File size: 40,062 Bytes
c011401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
""" Test functions for linalg module

"""
from __future__ import division, absolute_import, print_function

import os
import sys
import itertools
import traceback

import numpy as np
from numpy import array, single, double, csingle, cdouble, dot, identity
from numpy import multiply, atleast_2d, inf, asarray, matrix
from numpy import linalg
from numpy.linalg import matrix_power, norm, matrix_rank
from numpy.testing import (
    assert_, assert_equal, assert_raises, assert_array_equal,
    assert_almost_equal, assert_allclose, run_module_suite,
    dec
)


def ifthen(a, b):
    return not a or b


def imply(a, b):
    return not a or b


old_assert_almost_equal = assert_almost_equal


def assert_almost_equal(a, b, **kw):
    if asarray(a).dtype.type in (single, csingle):
        decimal = 6
    else:
        decimal = 12
    old_assert_almost_equal(a, b, decimal=decimal, **kw)


def get_real_dtype(dtype):
    return {single: single, double: double,
            csingle: single, cdouble: double}[dtype]


def get_complex_dtype(dtype):
    return {single: csingle, double: cdouble,
            csingle: csingle, cdouble: cdouble}[dtype]

def get_rtol(dtype):
    # Choose a safe rtol
    if dtype in (single, csingle):
        return 1e-5
    else:
        return 1e-11

class LinalgCase(object):
    def __init__(self, name, a, b, exception_cls=None):
        assert isinstance(name, str)
        self.name = name
        self.a = a
        self.b = b
        self.exception_cls = exception_cls

    def check(self, do):
        if self.exception_cls is None:
            do(self.a, self.b)
        else:
            assert_raises(self.exception_cls, do, self.a, self.b)

    def __repr__(self):
        return "<LinalgCase: %s>" % (self.name,)


#
# Base test cases
#

np.random.seed(1234)

SQUARE_CASES = [
    LinalgCase("single",
               array([[1., 2.], [3., 4.]], dtype=single),
               array([2., 1.], dtype=single)),
    LinalgCase("double",
               array([[1., 2.], [3., 4.]], dtype=double),
               array([2., 1.], dtype=double)),
    LinalgCase("double_2",
               array([[1., 2.], [3., 4.]], dtype=double),
               array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
    LinalgCase("csingle",
               array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=csingle),
               array([2.+1j, 1.+2j], dtype=csingle)),
    LinalgCase("cdouble",
               array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble),
               array([2.+1j, 1.+2j], dtype=cdouble)),
    LinalgCase("cdouble_2",
               array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble),
               array([[2.+1j, 1.+2j, 1+3j], [1-2j, 1-3j, 1-6j]], dtype=cdouble)),
    LinalgCase("empty",
               atleast_2d(array([], dtype = double)),
               atleast_2d(array([], dtype = double)),
               linalg.LinAlgError),
    LinalgCase("8x8",
               np.random.rand(8, 8),
               np.random.rand(8)),
    LinalgCase("1x1",
               np.random.rand(1, 1),
               np.random.rand(1)),
    LinalgCase("nonarray",
               [[1, 2], [3, 4]],
               [2, 1]),
    LinalgCase("matrix_b_only",
               array([[1., 2.], [3., 4.]]),
               matrix([2., 1.]).T),
    LinalgCase("matrix_a_and_b",
               matrix([[1., 2.], [3., 4.]]),
               matrix([2., 1.]).T),
]

NONSQUARE_CASES = [
    LinalgCase("single_nsq_1",
               array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
               array([2., 1.], dtype=single)),
    LinalgCase("single_nsq_2",
               array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
               array([2., 1., 3.], dtype=single)),
    LinalgCase("double_nsq_1",
               array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
               array([2., 1.], dtype=double)),
    LinalgCase("double_nsq_2",
               array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
               array([2., 1., 3.], dtype=double)),
    LinalgCase("csingle_nsq_1",
               array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=csingle),
               array([2.+1j, 1.+2j], dtype=csingle)),
    LinalgCase("csingle_nsq_2",
               array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=csingle),
               array([2.+1j, 1.+2j, 3.-3j], dtype=csingle)),
    LinalgCase("cdouble_nsq_1",
               array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble),
               array([2.+1j, 1.+2j], dtype=cdouble)),
    LinalgCase("cdouble_nsq_2",
               array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble),
               array([2.+1j, 1.+2j, 3.-3j], dtype=cdouble)),
    LinalgCase("cdouble_nsq_1_2",
               array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble),
               array([[2.+1j, 1.+2j], [1-1j, 2-2j]], dtype=cdouble)),
    LinalgCase("cdouble_nsq_2_2",
               array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble),
               array([[2.+1j, 1.+2j], [1-1j, 2-2j], [1-1j, 2-2j]], dtype=cdouble)),
    LinalgCase("8x11",
               np.random.rand(8, 11),
               np.random.rand(11)),
    LinalgCase("1x5",
               np.random.rand(1, 5),
               np.random.rand(5)),
    LinalgCase("5x1",
               np.random.rand(5, 1),
               np.random.rand(1)),
]

