5. a float ``cached_gaussian``.
Returns
-------
out : None
Returns 'None' on success.
See Also
--------
get_state
Notes
-----
`set_state` and `get_state` are not needed to work with any of the
random distributions in NumPy. If the internal state is manually altered,
the user should know exactly what he/she is doing.
For backwards compatibility, the form (str, array of 624 uints, int) is
also accepted although it is missing some information about the cached
Gaussian value: ``state = ('MT19937', keys, pos)``.
References
----------
.. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number
generator," *ACM Trans. on Modeling and Computer Simulation*,
Vol. 8, No. 1, pp. 3-30, Jan. 1998.
"""
cdef ndarray obj "arrayObject_obj"
cdef int pos
algorithm_name = state[0]
if algorithm_name != 'MT19937':
raise ValueError("algorithm must be 'MT19937'")
key, pos = state[1:3]
if len(state) == 3:
has_gauss = 0
cached_gaussian = 0.0
else:
has_gauss, cached_gaussian = state[3:5]
try:
obj = <ndarray>PyArray_ContiguousFromObject(key, NPY_ULONG, 1, 1)
except TypeError:
# compatibility -- could be an older pickle
obj = <ndarray>PyArray_ContiguousFromObject(key, NPY_LONG, 1, 1)
if PyArray_DIM(obj, 0) != 624:
raise ValueError("state must be 624 longs")
memcpy(<void*>(self.internal_state.key), <void*>PyArray_DATA(obj), 624*sizeof(long))
self.internal_state.pos = pos
self.internal_state.has_gauss = has_gauss
self.internal_state.gauss = cached_gaussian
# Pickling support:
def __getstate__(self):
return self.get_state()
def __setstate__(self, state):
self.set_state(state)
def __reduce__(self):
return (np.random.__RandomState_ctor, (), self.get_state())
# Basic distributions:
def random_sample(self, size=None):
"""
random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).
Results are from the "continuous uniform" distribution over the
stated interval. To sample :math:`Unif[a, b), b > a` multiply
the output of `random_sample` by `(b-a)` and add `a`::
(b - a) * random_sample() + a
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : float or ndarray of floats
Array of random floats of shape `size` (unless ``size=None``, in which
case a single float is returned).
Examples
--------
>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type 'float'>
>>> np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])
Three-by-two array of random numbers from [-5, 0):
>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])
"""
return cont0_array(self.internal_state, rk_double, size, self.lock)
def tomaxint(self, size=None):
"""
tomaxint(size=None)
Random integers between 0 and ``sys.maxint``, inclusive.
Return a sample of uniformly distributed random integers in the interval
[0, ``sys.maxint``].
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : ndarray
Drawn samples, with shape `size`.
See Also
--------
randint : Uniform sampling over a given half-open interval of integers.
random_integers : Uniform sampling over a given closed interval of
integers.
Examples
--------
>>> RS = np.random.mtrand.RandomState() # need a RandomState object
>>> RS.tomaxint((2,2,2))
array([[[1170048599, 1600360186],
[ 739731006, 1947757578]],
[[1871712945, 752307660],
[1601631370, 1479324245]]])
>>> import sys
>>> sys.maxint
2147483647
>>> RS.tomaxint((2,2,2)) < sys.maxint
array([[[ True, True],
[ True, True]],
[[ True, True],
[ True, True]]], dtype=bool)
"""
return disc0_array(self.internal_state, rk_long, size, self.lock)
def randint(self, low, high=None, size=None):
"""
randint(low, high=None, size=None)
Return random integers from `low` (inclusive) to `high` (exclusive).
Return random integers from the "discrete uniform" distribution in the
"half-open" interval [`low`, `high`). If `high` is None (the default),
then results are from [0, `low`).
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution (unless
``high=None``, in which case this parameter is the *highest* such
integer).
high : int, optional
If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if ``high=None``).
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : int or ndarray of ints
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
See Also
--------
random.random_integers : similar to `randint`, only for the closed
interval [`low`, `high`], and 1 is the lowest value if `high` is
omitted. In particular, this other one is the one to use to generate
uniformly distributed discrete non-integers.
Examples
--------
>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
[3, 2, 2, 0]])
"""
cdef long lo, hi, rv
cdef unsigned long diff
cdef long *array_data
cdef ndarray array "arrayObject"
cdef npy_intp length
cdef npy_intp i
if high is None:
lo = 0
hi = low
else:
lo = low
hi = high
if lo >= hi :
raise ValueError("low >= high")
diff = <unsigned long>hi - <unsigned long>lo - 1UL
if size is None:
rv = lo + <long>rk_interval(diff, self. internal_state)
return rv
else:
array = <ndarray>np.empty(size, int)
length = PyArray_SIZE(array)
array_data = <long *>PyArray_DATA(array)
with self.lock, nogil:
for i from 0 <= i < length:
rv = lo + <long>rk_interval(diff, self. internal_state)
array_data[i] = rv
return array
def bytes(self, npy_intp length):
"""
bytes(length)
Return random bytes.
Parameters
----------
length : int
Number of random bytes.
Returns
-------
out : str
String of length `length`.
Examples
--------
>>> np.random.bytes(10)
' eh\\x85\\x022SZ\\xbf\\xa4' #random
"""
cdef void *bytes
bytestring = empty_py_bytes(length, &bytes)
with self.lock, nogil:
rk_fill(bytes, length, self.internal_state)
return bytestring
def choice(self, a, size=None, replace=True, p=None):
"""
choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array
.. versionadded:: 1.7.0
Parameters
-----------
a : 1-D array-like or int
If an ndarray, a random sample is generated from its elements.
If an int, the random sample is generated as if a was np.arange(n)
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
replace : boolean, optional
Whether the sample is with or without replacement
p : 1-D array-like, optional
The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.
Returns
--------
samples : 1-D ndarray, shape (size,)
The generated random samples
Raises
-------
ValueError
If a is an int and less than zero, if a or p are not 1-dimensional,
if a is an array-like of size 0, if p is not a vector of
probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population
size
See Also
---------
randint, shuffle, permutation
Examples
---------
Generate a uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)
Generate a non-uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])
Generate a uniform random sample from np.arange(5) of size 3 without
replacement:
>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]
Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:
>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])
Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:
>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
dtype='|S11')
"""
# Format and Verify input
a = np.array(a, copy=False)
if a.ndim == 0:
try:
# __index__ must return an integer by python rules.
pop_size = operator.index(a.item())
except TypeError:
raise ValueError("a must be 1-dimensional or an integer")
if pop_size <= 0:
raise ValueError("a must be greater than 0")
elif a.ndim != 1:
raise ValueError("a must be 1-dimensional")
else:
pop_size = a.shape[0]
if pop_size is 0:
raise ValueError("a must be non-empty")
if p is not None:
d = len(p)
p = <ndarray>PyArray_ContiguousFromObject(p, NPY_DOUBLE, 1, 1)
pix = <double*>PyArray_DATA(p)
if p.ndim != 1:
raise ValueError("p must be 1-dimensional")
if p.size != pop_size:
raise ValueError("a and p must have same size")
if np.logical_or.reduce(p < 0):
raise ValueError("probabilities are not non-negative")
if abs(kahan_sum(pix, d) - 1.) > 1e-8:
raise ValueError("probabilities do not sum to 1")
shape = size
if shape is not None:
size = np.prod(shape, dtype=np.intp)
else:
size = 1
# Actual sampling
if replace:
if p is not None:
cdf = p.cumsum()
cdf /= cdf[-1]
uniform_samples = self.random_sample(shape)
idx = cdf.searchsorted(uniform_samples, side='right')
idx = np.array(idx, copy=False) # searchsorted returns a scalar
else:
idx = self.randint(0, pop_size, size=shape)
else:
if size > pop_size:
raise ValueError("Cannot take a larger sample than "
"population when 'replace=False'")
if p is not None:
if np.count_nonzero(p > 0) < size:
raise ValueError("Fewer non-zero entries in p than size")
n_uniq = 0
p = p.copy()
found = np.zeros(shape, dtype=np.int)
flat_found = found.ravel()
while n_uniq < size:
x = self.rand(size - n_uniq)
if n_uniq > 0:
p[flat_found[0:n_uniq]] = 0
cdf = np.cumsum(p)
cdf /= cdf[-1]
new = cdf.searchsorted(x, side='right')
_, unique_indices = np.unique(new, return_index=True)
unique_indices.sort()
new = new.take(unique_indices)
flat_found[n_uniq:n_uniq + new.size] = new
n_uniq += new.size
idx = found
else:
idx = self.permutation(pop_size)[:size]
if shape is not None:
idx.shape = shape
if shape is None and isinstance(idx, np.ndarray):
# In most cases a scalar will have been made an array
idx = idx.item(0)
#Use samples as indices for a if a is array-like
if a.ndim == 0:
return idx
if shape is not None and idx.ndim == 0:
# If size == () then the user requested a 0-d array as opposed to
# a scalar object when size is None. However a[idx] is always a
# scalar and not an array. So this makes sure the result is an
# array, taking into account that np.array(item) may not work
# for object arrays.
res = np.empty((), dtype=a.dtype)
res[()] = a[idx]
return res
return a[idx]
def uniform(self, low=0.0, high=1.0, size=None):
"""
uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval
``[low, high)`` (includes low, but excludes high). In other words,
any value within the given interval is equally likely to be drawn
by `uniform`.
Parameters
----------
low : float, optional
Lower boundary of the output interval. All values generated will be
greater than or equal to low. The default value is 0.
high : float
Upper boundary of the output interval. All values generated will be
less than high. The default value is 1.0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : ndarray
Drawn samples, with shape `size`.
See Also
--------
randint : Discrete uniform distribution, yielding integers.
random_integers : Discrete uniform distribution over the closed
interval ``[low, high]``.
random_sample : Floats uniformly distributed over ``[0, 1)``.
random : Alias for `random_sample`.
rand : Convenience function that accepts dimensions as input, e.g.,
``rand(2,2)`` would generate a 2-by-2 array of floats,
uniformly distributed over ``[0, 1)``.
Notes
-----
The probability density function of the uniform distribution is
.. math:: p(x) = \\frac{1}{b - a}
anywhere within the interval ``[a, b)``, and zero elsewhere.
Examples
--------
Draw samples from the distribution:
>>> s = np.random.uniform(-1,0,1000)
All values are within the given interval:
>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True
Display the histogram of the samples, along with the
probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, normed=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()
"""
cdef ndarray olow, ohigh, odiff
cdef double flow, fhigh
cdef object temp
flow = PyFloat_AsDouble(low)
fhigh = PyFloat_AsDouble(high)
if not PyErr_Occurred():
return cont2_array_sc(self.internal_state, rk_uniform, size, flow,
fhigh-flow, self.lock)
PyErr_Clear()
olow = <ndarray>PyArray_FROM_OTF(low, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
ohigh = <ndarray>PyArray_FROM_OTF(high, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
temp = np.subtract(ohigh, olow)
Py_INCREF(temp) # needed to get around Pyrex's automatic reference-counting
# rules because EnsureArray steals a reference
odiff = <ndarray>PyArray_EnsureArray(temp)
return cont2_array(self.internal_state, rk_uniform, size, olow, odiff,
self.lock)
def rand(self, *args):
"""
rand(d0, d1, ..., dn)
Random values in a given shape.
