File size: 8,281 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
from __future__ import division, absolute_import, print_function
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
import numpy as np
from numpy.testing import *
from numpy.ma.testutils import *
from numpy.ma.core import *
class SubArray(np.ndarray):
# Defines a generic np.ndarray subclass, that stores some metadata
# in the dictionary `info`.
def __new__(cls,arr,info={}):
x = np.asanyarray(arr).view(cls)
x.info = info
return x
def __array_finalize__(self, obj):
self.info = getattr(obj, 'info', {})
return
def __add__(self, other):
result = np.ndarray.__add__(self, other)
result.info.update({'added':result.info.pop('added', 0)+1})
return result
subarray = SubArray
class MSubArray(SubArray, MaskedArray):
def __new__(cls, data, info={}, mask=nomask):
subarr = SubArray(data, info)
_data = MaskedArray.__new__(cls, data=subarr, mask=mask)
_data.info = subarr.info
return _data
def __array_finalize__(self, obj):
MaskedArray.__array_finalize__(self, obj)
SubArray.__array_finalize__(self, obj)
return
def _get_series(self):
_view = self.view(MaskedArray)
_view._sharedmask = False
return _view
_series = property(fget=_get_series)
msubarray = MSubArray
class MMatrix(MaskedArray, np.matrix,):
def __new__(cls, data, mask=nomask):
mat = np.matrix(data)
_data = MaskedArray.__new__(cls, data=mat, mask=mask)
return _data
def __array_finalize__(self, obj):
np.matrix.__array_finalize__(self, obj)
MaskedArray.__array_finalize__(self, obj)
return
def _get_series(self):
_view = self.view(MaskedArray)
_view._sharedmask = False
return _view
_series = property(fget=_get_series)
mmatrix = MMatrix
# also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
# setting to non-class values (and thus np.ma.core.masked_print_option)
class ComplicatedSubArray(SubArray):
def __str__(self):
return 'myprefix {0} mypostfix'.format(
super(ComplicatedSubArray, self).__str__())
def __repr__(self):
# Return a repr that does not start with 'name('
return '<{0} {1}>'.format(self.__class__.__name__, self)
def __setitem__(self, item, value):
# this ensures direct assignment to masked_print_option will fail
if not isinstance(value, ComplicatedSubArray):
raise ValueError("Can only set to MySubArray values")
super(ComplicatedSubArray, self).__setitem__(item, value)
class TestSubclassing(TestCase):
# Test suite for masked subclasses of ndarray.
def setUp(self):
x = np.arange(5)
mx = mmatrix(x, mask=[0, 1, 0, 0, 0])
self.data = (x, mx)
def test_data_subclassing(self):
# Tests whether the subclass is kept.
x = np.arange(5)
m = [0, 0, 1, 0, 0]
xsub = SubArray(x)
xmsub = masked_array(xsub, mask=m)
self.assertTrue(isinstance(xmsub, MaskedArray))
assert_equal(xmsub._data, xsub)
self.assertTrue(isinstance(xmsub._data, SubArray))
def test_maskedarray_subclassing(self):
# Tests subclassing MaskedArray
(x, mx) = self.data
self.assertTrue(isinstance(mx._data, np.matrix))
def test_masked_unary_operations(self):
# Tests masked_unary_operation
(x, mx) = self.data
with np.errstate(divide='ignore'):
self.assertTrue(isinstance(log(mx), mmatrix))
assert_equal(log(x), np.log(x))
def test_masked_binary_operations(self):
# Tests masked_binary_operation
(x, mx) = self.data
# Result should be a mmatrix
self.assertTrue(isinstance(add(mx, mx), mmatrix))
self.assertTrue(isinstance(add(mx, x), mmatrix))
# Result should work
assert_equal(add(mx, x), mx+x)
self.assertTrue(isinstance(add(mx, mx)._data, np.matrix))
self.assertTrue(isinstance(add.outer(mx, mx), mmatrix))
self.assertTrue(isinstance(hypot(mx, mx), mmatrix))
self.assertTrue(isinstance(hypot(mx, x), mmatrix))
def test_masked_binary_operations2(self):
# Tests domained_masked_binary_operation
(x, mx) = self.data
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
self.assertTrue(isinstance(divide(mx, mx), mmatrix))
self.assertTrue(isinstance(divide(mx, x), mmatrix))
assert_equal(divide(mx, mx), divide(xmx, xmx))
def test_attributepropagation(self):
x = array(arange(5), mask=[0]+[1]*4)
my = masked_array(subarray(x))
ym = msubarray(x)
#
z = (my+1)
self.assertTrue(isinstance(z, MaskedArray))
self.assertTrue(not isinstance(z, MSubArray))
self.assertTrue(isinstance(z._data, SubArray))
assert_equal(z._data.info, {})
#
z = (ym+1)
self.assertTrue(isinstance(z, MaskedArray))
self.assertTrue(isinstance(z, MSubArray))
self.assertTrue(isinstance(z._data, SubArray))
self.assertTrue(z._data.info['added'] > 0)
#
ym._set_mask([1, 0, 0, 0, 1])
assert_equal(ym._mask, [1, 0, 0, 0, 1])
ym._series._set_mask([0, 0, 0, 0, 1])
assert_equal(ym._mask, [0, 0, 0, 0, 1])
#
xsub = subarray(x, info={'name':'x'})
mxsub = masked_array(xsub)
self.assertTrue(hasattr(mxsub, 'info'))
assert_equal(mxsub.info, xsub.info)
def test_subclasspreservation(self):
# Checks that masked_array(...,subok=True) preserves the class.
x = np.arange(5)
m = [0, 0, 1, 0, 0]
xinfo = [(i, j) for (i, j) in zip(x, m)]
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
#
mxsub = masked_array(xsub, subok=False)
self.assertTrue(not isinstance(mxsub, MSubArray))
self.assertTrue(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = asarray(xsub)
self.assertTrue(not isinstance(mxsub, MSubArray))
self.assertTrue(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = masked_array(xsub, subok=True)
self.assertTrue(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, xsub._mask)
#
mxsub = asanyarray(xsub)
self.assertTrue(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, m)
def test_subclass_repr(self):
"""test that repr uses the name of the subclass
and 'array' for np.ndarray"""
x = np.arange(5)
mx = masked_array(x, mask=[True, False, True, False, False])
self.assertTrue(repr(mx).startswith('masked_array'))
xsub = SubArray(x)
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
self.assertTrue(repr(mxsub).startswith(
'masked_{0}(data = [-- 1 -- 3 4]'.format(SubArray.__name__)))
def test_subclass_str(self):
"""test str with subclass that has overridden str, setitem"""
# first without override
x = np.arange(5)
xsub = SubArray(x)
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
self.assertTrue(str(mxsub) == '[-- 1 -- 3 4]')
xcsub = ComplicatedSubArray(x)
assert_raises(ValueError, xcsub.__setitem__, 0,
np.ma.core.masked_print_option)
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
self.assertTrue(str(mxcsub) == 'myprefix [-- 1 -- 3 4] mypostfix')
###############################################################################
if __name__ == '__main__':
run_module_suite()
|