HERMITIAN_CASES = [
    LinalgCase("hsingle",
               array([[1., 2.], [2., 1.]], dtype=single),
               None),
    LinalgCase("hdouble",
               array([[1., 2.], [2., 1.]], dtype=double),
               None),
    LinalgCase("hcsingle",
               array([[1., 2+3j], [2-3j, 1]], dtype=csingle),
               None),
    LinalgCase("hcdouble",
               array([[1., 2+3j], [2-3j, 1]], dtype=cdouble),
               None),
    LinalgCase("hempty",
               atleast_2d(array([], dtype = double)),
               None,
               linalg.LinAlgError),
    LinalgCase("hnonarray",
               [[1, 2], [2, 1]],
               None),
    LinalgCase("matrix_b_only",
               array([[1., 2.], [2., 1.]]),
               None),
    LinalgCase("hmatrix_a_and_b",
               matrix([[1., 2.], [2., 1.]]),
               None),
    LinalgCase("hmatrix_1x1",
               np.random.rand(1, 1),
               None),
]


#
# Gufunc test cases
#

GENERALIZED_SQUARE_CASES = []
GENERALIZED_NONSQUARE_CASES = []
GENERALIZED_HERMITIAN_CASES = []

for tgt, src in ((GENERALIZED_SQUARE_CASES, SQUARE_CASES),
                 (GENERALIZED_NONSQUARE_CASES, NONSQUARE_CASES),
                 (GENERALIZED_HERMITIAN_CASES, HERMITIAN_CASES)):
    for case in src:
        if not isinstance(case.a, np.ndarray):
            continue
        
        a = np.array([case.a, 2*case.a, 3*case.a])
        if case.b is None:
            b = None
        else:
            b = np.array([case.b, 7*case.b, 6*case.b])
        new_case = LinalgCase(case.name + "_tile3", a, b,
                              case.exception_cls)
        tgt.append(new_case)

        a = np.array([case.a]*2*3).reshape((3, 2) + case.a.shape)
        if case.b is None:
            b = None
        else:
            b = np.array([case.b]*2*3).reshape((3, 2) + case.b.shape)
        new_case = LinalgCase(case.name + "_tile213", a, b,
                              case.exception_cls)
        tgt.append(new_case)

#
# Generate stride combination variations of the above
#

def _stride_comb_iter(x):
    """
    Generate cartesian product of strides for all axes
    """

    if not isinstance(x, np.ndarray):
        yield x, "nop"
        return

    stride_set = [(1,)]*x.ndim
    stride_set[-1] = (1, 3, -4)
    if x.ndim > 1:
        stride_set[-2] = (1, 3, -4)
    if x.ndim > 2:
        stride_set[-3] = (1, -4)

    for repeats in itertools.product(*tuple(stride_set)):
        new_shape = [abs(a*b) for a, b in zip(x.shape, repeats)]
        slices = tuple([slice(None, None, repeat) for repeat in repeats])

        # new array with different strides, but same data
        xi = np.empty(new_shape, dtype=x.dtype)
        xi.view(np.uint32).fill(0xdeadbeef)
        xi = xi[slices]
        xi[...] = x
        xi = xi.view(x.__class__)
        assert np.all(xi == x)
        yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])