Create an array of the given shape and propagate it with
random samples from a uniform distribution
over ``[0, 1)``.
Parameters
----------
d0, d1, ..., dn : int, optional
The dimensions of the returned array, should all be positive.
If no argument is given a single Python float is returned.
Returns
-------
out : ndarray, shape ``(d0, d1, ..., dn)``
Random values.
See Also
--------
random
Notes
-----
This is a convenience function. If you want an interface that
takes a shape-tuple as the first argument, refer to
np.random.random_sample .
Examples
--------
>>> np.random.rand(3,2)
array([[ 0.14022471, 0.96360618], #random
[ 0.37601032, 0.25528411], #random
[ 0.49313049, 0.94909878]]) #random
"""
if len(args) == 0:
return self.random_sample()
else:
return self.random_sample(size=args)
def randn(self, *args):
"""
randn(d0, d1, ..., dn)
Return a sample (or samples) from the "standard normal" distribution.
If positive, int_like or int-convertible arguments are provided,
`randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
with random floats sampled from a univariate "normal" (Gaussian)
distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
floats, they are first converted to integers by truncation). A single
float randomly sampled from the distribution is returned if no
argument is provided.
This is a convenience function. If you want an interface that takes a
tuple as the first argument, use `numpy.random.standard_normal` instead.
Parameters
----------
d0, d1, ..., dn : int, optional
The dimensions of the returned array, should be all positive.
If no argument is given a single Python float is returned.
Returns
-------
Z : ndarray or float
A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
the standard normal distribution, or a single such float if
no parameters were supplied.
See Also
--------
random.standard_normal : Similar, but takes a tuple as its argument.
Notes
-----
For random samples from :math:`N(\\mu, \\sigma^2)`, use:
``sigma * np.random.randn(...) + mu``
Examples
--------
>>> np.random.randn()
2.1923875335537315 #random
Two-by-four array of samples from N(3, 6.25):
>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random
"""
if len(args) == 0:
return self.standard_normal()
else:
return self.standard_normal(args)
def random_integers(self, low, high=None, size=None):
"""
random_integers(low, high=None, size=None)
Return random integers between `low` and `high`, inclusive.
Return random integers from the "discrete uniform" distribution in the
closed interval [`low`, `high`]. If `high` is None (the default),
then results are from [1, `low`].
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution (unless
``high=None``, in which case this parameter is the *highest* such
integer).
high : int, optional
If provided, the largest (signed) integer to be drawn from the
distribution (see above for behavior if ``high=None``).
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : int or ndarray of ints
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
See Also
--------
random.randint : Similar to `random_integers`, only for the half-open
interval [`low`, `high`), and 0 is the lowest value if `high` is
omitted.
Notes
-----
To sample from N evenly spaced floating-point numbers between a and b,
use::
a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)
Examples
--------
>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type 'int'>
>>> np.random.random_integers(5, size=(3.,2.))
array([[5, 4],
[3, 3],
[4, 5]])
Choose five random numbers from the set of five evenly-spaced
numbers between 0 and 2.5, inclusive (*i.e.*, from the set
:math:`{0, 5/8, 10/8, 15/8, 20/8}`):
>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])
Roll two six sided dice 1000 times and sum the results:
>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2
Display results as a histogram:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, normed=True)
>>> plt.show()
"""
if high is None:
high = low
low = 1
return self.randint(low, high+1, size)
# Complicated, continuous distributions:
def standard_normal(self, size=None):
"""
standard_normal(size=None)
Returns samples from a Standard Normal distribution (mean=0, stdev=1).
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : float or ndarray
Drawn samples.
Examples
--------
>>> s = np.random.standard_normal(8000)
>>> s
array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random
-0.38672696, -0.4685006 ]) #random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)
"""
return cont0_array(self.internal_state, rk_gauss, size, self.lock)
def normal(self, loc=0.0, scale=1.0, size=None):
"""
normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.
The probability density function of the normal distribution, first
derived by De Moivre and 200 years later by both Gauss and Laplace
independently [2]_, is often called the bell curve because of
its characteristic shape (see the example below).
The normal distributions occurs often in nature. For example, it
describes the commonly occurring distribution of samples influenced
by a large number of tiny, random disturbances, each with its own
unique distribution [2]_.
Parameters
----------
loc : float
Mean ("centre") of the distribution.
scale : float
Standard deviation (spread or "width") of the distribution.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
See Also
--------
scipy.stats.distributions.norm : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Gaussian distribution is
.. math:: p(x) = \\frac{1}{\\sqrt{ 2 \\pi \\sigma^2 }}
e^{ - \\frac{ (x - \\mu)^2 } {2 \\sigma^2} },
where :math:`\\mu` is the mean and :math:`\\sigma` the standard deviation.
The square of the standard deviation, :math:`\\sigma^2`, is called the
variance.
The function has its peak at the mean, and its "spread" increases with
the standard deviation (the function reaches 0.607 times its maximum at
:math:`x + \\sigma` and :math:`x - \\sigma` [2]_). This implies that
`numpy.random.normal` is more likely to return samples lying close to the
mean, rather than those far away.
References
----------
.. [1] Wikipedia, "Normal distribution",
http://en.wikipedia.org/wiki/Normal_distribution
.. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random
Variables and Random Signal Principles", 4th ed., 2001,
pp. 51, 51, 125.
Examples
--------
Draw samples from the distribution:
>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)
Verify the mean and the variance:
>>> abs(mu - np.mean(s)) < 0.01
True
>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
... linewidth=2, color='r')
>>> plt.show()
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_normal, size, floc,
fscale, self.lock)
PyErr_Clear()
oloc = <ndarray>PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
oscale = <ndarray>PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oscale, 0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_normal, size, oloc, oscale,
self.lock)
def beta(self, a, b, size=None):
"""
beta(a, b, size=None)
The Beta distribution over ``[0, 1]``.
The Beta distribution is a special case of the Dirichlet distribution,
and is related to the Gamma distribution. It has the probability
distribution function
.. math:: f(x; a,b) = \\frac{1}{B(\\alpha, \\beta)} x^{\\alpha - 1}
(1 - x)^{\\beta - 1},
where the normalisation, B, is the beta function,
.. math:: B(\\alpha, \\beta) = \\int_0^1 t^{\\alpha - 1}
(1 - t)^{\\beta - 1} dt.
It is often seen in Bayesian inference and order statistics.
Parameters
----------
a : float
Alpha, non-negative.
b : float
Beta, non-negative.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : ndarray
Array of the given shape, containing values drawn from a
Beta distribution.
"""
cdef ndarray oa, ob
cdef double fa, fb
fa = PyFloat_AsDouble(a)
fb = PyFloat_AsDouble(b)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
if fb <= 0:
raise ValueError("b <= 0")
return cont2_array_sc(self.internal_state, rk_beta, size, fa, fb,
self.lock)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
ob = <ndarray>PyArray_FROM_OTF(b, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oa, 0)):
raise ValueError("a <= 0")
if np.any(np.less_equal(ob, 0)):
raise ValueError("b <= 0")
return cont2_array(self.internal_state, rk_beta, size, oa, ob,
self.lock)
def exponential(self, scale=1.0, size=None):
"""
exponential(scale=1.0, size=None)
Exponential distribution.
Its probability density function is
.. math:: f(x; \\frac{1}{\\beta}) = \\frac{1}{\\beta} \\exp(-\\frac{x}{\\beta}),
for ``x > 0`` and 0 elsewhere. :math:`\\beta` is the scale parameter,
which is the inverse of the rate parameter :math:`\\lambda = 1/\\beta`.
The rate parameter is an alternative, widely used parameterization
of the exponential distribution [3]_.
The exponential distribution is a continuous analogue of the
geometric distribution. It describes many common situations, such as
the size of raindrops measured over many rainstorms [1]_, or the time
between page requests to Wikipedia [2]_.
Parameters
----------
scale : float
The scale parameter, :math:`\\beta = 1/\\lambda`.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
References
----------
.. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
Random Signal Principles", 4th ed, 2001, p. 57.
.. [2] "Poisson Process", Wikipedia,
http://en.wikipedia.org/wiki/Poisson_process
.. [3] "Exponential Distribution, Wikipedia,
http://en.wikipedia.org/wiki/Exponential_distribution
"""
cdef ndarray oscale
cdef double fscale
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont1_array_sc(self.internal_state, rk_exponential, size,
fscale, self.lock)
PyErr_Clear()
oscale = <ndarray> PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont1_array(self.internal_state, rk_exponential, size, oscale,
self.lock)
def standard_exponential(self, size=None):
"""
standard_exponential(size=None)
Draw samples from the standard exponential distribution.
`standard_exponential` is identical to the exponential distribution
with a scale parameter of 1.
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : float or ndarray
Drawn samples.
Examples
--------
Output a 3x8000 array:
>>> n = np.random.standard_exponential((3, 8000))
"""
return cont0_array(self.internal_state, rk_standard_exponential, size,
self.lock)
def standard_gamma(self, shape, size=None):
"""
standard_gamma(shape, size=None)
Draw samples from a Standard Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters,
shape (sometimes designated "k") and scale=1.
Parameters
----------
shape : float
Parameter, should be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or scalar
The drawn samples.
See Also
--------
scipy.stats.distributions.gamma : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Gamma distribution is
.. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},
where :math:`k` is the shape and :math:`\\theta` the scale,
and :math:`\\Gamma` is the Gamma function.
The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.
References
----------
.. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html
.. [2] Wikipedia, "Gamma-distribution",
http://en.wikipedia.org/wiki/Gamma-distribution
Examples
--------
Draw samples from the distribution:
>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \\
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()
"""
cdef ndarray oshape
cdef double fshape
fshape = PyFloat_AsDouble(shape)
if not PyErr_Occurred():
if fshape <= 0:
raise ValueError("shape <= 0")
return cont1_array_sc(self.internal_state, rk_standard_gamma, size, fshape, self.lock)
PyErr_Clear()
oshape = <ndarray> PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oshape, 0.0)):
raise ValueError("shape <= 0")
return cont1_array(self.internal_state, rk_standard_gamma, size,
oshape, self.lock)
def gamma(self, shape, scale=1.0, size=None):
"""
gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters,
`shape` (sometimes designated "k") and `scale` (sometimes designated
"theta"), where both parameters are > 0.
Parameters
----------
shape : scalar > 0
The shape of the gamma distribution.
scale : scalar > 0, optional
The scale of the gamma distribution. Default is equal to 1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : ndarray, float
Returns one sample unless `size` parameter is specified.
See Also
--------
scipy.stats.distributions.gamma : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Gamma distribution is
.. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},
where :math:`k` is the shape and :math:`\\theta` the scale,
and :math:`\\Gamma` is the Gamma function.
The Gamma distribution is often used to model the times to failure of
electronic components, and arises naturally in processes for which the
waiting times between Poisson distributed events are relevant.
References
----------
.. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
Wolfram Web Resource.
http://mathworld.wolfram.com/GammaDistribution.html
.. [2] Wikipedia, "Gamma-distribution",
http://en.wikipedia.org/wiki/Gamma-distribution
Examples
--------
Draw samples from the distribution:
>>> shape, scale = 2., 2. # mean and dispersion
>>> s = np.random.gamma(shape, scale, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()
"""
cdef ndarray oshape, oscale
cdef double fshape, fscale
fshape = PyFloat_AsDouble(shape)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fshape <= 0:
raise ValueError("shape <= 0")
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_gamma, size, fshape,
fscale, self.lock)
PyErr_Clear()
oshape = <ndarray>PyArray_FROM_OTF(shape, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
oscale = <ndarray>PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oshape, 0.0)):
raise ValueError("shape <= 0")
if np.any(np.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_gamma, size, oshape, oscale,
self.lock)
def f(self, dfnum, dfden, size=None):
"""
f(dfnum, dfden, size=None)
Draw samples from a F distribution.
Samples are drawn from an F distribution with specified parameters,
`dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom
in denominator), where both parameters should be greater than zero.
The random variate of the F distribution (also known as the
Fisher distribution) is a continuous probability distribution
that arises in ANOVA tests, and is the ratio of two chi-square
variates.
Parameters
----------
dfnum : float
Degrees of freedom in numerator. Should be greater than zero.
dfden : float
Degrees of freedom in denominator. Should be greater than zero.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : {ndarray, scalar}
Samples from the Fisher distribution.
See Also
--------
scipy.stats.distributions.f : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The F statistic is used to compare in-group variances to between-group
variances. Calculating the distribution depends on the sampling, and
so it is a function of the respective degrees of freedom in the
problem. The variable `dfnum` is the number of samples minus one, the
between-groups degrees of freedom, while `dfden` is the within-groups
degrees of freedom, the sum of the number of samples in each group
minus the number of groups.
References
----------
.. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
Fifth Edition, 2002.
.. [2] Wikipedia, "F-distribution",
http://en.wikipedia.org/wiki/F-distribution
Examples
--------
An example from Glantz[1], pp 47-40.
Two groups, children of diabetics (25 people) and children from people
without diabetes (25 controls). Fasting blood glucose was measured,
case group had a mean value of 86.1, controls had a mean value of
82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
data consistent with the null hypothesis that the parents diabetic
status does not affect their children's blood glucose levels?
Calculating the F statistic from the data gives a value of 36.01.
Draw samples from the distribution:
>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)
The lower bound for the top 1% of the samples is :
>>> sort(s)[-10]
7.61988120985
So there is about a 1% chance that the F statistic will exceed 7.62,
the measured value is 36, so the null hypothesis is rejected at the 1%
level.
"""
cdef ndarray odfnum, odfden
cdef double fdfnum, fdfden
fdfnum = PyFloat_AsDouble(dfnum)
fdfden = PyFloat_AsDouble(dfden)
if not PyErr_Occurred():
if fdfnum <= 0:
raise ValueError("shape <= 0")
if fdfden <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_f, size, fdfnum,
fdfden, self.lock)
PyErr_Clear()
odfnum = <ndarray>PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
odfden = <ndarray>PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(odfnum, 0.0)):
raise ValueError("dfnum <= 0")
if np.any(np.less_equal(odfden, 0.0)):
raise ValueError("dfden <= 0")
return cont2_array(self.internal_state, rk_f, size, odfnum, odfden,
self.lock)
def noncentral_f(self, dfnum, dfden, nonc, size=None):
"""
noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.
Samples are drawn from an F distribution with specified parameters,
`dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
freedom in denominator), where both parameters > 1.
`nonc` is the non-centrality parameter.
Parameters
----------
dfnum : int
Parameter, should be > 1.
dfden : int
Parameter, should be > 1.
nonc : float
Parameter, should be >= 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : scalar or ndarray
Drawn samples.
Notes
-----
When calculating the power of an experiment (power = probability of
rejecting the null hypothesis when a specific alternative is true) the
non-central F statistic becomes important. When the null hypothesis is
true, the F statistic follows a central F distribution. When the null
hypothesis is not true, then it follows a non-central F statistic.
References
----------
Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html
Wikipedia, "Noncentral F distribution",
http://en.wikipedia.org/wiki/Noncentral_F-distribution
Examples
--------
In a study, testing for a specific alternative to the null hypothesis
requires use of the Noncentral F distribution. We need to calculate the
area in the tail of the distribution that exceeds the value of the F
distribution for the null hypothesis. We'll plot the two probability
distributions for comparison.
>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, normed=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, normed=True)
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()
"""
cdef ndarray odfnum, odfden, ononc
cdef double fdfnum, fdfden, fnonc
fdfnum = PyFloat_AsDouble(dfnum)
fdfden = PyFloat_AsDouble(dfden)
fnonc = PyFloat_AsDouble(nonc)
if not PyErr_Occurred():
if fdfnum <= 1:
raise ValueError("dfnum <= 1")
if fdfden <= 0:
raise ValueError("dfden <= 0")
if fnonc < 0:
raise ValueError("nonc < 0")
return cont3_array_sc(self.internal_state, rk_noncentral_f, size,
fdfnum, fdfden, fnonc, self.lock)
PyErr_Clear()
odfnum = <ndarray>PyArray_FROM_OTF(dfnum, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
odfden = <ndarray>PyArray_FROM_OTF(dfden, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
ononc = <ndarray>PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(odfnum, 1.0)):
raise ValueError("dfnum <= 1")
if np.any(np.less_equal(odfden, 0.0)):
raise ValueError("dfden <= 0")
if np.any(np.less(ononc, 0.0)):
raise ValueError("nonc < 0")
return cont3_array(self.internal_state, rk_noncentral_f, size, odfnum,
odfden, ononc, self.lock)
def chisquare(self, df, size=None):
"""
chisquare(df, size=None)
Draw samples from a chi-square distribution.
When `df` independent random variables, each with standard normal
distributions (mean 0, variance 1), are squared and summed, the
resulting distribution is chi-square (see Notes). This distribution
is often used in hypothesis testing.
Parameters
----------
df : int
Number of degrees of freedom.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
output : ndarray
Samples drawn from the distribution, packed in a `size`-shaped
array.
Raises
------
ValueError
When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
is given.
Notes
-----
The variable obtained by summing the squares of `df` independent,
standard normally distributed random variables:
.. math:: Q = \\sum_{i=0}^{\\mathtt{df}} X^2_i
is chi-square distributed, denoted
.. math:: Q \\sim \\chi^2_k.
The probability density function of the chi-squared distribution is
.. math:: p(x) = \\frac{(1/2)^{k/2}}{\\Gamma(k/2)}
x^{k/2 - 1} e^{-x/2},
where :math:`\\Gamma` is the gamma function,
.. math:: \\Gamma(x) = \\int_0^{-\\infty} t^{x - 1} e^{-t} dt.
References
----------
`NIST/SEMATECH e-Handbook of Statistical Methods
<http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm>`_
Examples
--------
>>> np.random.chisquare(2,4)
array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272])
"""
cdef ndarray odf
cdef double fdf
fdf = PyFloat_AsDouble(df)
if not PyErr_Occurred():
if fdf <= 0:
raise ValueError("df <= 0")
return cont1_array_sc(self.internal_state, rk_chisquare, size, fdf,
self.lock)
PyErr_Clear()
odf = <ndarray>PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(odf, 0.0)):
raise ValueError("df <= 0")
return cont1_array(self.internal_state, rk_chisquare, size, odf,
self.lock)
def noncentral_chisquare(self, df, nonc, size=None):
"""
noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.
The noncentral :math:`\\chi^2` distribution is a generalisation of
the :math:`\\chi^2` distribution.
Parameters
----------
df : int
Degrees of freedom, should be >= 1.
nonc : float
Non-centrality, should be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Notes
-----
The probability density function for the noncentral Chi-square distribution
is
.. math:: P(x;df,nonc) = \\sum^{\\infty}_{i=0}
\\frac{e^{-nonc/2}(nonc/2)^{i}}{i!}P_{Y_{df+2i}}(x),
where :math:`Y_{q}` is the Chi-square with q degrees of freedom.
In Delhi (2007), it is noted that the noncentral chi-square is useful in
bombing and coverage problems, the probability of killing the point target
given by the noncentral chi-squared distribution.
References
----------
.. [1] Delhi, M.S. Holla, "On a noncentral chi-square distribution in the
analysis of weapon systems effectiveness", Metrika, Volume 15,
Number 1 / December, 1970.
.. [2] Wikipedia, "Noncentral chi-square distribution"
http://en.wikipedia.org/wiki/Noncentral_chi-square_distribution
Examples
--------
Draw values from the distribution and plot the histogram
>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()
Draw values from a noncentral chisquare with very small noncentrality,
and compare to a chisquare.
>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), normed=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()
Demonstrate how large values of non-centrality lead to a more symmetric
distribution.
>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, normed=True)
>>> plt.show()
"""
cdef ndarray odf, ononc
cdef double fdf, fnonc
fdf = PyFloat_AsDouble(df)
fnonc = PyFloat_AsDouble(nonc)
if not PyErr_Occurred():
if fdf <= 1:
raise ValueError("df <= 0")
if fnonc <= 0:
raise ValueError("nonc <= 0")
return cont2_array_sc(self.internal_state, rk_noncentral_chisquare,
size, fdf, fnonc, self.lock)
PyErr_Clear()
odf = <ndarray>PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
ononc = <ndarray>PyArray_FROM_OTF(nonc, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(odf, 0.0)):
raise ValueError("df <= 1")
if np.any(np.less_equal(ononc, 0.0)):
raise ValueError("nonc < 0")
return cont2_array(self.internal_state, rk_noncentral_chisquare, size,
odf, ononc, self.lock)
def standard_cauchy(self, size=None):
"""
standard_cauchy(size=None)
Standard Cauchy distribution with mode = 0.
Also known as the Lorentz distribution.
Parameters
----------
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or scalar
The drawn samples.
Notes
-----
The probability density function for the full Cauchy distribution is
.. math:: P(x; x_0, \\gamma) = \\frac{1}{\\pi \\gamma \\bigl[ 1+
(\\frac{x-x_0}{\\gamma})^2 \\bigr] }
and the Standard Cauchy distribution just sets :math:`x_0=0` and
:math:`\\gamma=1`
The Cauchy distribution arises in the solution to the driven harmonic
oscillator problem, and also describes spectral line broadening. It
also describes the distribution of values at which a line tilted at
a random angle will cut the x axis.
When studying hypothesis tests that assume normality, seeing how the
tests perform on data from a Cauchy distribution is a good indicator of
their sensitivity to a heavy-tailed distribution, since the Cauchy looks
very much like a Gaussian distribution, but with heavier tails.