        # generate also zero strides if possible
        if x.ndim >= 1 and x.shape[-1] == 1:
            s = list(x.strides)
            s[-1] = 0
            xi = np.lib.stride_tricks.as_strided(x, strides=s)
            yield xi, "stride_xxx_0"
        if x.ndim >= 2 and x.shape[-2] == 1:
            s = list(x.strides)
            s[-2] = 0
            xi = np.lib.stride_tricks.as_strided(x, strides=s)
            yield xi, "stride_xxx_0_x"
        if x.ndim >= 2 and x.shape[:-2] == (1, 1):
            s = list(x.strides)
            s[-1] = 0
            s[-2] = 0
            xi = np.lib.stride_tricks.as_strided(x, strides=s)
            yield xi, "stride_xxx_0_0"

for src in (SQUARE_CASES,
            NONSQUARE_CASES,
            HERMITIAN_CASES,
            GENERALIZED_SQUARE_CASES,
            GENERALIZED_NONSQUARE_CASES,
            GENERALIZED_HERMITIAN_CASES):

    new_cases = []
    for case in src:
        for a, a_tag in _stride_comb_iter(case.a):
            for b, b_tag in _stride_comb_iter(case.b):
                new_case = LinalgCase(case.name + "_" + a_tag + "_" + b_tag, a, b,
                                      exception_cls=case.exception_cls)
                new_cases.append(new_case)
    src.extend(new_cases)


#
# Test different routines against the above cases
#

def _check_cases(func, cases):
    for case in cases:
        try:
            case.check(func)
        except Exception:
            msg = "In test case: %r\n\n" % case
            msg += traceback.format_exc()
            raise AssertionError(msg)

class LinalgTestCase(object):
    def test_sq_cases(self):
        _check_cases(self.do, SQUARE_CASES)


class LinalgNonsquareTestCase(object):
    def test_sq_cases(self):
        _check_cases(self.do, NONSQUARE_CASES)


class LinalgGeneralizedTestCase(object):
    @dec.slow
    def test_generalized_sq_cases(self):
        _check_cases(self.do, GENERALIZED_SQUARE_CASES)


class LinalgGeneralizedNonsquareTestCase(object):
    @dec.slow
    def test_generalized_nonsq_cases(self):
        _check_cases(self.do, GENERALIZED_NONSQUARE_CASES)


class HermitianTestCase(object):
    def test_herm_cases(self):
        _check_cases(self.do, HERMITIAN_CASES)


class HermitianGeneralizedTestCase(object):
    @dec.slow
    def test_generalized_herm_cases(self):
        _check_cases(self.do, GENERALIZED_HERMITIAN_CASES)


def dot_generalized(a, b):
    a = asarray(a)
    if a.ndim >= 3:
        if a.ndim == b.ndim:
            # matrix x matrix
            new_shape = a.shape[:-1] + b.shape[-1:]
        elif a.ndim == b.ndim + 1:
            # matrix x vector
            new_shape = a.shape[:-1]
        else:
            raise ValueError("Not implemented...")
        r = np.empty(new_shape, dtype=np.common_type(a, b))
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = dot(a[c], b[c])
        return r
    else:
        return dot(a, b)


def identity_like_generalized(a):
    a = asarray(a)
    if a.ndim >= 3:
        r = np.empty(a.shape, dtype=a.dtype)
        for c in itertools.product(*map(range, a.shape[:-2])):
            r[c] = identity(a.shape[-2])
        return r
    else:
        return identity(a.shape[0])


class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase):
    def do(self, a, b):
        x = linalg.solve(a, b)
        assert_almost_equal(b, dot_generalized(a, x))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.solve(x, x).dtype, dtype)
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype

    def test_0_size(self):
        class ArraySubclass(np.ndarray):
            pass
        # Test system of 0x0 matrices
        a = np.arange(8).reshape(2, 2, 2)
        b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)

        expected = linalg.solve(a, b)[:, 0:0,:]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0,:])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        # Test errors for non-square and only b's dimension being 0
        assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
        assert_raises(ValueError, linalg.solve, a, b[:, 0:0,:])

        # Test broadcasting error
        b = np.arange(6).reshape(1, 3, 2) # broadcasting error
        assert_raises(ValueError, linalg.solve, a, b)
        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])

        # Test zero "single equations" with 0x0 matrices.
        b = np.arange(2).reshape(1, 2).view(ArraySubclass)
        expected = linalg.solve(a, b)[:, 0:0]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        b = np.arange(3).reshape(1, 3)
        assert_raises(ValueError, linalg.solve, a, b)
        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
        assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)

    def test_0_size_k(self):
        # test zero multiple equation (K=0) case.
        class ArraySubclass(np.ndarray):
            pass
        a = np.arange(4).reshape(1, 2, 2)
        b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)

        expected = linalg.solve(a, b)[:,:, 0:0]
        result = linalg.solve(a, b[:,:, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        # test both zero.
        expected = linalg.solve(a, b)[:, 0:0, 0:0]
        result = linalg.solve(a[:, 0:0, 0:0], b[:,0:0, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))


class TestInv(LinalgTestCase, LinalgGeneralizedTestCase):
    def do(self, a, b):
        a_inv = linalg.inv(a)
        assert_almost_equal(dot_generalized(a, a_inv),
                            identity_like_generalized(a))
        assert_(imply(isinstance(a, matrix), isinstance(a_inv, matrix)))