References
----------
.. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
Distribution",
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
.. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
Wolfram Web Resource.
http://mathworld.wolfram.com/CauchyDistribution.html
.. [3] Wikipedia, "Cauchy distribution"
http://en.wikipedia.org/wiki/Cauchy_distribution
Examples
--------
Draw samples and plot the distribution:
>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()
"""
return cont0_array(self.internal_state, rk_standard_cauchy, size,
self.lock)
def standard_t(self, df, size=None):
"""
standard_t(df, size=None)
Standard Student's t distribution with df degrees of freedom.
A special case of the hyperbolic distribution.
As `df` gets large, the result resembles that of the standard normal
distribution (`standard_normal`).
Parameters
----------
df : int
Degrees of freedom, should be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or scalar
Drawn samples.
Notes
-----
The probability density function for the t distribution is
.. math:: P(x, df) = \\frac{\\Gamma(\\frac{df+1}{2})}{\\sqrt{\\pi df}
\\Gamma(\\frac{df}{2})}\\Bigl( 1+\\frac{x^2}{df} \\Bigr)^{-(df+1)/2}
The t test is based on an assumption that the data come from a Normal
distribution. The t test provides a way to test whether the sample mean
(that is the mean calculated from the data) is a good estimate of the true
mean.
The derivation of the t-distribution was forst published in 1908 by William
Gisset while working for the Guinness Brewery in Dublin. Due to proprietary
issues, he had to publish under a pseudonym, and so he used the name
Student.
References
----------
.. [1] Dalgaard, Peter, "Introductory Statistics With R",
Springer, 2002.
.. [2] Wikipedia, "Student's t-distribution"
http://en.wikipedia.org/wiki/Student's_t-distribution
Examples
--------
From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
women in Kj is:
>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \\
... 7515, 8230, 8770])
Does their energy intake deviate systematically from the recommended
value of 7725 kJ?
We have 10 degrees of freedom, so is the sample mean within 95% of the
recommended value?
>>> s = np.random.standard_t(10, size=100000)
>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727
Calculate the t statistic, setting the ddof parameter to the unbiased
value so the divisor in the standard deviation will be degrees of
freedom, N-1.
>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(s, bins=100, normed=True)
For a one-sided t-test, how far out in the distribution does the t
statistic appear?
>>> >>> np.sum(s<t) / float(len(s))
0.0090699999999999999 #random
So the p-value is about 0.009, which says the null hypothesis has a
probability of about 99% of being true.
"""
cdef ndarray odf
cdef double fdf
fdf = PyFloat_AsDouble(df)
if not PyErr_Occurred():
if fdf <= 0:
raise ValueError("df <= 0")
return cont1_array_sc(self.internal_state, rk_standard_t, size,
fdf, self.lock)
PyErr_Clear()
odf = <ndarray> PyArray_FROM_OTF(df, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(odf, 0.0)):
raise ValueError("df <= 0")
return cont1_array(self.internal_state, rk_standard_t, size, odf,
self.lock)
def vonmises(self, mu, kappa, size=None):
"""
vonmises(mu, kappa, size=None)
Draw samples from a von Mises distribution.
Samples are drawn from a von Mises distribution with specified mode
(mu) and dispersion (kappa), on the interval [-pi, pi].
The von Mises distribution (also known as the circular normal
distribution) is a continuous probability distribution on the unit
circle. It may be thought of as the circular analogue of the normal
distribution.
Parameters
----------
mu : float
Mode ("center") of the distribution.
kappa : float
Dispersion of the distribution, has to be >=0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : scalar or ndarray
The returned samples, which are in the interval [-pi, pi].
See Also
--------
scipy.stats.distributions.vonmises : probability density function,
distribution, or cumulative density function, etc.
Notes
-----
The probability density for the von Mises distribution is
.. math:: p(x) = \\frac{e^{\\kappa cos(x-\\mu)}}{2\\pi I_0(\\kappa)},
where :math:`\\mu` is the mode and :math:`\\kappa` the dispersion,
and :math:`I_0(\\kappa)` is the modified Bessel function of order 0.
The von Mises is named for Richard Edler von Mises, who was born in
Austria-Hungary, in what is now the Ukraine. He fled to the United
States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of
science.
References
----------
Abramowitz, M. and Stegun, I. A. (ed.), *Handbook of Mathematical
Functions*, New York: Dover, 1965.
von Mises, R., *Mathematical Theory of Probability and Statistics*,
New York: Academic Press, 1964.
Examples
--------
Draw samples from the distribution:
>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> x = np.arange(-np.pi, np.pi, 2*np.pi/50.)
>>> y = -np.exp(kappa*np.cos(x-mu))/(2*np.pi*sps.jn(0,kappa))
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()
"""
cdef ndarray omu, okappa
cdef double fmu, fkappa
fmu = PyFloat_AsDouble(mu)
fkappa = PyFloat_AsDouble(kappa)
if not PyErr_Occurred():
if fkappa < 0:
raise ValueError("kappa < 0")
return cont2_array_sc(self.internal_state, rk_vonmises, size, fmu,
fkappa, self.lock)
PyErr_Clear()
omu = <ndarray> PyArray_FROM_OTF(mu, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
okappa = <ndarray> PyArray_FROM_OTF(kappa, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less(okappa, 0.0)):
raise ValueError("kappa < 0")
return cont2_array(self.internal_state, rk_vonmises, size, omu, okappa,
self.lock)
def pareto(self, a, size=None):
"""
pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with specified shape.
The Lomax or Pareto II distribution is a shifted Pareto distribution. The
classical Pareto distribution can be obtained from the Lomax distribution
by adding the location parameter m, see below. The smallest value of the
Lomax distribution is zero while for the classical Pareto distribution it
is m, where the standard Pareto distribution has location m=1.
Lomax can also be considered as a simplified version of the Generalized
Pareto distribution (available in SciPy), with the scale set to one and
the location set to zero.
The Pareto distribution must be greater than zero, and is unbounded above.
It is also known as the "80-20 rule". In this distribution, 80 percent of
the weights are in the lowest 20 percent of the range, while the other 20
percent fill the remaining 80 percent of the range.
Parameters
----------
shape : float, > 0.
Shape of the distribution.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
See Also
--------
scipy.stats.distributions.lomax.pdf : probability density function,
distribution or cumulative density function, etc.
scipy.stats.distributions.genpareto.pdf : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Pareto distribution is
.. math:: p(x) = \\frac{am^a}{x^{a+1}}
where :math:`a` is the shape and :math:`m` the location
The Pareto distribution, named after the Italian economist Vilfredo Pareto,
is a power law probability distribution useful in many real world problems.
Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the
distribution of wealth in an economy. It has also found use in insurance,
web page access statistics, oil field sizes, and many other problems,
including the download frequency for projects in Sourceforge [1]. It is
one of the so-called "fat-tailed" distributions.
References
----------
.. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
Sourceforge projects.
.. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
.. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
Values, Birkhauser Verlag, Basel, pp 23-30.
.. [4] Wikipedia, "Pareto distribution",
http://en.wikipedia.org/wiki/Pareto_distribution
Examples
--------
Draw samples from the distribution:
>>> a, m = 3., 1. # shape and mode
>>> s = np.random.pareto(a, 1000) + m
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='center')
>>> fit = a*m**a/bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit),linewidth=2, color='r')
>>> plt.show()
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
return cont1_array_sc(self.internal_state, rk_pareto, size, fa,
self.lock)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oa, 0.0)):
raise ValueError("a <= 0")
return cont1_array(self.internal_state, rk_pareto, size, oa, self.lock)
def weibull(self, a, size=None):
"""
weibull(a, size=None)
Weibull distribution.
Draw samples from a 1-parameter Weibull distribution with the given
shape parameter `a`.
.. math:: X = (-ln(U))^{1/a}
Here, U is drawn from the uniform distribution over (0,1].
The more common 2-parameter Weibull, including a scale parameter
:math:`\\lambda` is just :math:`X = \\lambda(-ln(U))^{1/a}`.
Parameters
----------
a : float
Shape of the distribution.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
See Also
--------
scipy.stats.distributions.weibull_max
scipy.stats.distributions.weibull_min
scipy.stats.distributions.genextreme
gumbel
Notes
-----
The Weibull (or Type III asymptotic extreme value distribution for smallest
values, SEV Type III, or Rosin-Rammler distribution) is one of a class of
Generalized Extreme Value (GEV) distributions used in modeling extreme
value problems. This class includes the Gumbel and Frechet distributions.
The probability density for the Weibull distribution is
.. math:: p(x) = \\frac{a}
{\\lambda}(\\frac{x}{\\lambda})^{a-1}e^{-(x/\\lambda)^a},
where :math:`a` is the shape and :math:`\\lambda` the scale.
The function has its peak (the mode) at
:math:`\\lambda(\\frac{a-1}{a})^{1/a}`.
When ``a = 1``, the Weibull distribution reduces to the exponential
distribution.
References
----------
.. [1] Waloddi Weibull, Professor, Royal Technical University, Stockholm,
1939 "A Statistical Theory Of The Strength Of Materials",
Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
Generalstabens Litografiska Anstalts Forlag, Stockholm.
.. [2] Waloddi Weibull, 1951 "A Statistical Distribution Function of Wide
Applicability", Journal Of Applied Mechanics ASME Paper.
.. [3] Wikipedia, "Weibull distribution",
http://en.wikipedia.org/wiki/Weibull_distribution
Examples
--------
Draw samples from the distribution:
>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)
>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
return cont1_array_sc(self.internal_state, rk_weibull, size, fa,
self.lock)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oa, 0.0)):
raise ValueError("a <= 0")
return cont1_array(self.internal_state, rk_weibull, size, oa,
self.lock)
def power(self, a, size=None):
"""
power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive
exponent a - 1.
Also known as the power function distribution.
Parameters
----------
a : float
parameter, > 0
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : {ndarray, scalar}
The returned samples lie in [0, 1].
Raises
------
ValueError
If a<1.
Notes
-----
The probability density function is
.. math:: P(x; a) = ax^{a-1}, 0 \\le x \\le 1, a>0.
The power function distribution is just the inverse of the Pareto
distribution. It may also be seen as a special case of the Beta
distribution.
It is used, for example, in modeling the over-reporting of insurance
claims.
References
----------
.. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
in economics and actuarial sciences", Wiley, 2003.
.. [2] Heckert, N. A. and Filliben, James J. (2003). NIST Handbook 148:
Dataplot Reference Manual, Volume 2: Let Subcommands and Library
Functions", National Institute of Standards and Technology Handbook
Series, June 2003.
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
Examples
--------
Draw samples from the distribution:
>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()
Compare the power function distribution to the inverse of the Pareto.
>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)
>>> plt.figure()
>>> plt.hist(rvs, bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')
>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')
>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, normed=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 0:
raise ValueError("a <= 0")
return cont1_array_sc(self.internal_state, rk_power, size, fa,
self.lock)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oa, 0.0)):
raise ValueError("a <= 0")
return cont1_array(self.internal_state, rk_power, size, oa, self.lock)
def laplace(self, loc=0.0, scale=1.0, size=None):
"""
laplace(loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with
specified location (or mean) and scale (decay).
The Laplace distribution is similar to the Gaussian/normal distribution,
but is sharper at the peak and has fatter tails. It represents the
difference between two independent, identically distributed exponential
random variables.
Parameters
----------
loc : float
The position, :math:`\\mu`, of the distribution peak.
scale : float
:math:`\\lambda`, the exponential decay.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Notes
-----
It has the probability density function
.. math:: f(x; \\mu, \\lambda) = \\frac{1}{2\\lambda}
\\exp\\left(-\\frac{|x - \\mu|}{\\lambda}\\right).
The first law of Laplace, from 1774, states that the frequency of an error
can be expressed as an exponential function of the absolute magnitude of
the error, which leads to the Laplace distribution. For many problems in
Economics and Health sciences, this distribution seems to model the data
better than the standard Gaussian distribution
References
----------
.. [1] Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, 9th
printing. New York: Dover, 1972.
.. [2] The Laplace distribution and generalizations
By Samuel Kotz, Tomasz J. Kozubowski, Krzysztof Podgorski,
Birkhauser, 2001.
.. [3] Weisstein, Eric W. "Laplace Distribution."
From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/LaplaceDistribution.html
.. [4] Wikipedia, "Laplace distribution",
http://en.wikipedia.org/wiki/Laplace_distribution
Examples
--------
Draw samples from the distribution
>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)
Plot Gaussian for comparison:
>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_laplace, size, floc,
fscale, self.lock)
PyErr_Clear()
oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_laplace, size, oloc, oscale,
self.lock)
def gumbel(self, loc=0.0, scale=1.0, size=None):
"""
gumbel(loc=0.0, scale=1.0, size=None)
Gumbel distribution.
Draw samples from a Gumbel distribution with specified location and scale.
For more information on the Gumbel distribution, see Notes and References
below.
Parameters
----------
loc : float
The location of the mode of the distribution.
scale : float
The scale parameter of the distribution.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : ndarray
The samples
See Also
--------
scipy.stats.gumbel_l
scipy.stats.gumbel_r
scipy.stats.genextreme
probability density function, distribution, or cumulative density
function, etc. for each of the above
weibull
Notes
-----
The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value
Type I) distribution is one of a class of Generalized Extreme Value (GEV)
distributions used in modeling extreme value problems. The Gumbel is a
special case of the Extreme Value Type I distribution for maximums from
distributions with "exponential-like" tails.
The probability density for the Gumbel distribution is
.. math:: p(x) = \\frac{e^{-(x - \\mu)/ \\beta}}{\\beta} e^{ -e^{-(x - \\mu)/
\\beta}},
where :math:`\\mu` is the mode, a location parameter, and :math:`\\beta` is
the scale parameter.
The Gumbel (named for German mathematician Emil Julius Gumbel) was used
very early in the hydrology literature, for modeling the occurrence of
flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a "fat-tailed" distribution - the probability of an event in
the tail of the distribution is larger than if one used a Gaussian, hence
the surprisingly frequent occurrence of 100-year floods. Floods were
initially modeled as a Gaussian process, which underestimated the frequency
of extreme events.
It is one of a class of extreme value distributions, the Generalized
Extreme Value (GEV) distributions, which also includes the Weibull and
Frechet.
The function has a mean of :math:`\\mu + 0.57721\\beta` and a variance of
:math:`\\frac{\\pi^2}{6}\\beta^2`.
References
----------
Gumbel, E. J., *Statistics of Extremes*, New York: Columbia University
Press, 1958.
Reiss, R.-D. and Thomas, M., *Statistical Analysis of Extreme Values from
Insurance, Finance, Hydrology and Other Fields*, Basel: Birkhauser Verlag,
2001.
Examples
--------
Draw samples from the distribution:
>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp( -np.exp( -(bins - mu) /beta) ),
... linewidth=2, color='r')
>>> plt.show()
Show how an extreme value distribution can arise from a Gaussian process
and compare to a Gaussian:
>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, normed=True)
>>> beta = np.std(maxima)*np.pi/np.sqrt(6)
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_gumbel, size, floc,
fscale, self.lock)
PyErr_Clear()
oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_gumbel, size, oloc, oscale,
self.lock)
def logistic(self, loc=0.0, scale=1.0, size=None):
"""
logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a Logistic distribution.
Samples are drawn from a Logistic distribution with specified
parameters, loc (location or mean, also median), and scale (>0).
Parameters
----------
loc : float
scale : float > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : {ndarray, scalar}
where the values are all integers in [0, n].
See Also
--------
scipy.stats.distributions.logistic : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Logistic distribution is
.. math:: P(x) = P(x) = \\frac{e^{-(x-\\mu)/s}}{s(1+e^{-(x-\\mu)/s})^2},
where :math:`\\mu` = location and :math:`s` = scale.
The Logistic distribution is used in Extreme Value problems where it
can act as a mixture of Gumbel distributions, in Epidemiology, and by
the World Chess Federation (FIDE) where it is used in the Elo ranking
system, assuming the performance of each player is a logistically
distributed random variable.
References
----------
.. [1] Reiss, R.-D. and Thomas M. (2001), Statistical Analysis of Extreme
Values, from Insurance, Finance, Hydrology and Other Fields,
Birkhauser Verlag, Basel, pp 132-133.
.. [2] Weisstein, Eric W. "Logistic Distribution." From
MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/LogisticDistribution.html
.. [3] Wikipedia, "Logistic-distribution",
http://en.wikipedia.org/wiki/Logistic-distribution
Examples
--------
Draw samples from the distribution:
>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> count, bins, ignored = plt.hist(s, bins=50)
# plot against distribution
>>> def logist(x, loc, scale):
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\\
... logist(bins, loc, scale).max())
>>> plt.show()
"""
cdef ndarray oloc, oscale
cdef double floc, fscale
floc = PyFloat_AsDouble(loc)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_logistic, size, floc,
fscale, self.lock)
PyErr_Clear()
oloc = PyArray_FROM_OTF(loc, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0")
return cont2_array(self.internal_state, rk_logistic, size, oloc,
oscale, self.lock)
def lognormal(self, mean=0.0, sigma=1.0, size=None):
"""
lognormal(mean=0.0, sigma=1.0, size=None)
Return samples drawn from a log-normal distribution.
Draw samples from a log-normal distribution with specified mean,
standard deviation, and array shape. Note that the mean and standard
deviation are not the values for the distribution itself, but of the
underlying normal distribution it is derived from.
Parameters
----------
mean : float
Mean value of the underlying normal distribution
sigma : float, > 0.
Standard deviation of the underlying normal distribution
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or float
The desired samples. An array of the same shape as `size` if given,
if `size` is None a float is returned.
See Also
--------
scipy.stats.lognorm : probability density function, distribution,
cumulative density function, etc.
Notes
-----
A variable `x` has a log-normal distribution if `log(x)` is normally
distributed. The probability density function for the log-normal
distribution is:
.. math:: p(x) = \\frac{1}{\\sigma x \\sqrt{2\\pi}}
e^{(-\\frac{(ln(x)-\\mu)^2}{2\\sigma^2})}
where :math:`\\mu` is the mean and :math:`\\sigma` is the standard
deviation of the normally distributed logarithm of the variable.
A log-normal distribution results if a random variable is the *product*
of a large number of independent, identically-distributed variables in
the same way that a normal distribution results if the variable is the
*sum* of a large number of independent, identically-distributed
variables.
References
----------
Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions
across the Sciences: Keys and Clues," *BioScience*, Vol. 51, No. 5,
May, 2001. http://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
Reiss, R.D. and Thomas, M., *Statistical Analysis of Extreme Values*,
Basel: Birkhauser Verlag, 2001, pp. 31-32.
Examples
--------
Draw samples from the distribution:
>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, normed=True, align='mid')
>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))
>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()
Demonstrate that taking the products of random samples from a uniform
distribution can be fit well by a log-normal probability density function.
>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.random(100)
... b.append(np.product(a))
>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, normed=True, align='center')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))
>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))
>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()
"""
cdef ndarray omean, osigma
cdef double fmean, fsigma
fmean = PyFloat_AsDouble(mean)
fsigma = PyFloat_AsDouble(sigma)
if not PyErr_Occurred():
if fsigma <= 0:
raise ValueError("sigma <= 0")
return cont2_array_sc(self.internal_state, rk_lognormal, size,
fmean, fsigma, self.lock)
PyErr_Clear()
omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
osigma = PyArray_FROM_OTF(sigma, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(osigma, 0.0)):
raise ValueError("sigma <= 0.0")
return cont2_array(self.internal_state, rk_lognormal, size, omean,
osigma, self.lock)
def rayleigh(self, scale=1.0, size=None):
"""
rayleigh(scale=1.0, size=None)
Draw samples from a Rayleigh distribution.
The :math:`\\chi` and Weibull distributions are generalizations of the
Rayleigh.
Parameters
----------
scale : scalar
Scale, also equals the mode. Should be >= 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Notes
-----
The probability density function for the Rayleigh distribution is
.. math:: P(x;scale) = \\frac{x}{scale^2}e^{\\frac{-x^2}{2 \\cdotp scale^2}}
The Rayleigh distribution arises if the wind speed and wind direction are
both gaussian variables, then the vector wind velocity forms a Rayleigh
distribution. The Rayleigh distribution is used to model the expected
output from wind turbines.
References
----------
.. [1] Brighton Webs Ltd., Rayleigh Distribution,
http://www.brighton-webs.co.uk/distributions/rayleigh.asp
.. [2] Wikipedia, "Rayleigh distribution"
http://en.wikipedia.org/wiki/Rayleigh_distribution
Examples
--------
Draw values from the distribution and plot the histogram
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, normed=True)
Wave heights tend to follow a Rayleigh distribution. If the mean wave
height is 1 meter, what fraction of waves are likely to be larger than 3
meters?
>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)
The percentage of waves larger than 3 meters is:
>>> 100.*sum(s>3)/1000000.
0.087300000000000003
"""
cdef ndarray oscale
cdef double fscale
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fscale <= 0:
raise ValueError("scale <= 0")
return cont1_array_sc(self.internal_state, rk_rayleigh, size,
fscale, self.lock)
PyErr_Clear()
oscale = <ndarray>PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oscale, 0.0)):
raise ValueError("scale <= 0.0")
return cont1_array(self.internal_state, rk_rayleigh, size, oscale,
self.lock)
def wald(self, mean, scale, size=None):
"""
wald(mean, scale, size=None)
Draw samples from a Wald, or Inverse Gaussian, distribution.
As the scale approaches infinity, the distribution becomes more like a
Gaussian.
Some references claim that the Wald is an Inverse Gaussian with mean=1, but
this is by no means universal.
The Inverse Gaussian distribution was first studied in relationship to
Brownian motion. In 1956 M.C.K. Tweedie used the name Inverse Gaussian
because there is an inverse relationship between the time to cover a unit
distance and distance covered in unit time.