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.inv(x).dtype, dtype)
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype

    def test_0_size(self):
        # Check that all kinds of 0-sized arrays work
        class ArraySubclass(np.ndarray):
            pass
        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
        res = linalg.inv(a)
        assert_(res.dtype.type is np.float64)
        assert_equal(a.shape, res.shape)
        assert_(isinstance(a, ArraySubclass))

        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
        res = linalg.inv(a)
        assert_(res.dtype.type is np.complex64)
        assert_equal(a.shape, res.shape)


class TestEigvals(LinalgTestCase, LinalgGeneralizedTestCase):
    def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, dtype)
            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype


class TestEig(LinalgTestCase, LinalgGeneralizedTestCase):
    def do(self, a, b):
        evalues, evectors = linalg.eig(a)
        assert_allclose(dot_generalized(a, evectors),
                        np.asarray(evectors) * np.asarray(evalues)[...,None,:],
                        rtol=get_rtol(evalues.dtype))
        assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix)))

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            w, v = np.linalg.eig(x)
            assert_equal(w.dtype, dtype)
            assert_equal(v.dtype, dtype)

            x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
            w, v = np.linalg.eig(x)
            assert_equal(w.dtype, get_complex_dtype(dtype))
            assert_equal(v.dtype, get_complex_dtype(dtype))

        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype


class TestSVD(LinalgTestCase, LinalgGeneralizedTestCase):
    def do(self, a, b):
        u, s, vt = linalg.svd(a, 0)
        assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[...,None,:],
                                           np.asarray(vt)),
                        rtol=get_rtol(u.dtype))
        assert_(imply(isinstance(a, matrix), isinstance(u, matrix)))
        assert_(imply(isinstance(a, matrix), isinstance(vt, matrix)))

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            u, s, vh = linalg.svd(x)
            assert_equal(u.dtype, dtype)
            assert_equal(s.dtype, get_real_dtype(dtype))
            assert_equal(vh.dtype, dtype)
            s = linalg.svd(x, compute_uv=False)
            assert_equal(s.dtype, get_real_dtype(dtype))

        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype


class TestCondSVD(LinalgTestCase, LinalgGeneralizedTestCase):
    def do(self, a, b):
        c = asarray(a) # a might be a matrix
        s = linalg.svd(c, compute_uv=False)
        old_assert_almost_equal(s[0]/s[-1], linalg.cond(a), decimal=5)


class TestCond2(LinalgTestCase):
    def do(self, a, b):
        c = asarray(a) # a might be a matrix
        s = linalg.svd(c, compute_uv=False)
        old_assert_almost_equal(s[0]/s[-1], linalg.cond(a, 2), decimal=5)


class TestCondInf(object):
    def test(self):
        A = array([[1., 0, 0], [0, -2., 0], [0, 0, 3.]])
        assert_almost_equal(linalg.cond(A, inf), 3.)


class TestPinv(LinalgTestCase):
    def do(self, a, b):
        a_ginv = linalg.pinv(a)
        assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0]))
        assert_(imply(isinstance(a, matrix), isinstance(a_ginv, matrix)))


class TestDet(LinalgTestCase, LinalgGeneralizedTestCase):
    def do(self, a, b):
        d = linalg.det(a)
        (s, ld) = linalg.slogdet(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))

        s = np.atleast_1d(s)
        ld = np.atleast_1d(ld)
        m = (s != 0)
        assert_almost_equal(np.abs(s[m]), 1)
        assert_equal(ld[~m], -inf)

    def test_zero(self):
        assert_equal(linalg.det([[0.0]]), 0.0)
        assert_equal(type(linalg.det([[0.0]])), double)
        assert_equal(linalg.det([[0.0j]]), 0.0)
        assert_equal(type(linalg.det([[0.0j]])), cdouble)

        assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
        assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
        assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
        assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
        assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
        assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            assert_equal(np.linalg.det(x).dtype, dtype)
            ph, s = np.linalg.slogdet(x)
            assert_equal(s.dtype, get_real_dtype(dtype))
            assert_equal(ph.dtype, dtype)
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype


class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase):
    def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (np.asarray(abs(np.dot(a, x) - b))**2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))


class TestMatrixPower(object):
    R90 = array([[0, 1], [-1, 0]])
    Arb22 = array([[4, -7], [-2, 10]])
    noninv = array([[1, 0], [0, 0]])
    arbfloat = array([[0.1, 3.2], [1.2, 0.7]])

    large = identity(10)
    t = large[1,:].copy()
    large[1,:] = large[0,:]
    large[0,:] = t

    def test_large_power(self):
        assert_equal(matrix_power(self.R90, 2**100+2**10+2**5+1), self.R90)

    def test_large_power_trailing_zero(self):
        assert_equal(matrix_power(self.R90, 2**100+2**10+2**5), identity(2))

    def testip_zero(self):
        def tz(M):
            mz = matrix_power(M, 0)
            assert_equal(mz, identity(M.shape[0]))
            assert_equal(mz.dtype, M.dtype)
        for M in [self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def testip_one(self):
        def tz(M):
            mz = matrix_power(M, 1)
            assert_equal(mz, M)
            assert_equal(mz.dtype, M.dtype)
        for M in [self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def testip_two(self):
        def tz(M):
            mz = matrix_power(M, 2)
            assert_equal(mz, dot(M, M))
            assert_equal(mz.dtype, M.dtype)
        for M in [self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def testip_invert(self):
        def tz(M):
            mz = matrix_power(M, -1)
            assert_almost_equal(identity(M.shape[0]), dot(mz, M))
        for M in [self.R90, self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def test_invert_noninvertible(self):
        import numpy.linalg
        assert_raises(numpy.linalg.linalg.LinAlgError,
                      lambda: matrix_power(self.noninv, -1))


class TestBoolPower(object):
    def test_square(self):
        A = array([[True, False], [True, True]])
        assert_equal(matrix_power(A, 2), A)


class TestEigvalsh(HermitianTestCase, HermitianGeneralizedTestCase):
    def do(self, a, b):
        # note that eigenvalue arrays must be sorted since
        # their order isn't guaranteed.
        ev = linalg.eigvalsh(a, 'L')
        evalues, evectors = linalg.eig(a)
        ev.sort(axis=-1)
        evalues.sort(axis=-1)
        assert_allclose(ev, evalues,
                        rtol=get_rtol(ev.dtype))

        ev2 = linalg.eigvalsh(a, 'U')
        ev2.sort(axis=-1)
        assert_allclose(ev2, evalues,
                        rtol=get_rtol(ev.dtype))

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            w = np.linalg.eigvalsh(x)
            assert_equal(w.dtype, get_real_dtype(dtype))
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype

    def test_invalid(self):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
        assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
        assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
        assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")

    def test_UPLO(self):
        Klo = np.array([[0, 0],[1, 0]], dtype=np.double)
        Kup = np.array([[0, 1],[0, 0]], dtype=np.double)
        tgt = np.array([-1, 1], dtype=np.double)
        rtol = get_rtol(np.double)

        # Check default is 'L'
        w = np.linalg.eigvalsh(Klo)
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'L'
        w = np.linalg.eigvalsh(Klo, UPLO='L')
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'l'
        w = np.linalg.eigvalsh(Klo, UPLO='l')
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'U'
        w = np.linalg.eigvalsh(Kup, UPLO='U')
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'u'
        w = np.linalg.eigvalsh(Kup, UPLO='u')
        assert_allclose(np.sort(w), tgt, rtol=rtol)


class TestEigh(HermitianTestCase, HermitianGeneralizedTestCase):
    def do(self, a, b):
        # note that eigenvalue arrays must be sorted since
        # their order isn't guaranteed.
        ev, evc = linalg.eigh(a)
        evalues, evectors = linalg.eig(a)
        ev.sort(axis=-1)
        evalues.sort(axis=-1)
        assert_almost_equal(ev, evalues)

        assert_allclose(dot_generalized(a, evc),
                        np.asarray(ev)[...,None,:] * np.asarray(evc),
                        rtol=get_rtol(ev.dtype))

        ev2, evc2 = linalg.eigh(a, 'U')
        ev2.sort(axis=-1)
        assert_almost_equal(ev2, evalues)