Parameters
----------
mean : scalar
Distribution mean, should be > 0.
scale : scalar
Scale parameter, should be >= 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or scalar
Drawn sample, all greater than zero.
Notes
-----
The probability density function for the Wald distribution is
.. math:: P(x;mean,scale) = \\sqrt{\\frac{scale}{2\\pi x^3}}e^
\\frac{-scale(x-mean)^2}{2\\cdotp mean^2x}
As noted above the Inverse Gaussian distribution first arise from attempts
to model Brownian Motion. It is also a competitor to the Weibull for use in
reliability modeling and modeling stock returns and interest rate
processes.
References
----------
.. [1] Brighton Webs Ltd., Wald Distribution,
http://www.brighton-webs.co.uk/distributions/wald.asp
.. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
Distribution: Theory : Methodology, and Applications", CRC Press,
1988.
.. [3] Wikipedia, "Wald distribution"
http://en.wikipedia.org/wiki/Wald_distribution
Examples
--------
Draw values from the distribution and plot the histogram:
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, normed=True)
>>> plt.show()
"""
cdef ndarray omean, oscale
cdef double fmean, fscale
fmean = PyFloat_AsDouble(mean)
fscale = PyFloat_AsDouble(scale)
if not PyErr_Occurred():
if fmean <= 0:
raise ValueError("mean <= 0")
if fscale <= 0:
raise ValueError("scale <= 0")
return cont2_array_sc(self.internal_state, rk_wald, size, fmean,
fscale, self.lock)
PyErr_Clear()
omean = PyArray_FROM_OTF(mean, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
oscale = PyArray_FROM_OTF(scale, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(omean,0.0)):
raise ValueError("mean <= 0.0")
elif np.any(np.less_equal(oscale,0.0)):
raise ValueError("scale <= 0.0")
return cont2_array(self.internal_state, rk_wald, size, omean, oscale,
self.lock)
def triangular(self, left, mode, right, size=None):
"""
triangular(left, mode, right, size=None)
Draw samples from the triangular distribution.
The triangular distribution is a continuous probability distribution with
lower limit left, peak at mode, and upper limit right. Unlike the other
distributions, these parameters directly define the shape of the pdf.
Parameters
----------
left : scalar
Lower limit.
mode : scalar
The value where the peak of the distribution occurs.
The value should fulfill the condition ``left <= mode <= right``.
right : scalar
Upper limit, should be larger than `left`.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or scalar
The returned samples all lie in the interval [left, right].
Notes
-----
The probability density function for the Triangular distribution is
.. math:: P(x;l, m, r) = \\begin{cases}
\\frac{2(x-l)}{(r-l)(m-l)}& \\text{for $l \\leq x \\leq m$},\\\\
\\frac{2(m-x)}{(r-l)(r-m)}& \\text{for $m \\leq x \\leq r$},\\\\
0& \\text{otherwise}.
\\end{cases}
The triangular distribution is often used in ill-defined problems where the
underlying distribution is not known, but some knowledge of the limits and
mode exists. Often it is used in simulations.
References
----------
.. [1] Wikipedia, "Triangular distribution"
http://en.wikipedia.org/wiki/Triangular_distribution
Examples
--------
Draw values from the distribution and plot the histogram:
>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... normed=True)
>>> plt.show()
"""
cdef ndarray oleft, omode, oright
cdef double fleft, fmode, fright
fleft = PyFloat_AsDouble(left)
fright = PyFloat_AsDouble(right)
fmode = PyFloat_AsDouble(mode)
if not PyErr_Occurred():
if fleft > fmode:
raise ValueError("left > mode")
if fmode > fright:
raise ValueError("mode > right")
if fleft == fright:
raise ValueError("left == right")
return cont3_array_sc(self.internal_state, rk_triangular, size, fleft,
fmode, fright, self.lock)
PyErr_Clear()
oleft = <ndarray>PyArray_FROM_OTF(left, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
omode = <ndarray>PyArray_FROM_OTF(mode, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
oright = <ndarray>PyArray_FROM_OTF(right, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.greater(oleft, omode)):
raise ValueError("left > mode")
if np.any(np.greater(omode, oright)):
raise ValueError("mode > right")
if np.any(np.equal(oleft, oright)):
raise ValueError("left == right")
return cont3_array(self.internal_state, rk_triangular, size, oleft,
omode, oright, self.lock)
# Complicated, discrete distributions:
def binomial(self, n, p, size=None):
"""
binomial(n, p, size=None)
Draw samples from a binomial distribution.
Samples are drawn from a Binomial distribution with specified
parameters, n trials and p probability of success where
n an integer >= 0 and p is in the interval [0,1]. (n may be
input as a float, but it is truncated to an integer in use)
Parameters
----------
n : float (but truncated to an integer)
parameter, >= 0.
p : float
parameter, >= 0 and <=1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : {ndarray, scalar}
where the values are all integers in [0, n].
See Also
--------
scipy.stats.distributions.binom : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Binomial distribution is
.. math:: P(N) = \\binom{n}{N}p^N(1-p)^{n-N},
where :math:`n` is the number of trials, :math:`p` is the probability
of success, and :math:`N` is the number of successes.
When estimating the standard error of a proportion in a population by
using a random sample, the normal distribution works well unless the
product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used
instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
so the binomial distribution should be used in this case.
References
----------
.. [1] Dalgaard, Peter, "Introductory Statistics with R",
Springer-Verlag, 2002.
.. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
Fifth Edition, 2002.
.. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
and Quigley, 1972.
.. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
Wolfram Web Resource.
http://mathworld.wolfram.com/BinomialDistribution.html
.. [5] Wikipedia, "Binomial-distribution",
http://en.wikipedia.org/wiki/Binomial_distribution
Examples
--------
Draw samples from the distribution:
>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
# result of flipping a coin 10 times, tested 1000 times.
A real world example. A company drills 9 wild-cat oil exploration
wells, each with an estimated probability of success of 0.1. All nine
wells fail. What is the probability of that happening?
Let's do 20,000 trials of the model, and count the number that
generate zero positive results.
>>> sum(np.random.binomial(9,0.1,20000)==0)/20000.
answer = 0.38885, or 38%.
"""
cdef ndarray on, op
cdef long ln
cdef double fp
fp = PyFloat_AsDouble(p)
ln = PyInt_AsLong(n)
if not PyErr_Occurred():
if ln < 0:
raise ValueError("n < 0")
if fp < 0:
raise ValueError("p < 0")
elif fp > 1:
raise ValueError("p > 1")
elif np.isnan(fp):
raise ValueError("p is nan")
return discnp_array_sc(self.internal_state, rk_binomial, size, ln,
fp, self.lock)
PyErr_Clear()
on = <ndarray>PyArray_FROM_OTF(n, NPY_LONG, NPY_ARRAY_ALIGNED)
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less(n, 0)):
raise ValueError("n < 0")
if np.any(np.less(p, 0)):
raise ValueError("p < 0")
if np.any(np.greater(p, 1)):
raise ValueError("p > 1")
return discnp_array(self.internal_state, rk_binomial, size, on, op,
self.lock)
def negative_binomial(self, n, p, size=None):
"""
negative_binomial(n, p, size=None)
Draw samples from a negative_binomial distribution.
Samples are drawn from a negative_Binomial distribution with specified
parameters, `n` trials and `p` probability of success where `n` is an
integer > 0 and `p` is in the interval [0, 1].
Parameters
----------
n : int
Parameter, > 0.
p : float
Parameter, >= 0 and <=1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : int or ndarray of ints
Drawn samples.
Notes
-----
The probability density for the Negative Binomial distribution is
.. math:: P(N;n,p) = \\binom{N+n-1}{n-1}p^{n}(1-p)^{N},
where :math:`n-1` is the number of successes, :math:`p` is the probability
of success, and :math:`N+n-1` is the number of trials.
The negative binomial distribution gives the probability of n-1 successes
and N failures in N+n-1 trials, and success on the (N+n)th trial.
If one throws a die repeatedly until the third time a "1" appears, then the
probability distribution of the number of non-"1"s that appear before the
third "1" is a negative binomial distribution.
References
----------
.. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
.. [2] Wikipedia, "Negative binomial distribution",
http://en.wikipedia.org/wiki/Negative_binomial_distribution
Examples
--------
Draw samples from the distribution:
A real world example. A company drills wild-cat oil exploration wells, each
with an estimated probability of success of 0.1. What is the probability
of having one success for each successive well, that is what is the
probability of a single success after drilling 5 wells, after 6 wells,
etc.?
>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability
"""
cdef ndarray on
cdef ndarray op
cdef double fn
cdef double fp
fp = PyFloat_AsDouble(p)
fn = PyFloat_AsDouble(n)
if not PyErr_Occurred():
if fn <= 0:
raise ValueError("n <= 0")
if fp < 0:
raise ValueError("p < 0")
elif fp > 1:
raise ValueError("p > 1")
return discdd_array_sc(self.internal_state, rk_negative_binomial,
size, fn, fp, self.lock)
PyErr_Clear()
on = <ndarray>PyArray_FROM_OTF(n, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(n, 0)):
raise ValueError("n <= 0")
if np.any(np.less(p, 0)):
raise ValueError("p < 0")
if np.any(np.greater(p, 1)):
raise ValueError("p > 1")
return discdd_array(self.internal_state, rk_negative_binomial, size,
on, op, self.lock)
def poisson(self, lam=1.0, size=None):
"""
poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the Binomial
distribution for large N.
Parameters
----------
lam : float or sequence of float
Expectation of interval, should be >= 0. A sequence of expectation
intervals must be broadcastable over the requested size.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Notes
-----
The Poisson distribution
.. math:: f(k; \\lambda)=\\frac{\\lambda^k e^{-\\lambda}}{k!}
For events with an expected separation :math:`\\lambda` the Poisson
distribution :math:`f(k; \\lambda)` describes the probability of
:math:`k` events occurring within the observed interval :math:`\\lambda`.
Because the output is limited to the range of the C long type, a
ValueError is raised when `lam` is within 10 sigma of the maximum
representable value.
References
----------
.. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html
.. [2] Wikipedia, "Poisson distribution",
http://en.wikipedia.org/wiki/Poisson_distribution
Examples
--------
Draw samples from the distribution:
>>> import numpy as np
>>> s = np.random.poisson(5, 10000)
Display histogram of the sample:
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, normed=True)
>>> plt.show()
Draw each 100 values for lambda 100 and 500:
>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))
"""
cdef ndarray olam
cdef double flam
flam = PyFloat_AsDouble(lam)
if not PyErr_Occurred():
if lam < 0:
raise ValueError("lam < 0")
if lam > self.poisson_lam_max:
raise ValueError("lam value too large")
return discd_array_sc(self.internal_state, rk_poisson, size, flam,
self.lock)
PyErr_Clear()
olam = <ndarray>PyArray_FROM_OTF(lam, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less(olam, 0)):
raise ValueError("lam < 0")
if np.any(np.greater(olam, self.poisson_lam_max)):
raise ValueError("lam value too large.")
return discd_array(self.internal_state, rk_poisson, size, olam, self.lock)
def zipf(self, a, size=None):
"""
zipf(a, size=None)
Draw samples from a Zipf distribution.