        assert_allclose(dot_generalized(a, evc2),
                        np.asarray(ev2)[...,None,:] * np.asarray(evc2),
                        rtol=get_rtol(ev.dtype), err_msg=repr(a))

    def test_types(self):
        def check(dtype):
            x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
            w, v = np.linalg.eigh(x)
            assert_equal(w.dtype, get_real_dtype(dtype))
            assert_equal(v.dtype, dtype)
        for dtype in [single, double, csingle, cdouble]:
            yield check, dtype

    def test_invalid(self):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
        assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
        assert_raises(ValueError, np.linalg.eigh, x, "lower")
        assert_raises(ValueError, np.linalg.eigh, x, "upper")

    def test_UPLO(self):
        Klo = np.array([[0, 0],[1, 0]], dtype=np.double)
        Kup = np.array([[0, 1],[0, 0]], dtype=np.double)
        tgt = np.array([-1, 1], dtype=np.double)
        rtol = get_rtol(np.double)

        # Check default is 'L'
        w, v = np.linalg.eigh(Klo)
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'L'
        w, v = np.linalg.eigh(Klo, UPLO='L')
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'l'
        w, v = np.linalg.eigh(Klo, UPLO='l')
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'U'
        w, v = np.linalg.eigh(Kup, UPLO='U')
        assert_allclose(np.sort(w), tgt, rtol=rtol)
        # Check 'u'
        w, v = np.linalg.eigh(Kup, UPLO='u')
        assert_allclose(np.sort(w), tgt, rtol=rtol)


class _TestNorm(object):

    dt = None
    dec = None

    def test_empty(self):
        assert_equal(norm([]), 0.0)
        assert_equal(norm(array([], dtype=self.dt)), 0.0)
        assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)

    def test_vector(self):
        a = [1, 2, 3, 4]
        b = [-1, -2, -3, -4]
        c = [-1, 2, -3, 4]

        def _test(v):
            np.testing.assert_almost_equal(norm(v), 30**0.5,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, inf), 4.0,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, -inf), 1.0,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, 1), 10.0,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, -1), 12.0/25,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, 2), 30**0.5,
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, -2), ((205./144)**-0.5),
                                           decimal=self.dec)
            np.testing.assert_almost_equal(norm(v, 0), 4,
                                           decimal=self.dec)

        for v in (a, b, c,):
            _test(v)

        for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
                  array(c, dtype=self.dt)):
            _test(v)

    def test_matrix(self):
        A = matrix([[1, 3], [5, 7]], dtype=self.dt)
        assert_almost_equal(norm(A), 84**0.5)
        assert_almost_equal(norm(A, 'fro'), 84**0.5)
        assert_almost_equal(norm(A, inf), 12.0)
        assert_almost_equal(norm(A, -inf), 4.0)
        assert_almost_equal(norm(A, 1), 10.0)
        assert_almost_equal(norm(A, -1), 6.0)
        assert_almost_equal(norm(A, 2), 9.1231056256176615)
        assert_almost_equal(norm(A, -2), 0.87689437438234041)

        assert_raises(ValueError, norm, A, 'nofro')
        assert_raises(ValueError, norm, A, -3)
        assert_raises(ValueError, norm, A, 0)

    def test_axis(self):
        # Vector norms.
        # Compare the use of `axis` with computing the norm of each row
        # or column separately.
        A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
        for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
            expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
            assert_almost_equal(norm(A, ord=order, axis=0), expected0)
            expected1 = [norm(A[k,:], ord=order) for k in range(A.shape[0])]
            assert_almost_equal(norm(A, ord=order, axis=1), expected1)

        # Matrix norms.
        B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)

        for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']:
            assert_almost_equal(norm(A, ord=order), norm(A, ord=order,
                                                         axis=(0, 1)))

            n = norm(B, ord=order, axis=(1, 2))
            expected = [norm(B[k], ord=order) for k in range(B.shape[0])]
            assert_almost_equal(n, expected)

            n = norm(B, ord=order, axis=(2, 1))
            expected = [norm(B[k].T, ord=order) for k in range(B.shape[0])]
            assert_almost_equal(n, expected)

            n = norm(B, ord=order, axis=(0, 2))
            expected = [norm(B[:, k,:], ord=order) for k in range(B.shape[1])]
            assert_almost_equal(n, expected)

            n = norm(B, ord=order, axis=(0, 1))
            expected = [norm(B[:,:, k], ord=order) for k in range(B.shape[2])]
            assert_almost_equal(n, expected)

    def test_bad_args(self):
        # Check that bad arguments raise the appropriate exceptions.

        A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
        B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)

        # Using `axis=<integer>` or passing in a 1-D array implies vector
        # norms are being computed, so also using `ord='fro'` raises a
        # ValueError.
        assert_raises(ValueError, norm, A, 'fro', 0)
        assert_raises(ValueError, norm, [3, 4], 'fro', None)

        # Similarly, norm should raise an exception when ord is any finite
        # number other than 1, 2, -1 or -2 when computing matrix norms.
        for order in [0, 3]:
            assert_raises(ValueError, norm, A, order, None)
            assert_raises(ValueError, norm, A, order, (0, 1))
            assert_raises(ValueError, norm, B, order, (1, 2))

        # Invalid axis
        assert_raises(ValueError, norm, B, None, 3)
        assert_raises(ValueError, norm, B, None, (2, 3))
        assert_raises(ValueError, norm, B, None, (0, 1, 2))

    def test_longdouble_norm(self):
        # Non-regression test: p-norm of longdouble would previously raise
        # UnboundLocalError.
        x = np.arange(10, dtype=np.longdouble)
        old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)

    def test_intmin(self):
        # Non-regression test: p-norm of signed integer would previously do
        # float cast and abs in the wrong order.
        x = np.array([-2 ** 31], dtype=np.int32)
        old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)

    def test_complex_high_ord(self):
        # gh-4156
        d = np.empty((2,), dtype=np.clongdouble)
        d[0] = 6+7j
        d[1] = -6+7j
        res = 11.615898132184
        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
        d = d.astype(np.complex128)
        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
        d = d.astype(np.complex64)
        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)


class TestNormDouble(_TestNorm):
    dt = np.double
    dec = 12


class TestNormSingle(_TestNorm):
    dt = np.float32
    dec = 6


class TestNormInt64(_TestNorm):
    dt = np.int64
    dec = 12


class TestMatrixRank(object):
    def test_matrix_rank(self):
        # Full rank matrix
        yield assert_equal, 4, matrix_rank(np.eye(4))
        # rank deficient matrix
        I=np.eye(4); I[-1, -1] = 0.
        yield assert_equal, matrix_rank(I), 3
        # All zeros - zero rank
        yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
        # 1 dimension - rank 1 unless all 0
        yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
        yield assert_equal, matrix_rank(np.zeros((4,))), 0
        # accepts array-like
        yield assert_equal, matrix_rank([1]), 1
        # greater than 2 dimensions raises error
        yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2))
        # works on scalar
        yield assert_equal, matrix_rank(1), 1


def test_reduced_rank():
    # Test matrices with reduced rank
    rng = np.random.RandomState(20120714)
    for i in range(100):
        # Make a rank deficient matrix
        X = rng.normal(size=(40, 10))
        X[:, 0] = X[:, 1] + X[:, 2]
        # Assert that matrix_rank detected deficiency
        assert_equal(matrix_rank(X), 9)
        X[:, 3] = X[:, 4] + X[:, 5]
        assert_equal(matrix_rank(X), 8)


class TestQR(object):

    def check_qr(self, a):
        # This test expects the argument `a` to be an ndarray or
        # a subclass of an ndarray of inexact type.
        a_type = type(a)
        a_dtype = a.dtype
        m, n = a.shape
        k = min(m, n)

        # mode == 'complete'
        q, r = linalg.qr(a, mode='complete')
        assert_(q.dtype == a_dtype)
        assert_(r.dtype == a_dtype)
        assert_(isinstance(q, a_type))
        assert_(isinstance(r, a_type))
        assert_(q.shape == (m, m))
        assert_(r.shape == (m, n))
        assert_almost_equal(dot(q, r), a)
        assert_almost_equal(dot(q.T.conj(), q), np.eye(m))
        assert_almost_equal(np.triu(r), r)

        # mode == 'reduced'
        q1, r1 = linalg.qr(a, mode='reduced')
        assert_(q1.dtype == a_dtype)
        assert_(r1.dtype == a_dtype)
        assert_(isinstance(q1, a_type))
        assert_(isinstance(r1, a_type))
        assert_(q1.shape == (m, k))
        assert_(r1.shape == (k, n))
        assert_almost_equal(dot(q1, r1), a)
        assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
        assert_almost_equal(np.triu(r1), r1)