Samples are drawn from a Zipf distribution with specified parameter
`a` > 1.
The Zipf distribution (also known as the zeta distribution) is a
continuous probability distribution that satisfies Zipf's law: the
frequency of an item is inversely proportional to its rank in a
frequency table.
Parameters
----------
a : float > 1
Distribution parameter.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : scalar or ndarray
The returned samples are greater than or equal to one.
See Also
--------
scipy.stats.distributions.zipf : probability density function,
distribution, or cumulative density function, etc.
Notes
-----
The probability density for the Zipf distribution is
.. math:: p(x) = \\frac{x^{-a}}{\\zeta(a)},
where :math:`\\zeta` is the Riemann Zeta function.
It is named for the American linguist George Kingsley Zipf, who noted
that the frequency of any word in a sample of a language is inversely
proportional to its rank in the frequency table.
References
----------
Zipf, G. K., *Selected Studies of the Principle of Relative Frequency
in Language*, Cambridge, MA: Harvard Univ. Press, 1932.
Examples
--------
Draw samples from the distribution:
>>> a = 2. # parameter
>>> s = np.random.zipf(a, 1000)
Display the histogram of the samples, along with
the probability density function:
>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
Truncate s values at 50 so plot is interesting
>>> count, bins, ignored = plt.hist(s[s<50], 50, normed=True)
>>> x = np.arange(1., 50.)
>>> y = x**(-a)/sps.zetac(a)
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()
"""
cdef ndarray oa
cdef double fa
fa = PyFloat_AsDouble(a)
if not PyErr_Occurred():
if fa <= 1.0:
raise ValueError("a <= 1.0")
return discd_array_sc(self.internal_state, rk_zipf, size, fa,
self.lock)
PyErr_Clear()
oa = <ndarray>PyArray_FROM_OTF(a, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(oa, 1.0)):
raise ValueError("a <= 1.0")
return discd_array(self.internal_state, rk_zipf, size, oa, self.lock)
def geometric(self, p, size=None):
"""
geometric(p, size=None)
Draw samples from the geometric distribution.
Bernoulli trials are experiments with one of two outcomes:
success or failure (an example of such an experiment is flipping
a coin). The geometric distribution models the number of trials
that must be run in order to achieve success. It is therefore
supported on the positive integers, ``k = 1, 2, ...``.
The probability mass function of the geometric distribution is
.. math:: f(k) = (1 - p)^{k - 1} p
where `p` is the probability of success of an individual trial.
Parameters
----------
p : float
The probability of success of an individual trial.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : ndarray
Samples from the geometric distribution, shaped according to
`size`.
Examples
--------
Draw ten thousand values from the geometric distribution,
with the probability of an individual success equal to 0.35:
>>> z = np.random.geometric(p=0.35, size=10000)
How many trials succeeded after a single run?
>>> (z == 1).sum() / 10000.
0.34889999999999999 #random
"""
cdef ndarray op
cdef double fp
fp = PyFloat_AsDouble(p)
if not PyErr_Occurred():
if fp < 0.0:
raise ValueError("p < 0.0")
if fp > 1.0:
raise ValueError("p > 1.0")
return discd_array_sc(self.internal_state, rk_geometric, size, fp,
self.lock)
PyErr_Clear()
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less(op, 0.0)):
raise ValueError("p < 0.0")
if np.any(np.greater(op, 1.0)):
raise ValueError("p > 1.0")
return discd_array(self.internal_state, rk_geometric, size, op, self.lock)
def hypergeometric(self, ngood, nbad, nsample, size=None):
"""
hypergeometric(ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.
Samples are drawn from a Hypergeometric distribution with specified
parameters, ngood (ways to make a good selection), nbad (ways to make
a bad selection), and nsample = number of items sampled, which is less
than or equal to the sum ngood + nbad.
Parameters
----------
ngood : int or array_like
Number of ways to make a good selection. Must be nonnegative.
nbad : int or array_like
Number of ways to make a bad selection. Must be nonnegative.
nsample : int or array_like
Number of items sampled. Must be at least 1 and at most
``ngood + nbad``.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : ndarray or scalar
The values are all integers in [0, n].
See Also
--------
scipy.stats.distributions.hypergeom : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Hypergeometric distribution is
.. math:: P(x) = \\frac{\\binom{m}{n}\\binom{N-m}{n-x}}{\\binom{N}{n}},
where :math:`0 \\le x \\le m` and :math:`n+m-N \\le x \\le n`
for P(x) the probability of x successes, n = ngood, m = nbad, and
N = number of samples.
Consider an urn with black and white marbles in it, ngood of them
black and nbad are white. If you draw nsample balls without
replacement, then the Hypergeometric distribution describes the
distribution of black balls in the drawn sample.
Note that this distribution is very similar to the Binomial
distribution, except that in this case, samples are drawn without
replacement, whereas in the Binomial case samples are drawn with
replacement (or the sample space is infinite). As the sample space
becomes large, this distribution approaches the Binomial.
References
----------
.. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
and Quigley, 1972.
.. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/HypergeometricDistribution.html
.. [3] Wikipedia, "Hypergeometric-distribution",
http://en.wikipedia.org/wiki/Hypergeometric-distribution
Examples
--------
Draw samples from the distribution:
>>> ngood, nbad, nsamp = 100, 2, 10
# number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> hist(s)
# note that it is very unlikely to grab both bad items
Suppose you have an urn with 15 white and 15 black marbles.
If you pull 15 marbles at random, how likely is it that
12 or more of them are one color?
>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
# answer = 0.003 ... pretty unlikely!
"""
cdef ndarray ongood, onbad, onsample
cdef long lngood, lnbad, lnsample
lngood = PyInt_AsLong(ngood)
lnbad = PyInt_AsLong(nbad)
lnsample = PyInt_AsLong(nsample)
if not PyErr_Occurred():
if lngood < 0:
raise ValueError("ngood < 0")
if lnbad < 0:
raise ValueError("nbad < 0")
if lnsample < 1:
raise ValueError("nsample < 1")
if lngood + lnbad < lnsample:
raise ValueError("ngood + nbad < nsample")
return discnmN_array_sc(self.internal_state, rk_hypergeometric,
size, lngood, lnbad, lnsample, self.lock)
PyErr_Clear()
ongood = <ndarray>PyArray_FROM_OTF(ngood, NPY_LONG, NPY_ARRAY_ALIGNED)
onbad = <ndarray>PyArray_FROM_OTF(nbad, NPY_LONG, NPY_ARRAY_ALIGNED)
onsample = <ndarray>PyArray_FROM_OTF(nsample, NPY_LONG, NPY_ARRAY_ALIGNED)
if np.any(np.less(ongood, 0)):
raise ValueError("ngood < 0")
if np.any(np.less(onbad, 0)):
raise ValueError("nbad < 0")
if np.any(np.less(onsample, 1)):
raise ValueError("nsample < 1")
if np.any(np.less(np.add(ongood, onbad),onsample)):
raise ValueError("ngood + nbad < nsample")
return discnmN_array(self.internal_state, rk_hypergeometric, size,
ongood, onbad, onsample, self.lock)
def logseries(self, p, size=None):
"""
logseries(p, size=None)
Draw samples from a Logarithmic Series distribution.
Samples are drawn from a Log Series distribution with specified
parameter, p (probability, 0 < p < 1).
Parameters
----------
loc : float
scale : float > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
samples : {ndarray, scalar}
where the values are all integers in [0, n].
See Also
--------
scipy.stats.distributions.logser : probability density function,
distribution or cumulative density function, etc.
Notes
-----
The probability density for the Log Series distribution is
.. math:: P(k) = \\frac{-p^k}{k \\ln(1-p)},
where p = probability.
The Log Series distribution is frequently used to represent species
richness and occurrence, first proposed by Fisher, Corbet, and
Williams in 1943 [2]. It may also be used to model the numbers of
occupants seen in cars [3].
References
----------
.. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional
species diversity through the log series distribution of
occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
Volume 5, Number 5, September 1999 , pp. 187-195(9).
.. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
relation between the number of species and the number of
individuals in a random sample of an animal population.
Journal of Animal Ecology, 12:42-58.
.. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
Data Sets, CRC Press, 1994.
.. [4] Wikipedia, "Logarithmic-distribution",
http://en.wikipedia.org/wiki/Logarithmic-distribution
Examples
--------
Draw samples from the distribution:
>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> count, bins, ignored = plt.hist(s)
# plot against distribution
>>> def logseries(k, p):
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/
logseries(bins, a).max(), 'r')
>>> plt.show()
"""
cdef ndarray op
cdef double fp
fp = PyFloat_AsDouble(p)
if not PyErr_Occurred():
if fp <= 0.0:
raise ValueError("p <= 0.0")
if fp >= 1.0:
raise ValueError("p >= 1.0")
return discd_array_sc(self.internal_state, rk_logseries, size, fp,
self.lock)
PyErr_Clear()
op = <ndarray>PyArray_FROM_OTF(p, NPY_DOUBLE, NPY_ARRAY_ALIGNED)
if np.any(np.less_equal(op, 0.0)):
raise ValueError("p <= 0.0")
if np.any(np.greater_equal(op, 1.0)):
raise ValueError("p >= 1.0")
return discd_array(self.internal_state, rk_logseries, size, op, self.lock)
# Multivariate distributions:
def multivariate_normal(self, mean, cov, size=None):
"""
multivariate_normal(mean, cov[, size])
Draw random samples from a multivariate normal distribution.
The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or "center") and variance (standard deviation, or "width,"
squared) of the one-dimensional normal distribution.
Parameters
----------
mean : 1-D array_like, of length N
Mean of the N-dimensional distribution.
cov : 2-D array_like, of shape (N, N)
Covariance matrix of the distribution. Must be symmetric and
positive-semidefinite for "physically meaningful" results.
size : int or tuple of ints, optional
Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because
each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
If no shape is specified, a single (`N`-D) sample is returned.
Returns
-------
out : ndarray
The drawn samples, of shape *size*, if that was provided. If not,
the shape is ``(N,)``.
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
value drawn from the distribution.
Notes
-----
The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.
Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix
element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
"spread").
Instead of specifying the full covariance matrix, popular
approximations include:
- Spherical covariance (*cov* is a multiple of the identity matrix)
- Diagonal covariance (*cov* has non-negative elements, and only on
the diagonal)
This geometrical property can be seen in two dimensions by plotting
generated data-points:
>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis
>>> import matplotlib.pyplot as plt
>>> x,y = np.random.multivariate_normal(mean,cov,5000).T
>>> plt.plot(x,y,'x'); plt.axis('equal'); plt.show()
Note that the covariance matrix must be non-negative definite.
References
----------
Papoulis, A., *Probability, Random Variables, and Stochastic Processes*,
3rd ed., New York: McGraw-Hill, 1991.
Duda, R. O., Hart, P. E., and Stork, D. G., *Pattern Classification*,
2nd ed., New York: Wiley, 2001.
Examples
--------
>>> mean = (1,2)
>>> cov = [[1,0],[1,0]]
>>> x = np.random.multivariate_normal(mean,cov,(3,3))
>>> x.shape
(3, 3, 2)
The following is probably true, given that 0.6 is roughly twice the
standard deviation:
>>> print list( (x[0,0,:] - mean) < 0.6 )
[True, True]
"""
from numpy.dual import svd
# Check preconditions on arguments
mean = np.array(mean)
cov = np.array(cov)
if size is None:
shape = []
elif isinstance(size, (int, long, np.integer)):
shape = [size]
else:
shape = size
if len(mean.shape) != 1:
raise ValueError("mean must be 1 dimensional")
if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]):
raise ValueError("cov must be 2 dimensional and square")
if mean.shape[0] != cov.shape[0]:
raise ValueError("mean and cov must have same length")
# Compute shape of output and create a matrix of independent
# standard normally distributed random numbers. The matrix has rows
# with the same length as mean and as many rows are necessary to
# form a matrix of shape final_shape.
final_shape = list(shape[:])
final_shape.append(mean.shape[0])
x = self.standard_normal(final_shape).reshape(-1, mean.shape[0])
# Transform matrix of standard normals into matrix where each row
# contains multivariate normals with the desired covariance.
# Compute A such that dot(transpose(A),A) == cov.
# Then the matrix products of the rows of x and A has the desired
# covariance. Note that sqrt(s)*v where (u,s,v) is the singular value
# decomposition of cov is such an A.
#
# Also check that cov is positive-semidefinite. If so, the u.T and v
# matrices should be equal up to roundoff error if cov is
# symmetrical and the singular value of the corresponding row is
# not zero. We continue to use the SVD rather than Cholesky in
# order to preserve current outputs. Note that symmetry has not
# been checked.
(u, s, v) = svd(cov)
neg = (np.sum(u.T * v, axis=1) < 0) & (s > 0)
if np.any(neg):
s[neg] = 0.
warnings.warn("covariance is not positive-semidefinite.",
RuntimeWarning)
x = np.dot(x, np.sqrt(s)[:, None] * v)
x += mean
x.shape = tuple(final_shape)
return x
def multinomial(self, npy_intp n, object pvals, size=None):
"""
multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.
The multinomial distribution is a multivariate generalisation of the
binomial distribution. Take an experiment with one of ``p``
possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the
distribution represents `n` such experiments. Its values,
``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome
was ``i``.
Parameters
----------
n : int
Number of experiments.
pvals : sequence of floats, length p
Probabilities of each of the ``p`` different outcomes. These
should sum to 1 (however, the last element is always assumed to
account for the remaining probability, as long as
``sum(pvals[:-1]) <= 1)``.
size : tuple of ints
Given a `size` of ``(M, N, K)``, then ``M*N*K`` samples are drawn,
and the output shape becomes ``(M, N, K, p)``, since each sample
has shape ``(p,)``.
Examples
--------
Throw a dice 20 times:
>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]])
It landed 4 times on 1, once on 2, etc.
Now, throw the dice 20 times, and 20 times again:
>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],
[2, 4, 3, 4, 0, 7]])
For the first run, we threw 3 times 1, 4 times 2, etc. For the second,
we threw 2 times 1, 4 times 2, etc.
A loaded dice is more likely to land on number 6:
>>> np.random.multinomial(100, [1/7.]*5)
array([13, 16, 13, 16, 42])
"""
cdef npy_intp d
cdef ndarray parr "arrayObject_parr", mnarr "arrayObject_mnarr"
cdef double *pix
cdef long *mnix
cdef npy_intp i, j, dn, sz
cdef double Sum
d = len(pvals)
parr = <ndarray>PyArray_ContiguousFromObject(pvals, NPY_DOUBLE, 1, 1)
pix = <double*>PyArray_DATA(parr)
if kahan_sum(pix, d-1) > (1.0 + 1e-12):
raise ValueError("sum(pvals[:-1]) > 1.0")
shape = _shape_from_size(size, d)
multin = np.zeros(shape, int)
mnarr = <ndarray>multin
mnix = <long*>PyArray_DATA(mnarr)
sz = PyArray_SIZE(mnarr)
with self.lock, nogil:
i = 0
while i < sz:
Sum = 1.0
dn = n
for j from 0 <= j < d-1:
mnix[i+j] = rk_binomial(self.internal_state, dn, pix[j]/Sum)
dn = dn - mnix[i+j]
if dn <= 0:
break
Sum = Sum - pix[j]
if dn > 0:
mnix[i+d-1] = dn
i = i + d
return multin
def dirichlet(self, object alpha, size=None):
"""
dirichlet(alpha, size=None)
Draw samples from the Dirichlet distribution.
Draw `size` samples of dimension k from a Dirichlet distribution. A
Dirichlet-distributed random variable can be seen as a multivariate
generalization of a Beta distribution. Dirichlet pdf is the conjugate
prior of a multinomial in Bayesian inference.
Parameters
----------
alpha : array
Parameter of the distribution (k dimension for sample of
dimension k).
size : array
Number of samples to draw.
Returns
-------
samples : ndarray,
The drawn samples, of shape (alpha.ndim, size).
Notes
-----
.. math:: X \\approx \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i}
Uses the following property for computation: for each dimension,
draw a random sample y_i from a standard gamma generator of shape
`alpha_i`, then
:math:`X = \\frac{1}{\\sum_{i=1}^k{y_i}} (y_1, \\ldots, y_n)` is
Dirichlet distributed.
References
----------
.. [1] David McKay, "Information Theory, Inference and Learning
Algorithms," chapter 23,
http://www.inference.phy.cam.ac.uk/mackay/
.. [2] Wikipedia, "Dirichlet distribution",
http://en.wikipedia.org/wiki/Dirichlet_distribution
Examples
--------
Taking an example cited in Wikipedia, this distribution can be used if
one wanted to cut strings (each of initial length 1.0) into K pieces
with different lengths, where each piece had, on average, a designated
average length, but allowing some variation in the relative sizes of the
pieces.
>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")
"""
#=================
# Pure python algo
#=================
#alpha = N.atleast_1d(alpha)
#k = alpha.size
#if n == 1:
# val = N.zeros(k)
# for i in range(k):
# val[i] = sgamma(alpha[i], n)
# val /= N.sum(val)
#else:
# val = N.zeros((k, n))
# for i in range(k):
# val[i] = sgamma(alpha[i], n)
# val /= N.sum(val, axis = 0)
# val = val.T
#return val
cdef npy_intp k
cdef npy_intp totsize
cdef ndarray alpha_arr, val_arr
cdef double *alpha_data
cdef double *val_data
cdef npy_intp i, j
cdef double acc, invacc
k = len(alpha)
alpha_arr = <ndarray>PyArray_ContiguousFromObject(alpha, NPY_DOUBLE, 1, 1)
alpha_data = <double*>PyArray_DATA(alpha_arr)
shape = _shape_from_size(size, k)
diric = np.zeros(shape, np.float64)
val_arr = <ndarray>diric
val_data= <double*>PyArray_DATA(val_arr)
i = 0
totsize = PyArray_SIZE(val_arr)
with self.lock, nogil:
while i < totsize:
acc = 0.0
for j from 0 <= j < k:
val_data[i+j] = rk_standard_gamma(self.internal_state,
alpha_data[j])
acc = acc + val_data[i+j]
invacc = 1/acc
for j from 0 <= j < k:
val_data[i+j] = val_data[i+j] * invacc
i = i + k
return diric
# Shuffling and permutations:
def shuffle(self, object x):
"""
shuffle(x)
Modify a sequence in-place by shuffling its contents.
Parameters
----------
x : array_like
The array or list to be shuffled.
Returns
-------
None
Examples
--------
>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]
This function only shuffles the array along the first index of a
multi-dimensional array:
>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],
[6, 7, 8],
[0, 1, 2]])
"""
cdef npy_intp i, j
i = len(x) - 1
# Logic adapted from random.shuffle()
if isinstance(x, np.ndarray) and \
(x.ndim > 1 or x.dtype.fields is not None):
# For a multi-dimensional ndarray, indexing returns a view onto
# each row. So we can't just use ordinary assignment to swap the
# rows; we need a bounce buffer.
buf = np.empty_like(x[0])
while i > 0:
j = rk_interval(i, self.internal_state)
buf[...] = x[j]
x[j] = x[i]
x[i] = buf
i = i - 1
else:
# For single-dimensional arrays, lists, and any other Python
# sequence types, indexing returns a real object that's
# independent of the array contents, so we can just swap directly.
while i > 0:
j = rk_interval(i, self.internal_state)
x[i], x[j] = x[j], x[i]
i = i - 1
def permutation(self, object x):
"""
permutation(x)
Randomly permute a sequence, or return a permuted range.
If `x` is a multi-dimensional array, it is only shuffled along its
first index.
Parameters
----------
x : int or array_like
If `x` is an integer, randomly permute ``np.arange(x)``.
If `x` is an array, make a copy and shuffle the elements
randomly.
Returns
-------
out : ndarray
Permuted sequence or array range.
Examples
--------
>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])
>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12])
>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],
[0, 1, 2],
[3, 4, 5]])
"""
if isinstance(x, (int, long, np.integer)):
arr = np.arange(x)
else:
arr = np.array(x)
self.shuffle(arr)
return arr
_rand = RandomState()
seed = _rand.seed
get_state = _rand.get_state
set_state = _rand.set_state
random_sample = _rand.random_sample
choice = _rand.choice
randint = _rand.randint
bytes = _rand.bytes
uniform = _rand.uniform
rand = _rand.rand
randn = _rand.randn
random_integers = _rand.random_integers
standard_normal = _rand.standard_normal
normal = _rand.normal
beta = _rand.beta
exponential = _rand.exponential
standard_exponential = _rand.standard_exponential
standard_gamma = _rand.standard_gamma
gamma = _rand.gamma
f = _rand.f
noncentral_f = _rand.noncentral_f
chisquare = _rand.chisquare
noncentral_chisquare = _rand.noncentral_chisquare
standard_cauchy = _rand.standard_cauchy
standard_t = _rand.standard_t
vonmises = _rand.vonmises
pareto = _rand.pareto
weibull = _rand.weibull
power = _rand.power
laplace = _rand.laplace
gumbel = _rand.gumbel
logistic = _rand.logistic
lognormal = _rand.lognormal
rayleigh = _rand.rayleigh
wald = _rand.wald
triangular = _rand.triangular
binomial = _rand.binomial
negative_binomial = _rand.negative_binomial
poisson = _rand.poisson
zipf = _rand.zipf
geometric = _rand.geometric
hypergeometric = _rand.hypergeometric
logseries = _rand.logseries
multivariate_normal = _rand.multivariate_normal
multinomial = _rand.multinomial
dirichlet = _rand.dirichlet
shuffle = _rand.shuffle
permutation = _rand.permutation
|