        # mode == 'r'
        r2 = linalg.qr(a, mode='r')
        assert_(r2.dtype == a_dtype)
        assert_(isinstance(r2, a_type))
        assert_almost_equal(r2, r1)

    def test_qr_empty(self):
        a = np.zeros((0, 2))
        assert_raises(linalg.LinAlgError, linalg.qr, a)

    def test_mode_raw(self):
        # The factorization is not unique and varies between libraries,
        # so it is not possible to check against known values. Functional
        # testing is a possibility, but awaits the exposure of more
        # of the functions in lapack_lite. Consequently, this test is
        # very limited in scope. Note that the results are in FORTRAN
        # order, hence the h arrays are transposed.
        a = array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
        b = a.astype(np.single)

        # Test double
        h, tau = linalg.qr(a, mode='raw')
        assert_(h.dtype == np.double)
        assert_(tau.dtype == np.double)
        assert_(h.shape == (2, 3))
        assert_(tau.shape == (2,))

        h, tau = linalg.qr(a.T, mode='raw')
        assert_(h.dtype == np.double)
        assert_(tau.dtype == np.double)
        assert_(h.shape == (3, 2))
        assert_(tau.shape == (2,))

    def test_mode_all_but_economic(self):
        a = array([[1, 2], [3, 4]])
        b = array([[1, 2], [3, 4], [5, 6]])
        for dt in "fd":
            m1 = a.astype(dt)
            m2 = b.astype(dt)
            self.check_qr(m1)
            self.check_qr(m2)
            self.check_qr(m2.T)
            self.check_qr(matrix(m1))
        for dt in "fd":
            m1 = 1 + 1j * a.astype(dt)
            m2 = 1 + 1j * b.astype(dt)
            self.check_qr(m1)
            self.check_qr(m2)
            self.check_qr(m2.T)
            self.check_qr(matrix(m1))


def test_byteorder_check():
    # Byte order check should pass for native order
    if sys.byteorder == 'little':
        native = '<'
    else:
        native = '>'

    for dtt in (np.float32, np.float64):
        arr = np.eye(4, dtype=dtt)
        n_arr = arr.newbyteorder(native)
        sw_arr = arr.newbyteorder('S').byteswap()
        assert_equal(arr.dtype.byteorder, '=')
        for routine in (linalg.inv, linalg.det, linalg.pinv):
            # Normal call
            res = routine(arr)
            # Native but not '='
            assert_array_equal(res, routine(n_arr))
            # Swapped
            assert_array_equal(res, routine(sw_arr))


def test_generalized_raise_multiloop():
    # It should raise an error even if the error doesn't occur in the
    # last iteration of the ufunc inner loop

    invertible = np.array([[1, 2], [3, 4]])
    non_invertible = np.array([[1, 1], [1, 1]])

    x = np.zeros([4, 4, 2, 2])[1::2]
    x[...] = invertible
    x[0, 0] = non_invertible

    assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)

def test_xerbla_override():
    # Check that our xerbla has been successfully linked in. If it is not,
    # the default xerbla routine is called, which prints a message to stdout
    # and may, or may not, abort the process depending on the LAPACK package.
    from nose import SkipTest

    try:
        pid = os.fork()
    except (OSError, AttributeError):
        # fork failed, or not running on POSIX
        raise SkipTest("Not POSIX or fork failed.")

    if pid == 0:
        # child; close i/o file handles
        os.close(1)
        os.close(0)
        # Avoid producing core files.
        import resource
        resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
        # These calls may abort.
        try:
            np.linalg.lapack_lite.xerbla()
        except ValueError:
            pass
        except:
            os._exit(os.EX_CONFIG)

        try:
            a = np.array([[1.]])
            np.linalg.lapack_lite.dorgqr(
                1, 1, 1, a,
                0, # <- invalid value
                a, a, 0, 0)
        except ValueError as e:
            if "DORGQR parameter number 5" in str(e):
                # success
                os._exit(os.EX_OK)

        # Did not abort, but our xerbla was not linked in.
        os._exit(os.EX_CONFIG)
    else:
        # parent
        pid, status = os.wait()
        if os.WEXITSTATUS(status) != os.EX_OK or os.WIFSIGNALED(status):
            raise SkipTest('Numpy xerbla not linked in.')


if __name__ == "__main__":
    run_module_suite()