File size: 27,065 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
"""
Record Arrays
=============
Record arrays expose the fields of structured arrays as properties.
Most commonly, ndarrays contain elements of a single type, e.g. floats, integers,
bools etc. However, it is possible for elements to be combinations of these,
such as::
>>> a = np.array([(1, 2.0), (1, 2.0)], dtype=[('x', int), ('y', float)])
>>> a
array([(1, 2.0), (1, 2.0)],
dtype=[('x', '<i4'), ('y', '<f8')])
Here, each element consists of two fields: x (and int), and y (a float).
This is known as a structured array. The different fields are analogous
to columns in a spread-sheet. The different fields can be accessed as
one would a dictionary::
>>> a['x']
array([1, 1])
>>> a['y']
array([ 2., 2.])
Record arrays allow us to access fields as properties::
>>> ar = a.view(np.recarray)
>>> ar.x
array([1, 1])
>>> ar.y
array([ 2., 2.])
"""
from __future__ import division, absolute_import, print_function
import sys
import os
from . import numeric as sb
from .defchararray import chararray
from . import numerictypes as nt
from numpy.compat import isfileobj, bytes, long
# All of the functions allow formats to be a dtype
__all__ = ['record', 'recarray', 'format_parser']
ndarray = sb.ndarray
_byteorderconv = {'b':'>',
'l':'<',
'n':'=',
'B':'>',
'L':'<',
'N':'=',
'S':'s',
's':'s',
'>':'>',
'<':'<',
'=':'=',
'|':'|',
'I':'|',
'i':'|'}
# formats regular expression
# allows multidimension spec with a tuple syntax in front
# of the letter code '(2,3)f4' and ' ( 2 , 3 ) f4 '
# are equally allowed
numfmt = nt.typeDict
_typestr = nt._typestr
def find_duplicate(list):
"""Find duplication in a list, return a list of duplicated elements"""
dup = []
for i in range(len(list)):
if (list[i] in list[i + 1:]):
if (list[i] not in dup):
dup.append(list[i])
return dup
class format_parser:
"""
Class to convert formats, names, titles description to a dtype.
After constructing the format_parser object, the dtype attribute is
the converted data-type:
``dtype = format_parser(formats, names, titles).dtype``
Attributes
----------
dtype : dtype
The converted data-type.
Parameters
----------
formats : str or list of str
The format description, either specified as a string with
comma-separated format descriptions in the form ``'f8, i4, a5'``, or
a list of format description strings in the form
``['f8', 'i4', 'a5']``.
names : str or list/tuple of str
The field names, either specified as a comma-separated string in the
form ``'col1, col2, col3'``, or as a list or tuple of strings in the
form ``['col1', 'col2', 'col3']``.
An empty list can be used, in that case default field names
('f0', 'f1', ...) are used.
titles : sequence
Sequence of title strings. An empty list can be used to leave titles
out.
aligned : bool, optional
If True, align the fields by padding as the C-compiler would.
Default is False.
byteorder : str, optional
If specified, all the fields will be changed to the
provided byte-order. Otherwise, the default byte-order is
used. For all available string specifiers, see `dtype.newbyteorder`.
See Also
--------
dtype, typename, sctype2char
Examples
--------
>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... ['T1', 'T2', 'T3']).dtype
dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4'),
(('T3', 'col3'), '|S5')])
`names` and/or `titles` can be empty lists. If `titles` is an empty list,
titles will simply not appear. If `names` is empty, default field names
will be used.
>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... []).dtype
dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '|S5')])
>>> np.format_parser(['f8', 'i4', 'a5'], [], []).dtype
dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', '|S5')])
"""
def __init__(self, formats, names, titles, aligned=False, byteorder=None):
self._parseFormats(formats, aligned)
self._setfieldnames(names, titles)
self._createdescr(byteorder)
self.dtype = self._descr
def _parseFormats(self, formats, aligned=0):
""" Parse the field formats """
if formats is None:
raise ValueError("Need formats argument")
if isinstance(formats, list):
if len(formats) < 2:
formats.append('')
formats = ','.join(formats)
dtype = sb.dtype(formats, aligned)
fields = dtype.fields
if fields is None:
dtype = sb.dtype([('f1', dtype)], aligned)
fields = dtype.fields
keys = dtype.names
self._f_formats = [fields[key][0] for key in keys]
self._offsets = [fields[key][1] for key in keys]
self._nfields = len(keys)
def _setfieldnames(self, names, titles):
"""convert input field names into a list and assign to the _names
attribute """
if (names):
if (type(names) in [list, tuple]):
pass
elif isinstance(names, str):
names = names.split(',')
else:
raise NameError("illegal input names %s" % repr(names))
self._names = [n.strip() for n in names[:self._nfields]]
else:
self._names = []
# if the names are not specified, they will be assigned as
# "f0, f1, f2,..."
# if not enough names are specified, they will be assigned as "f[n],
# f[n+1],..." etc. where n is the number of specified names..."
self._names += ['f%d' % i for i in range(len(self._names),
self._nfields)]
# check for redundant names
_dup = find_duplicate(self._names)
if _dup:
raise ValueError("Duplicate field names: %s" % _dup)
if (titles):
self._titles = [n.strip() for n in titles[:self._nfields]]
else:
self._titles = []
titles = []
if (self._nfields > len(titles)):
self._titles += [None] * (self._nfields - len(titles))
def _createdescr(self, byteorder):
descr = sb.dtype({'names':self._names,
'formats':self._f_formats,
'offsets':self._offsets,
'titles':self._titles})
if (byteorder is not None):
byteorder = _byteorderconv[byteorder[0]]
descr = descr.newbyteorder(byteorder)
self._descr = descr
class record(nt.void):
"""A data-type scalar that allows field access as attribute lookup.
"""
def __repr__(self):
return self.__str__()
def __str__(self):
return str(self.item())
def __getattribute__(self, attr):
if attr in ['setfield', 'getfield', 'dtype']:
return nt.void.__getattribute__(self, attr)
try:
return nt.void.__getattribute__(self, attr)
except AttributeError:
pass
fielddict = nt.void.__getattribute__(self, 'dtype').fields
res = fielddict.get(attr, None)
if res:
obj = self.getfield(*res[:2])
# if it has fields return a recarray,
# if it's a string ('SU') return a chararray
# otherwise return the object
try:
dt = obj.dtype
except AttributeError:
return obj
if dt.fields:
return obj.view(obj.__class__)
if dt.char in 'SU':
return obj.view(chararray)
return obj
else:
raise AttributeError("'record' object has no "
"attribute '%s'" % attr)
def __setattr__(self, attr, val):
if attr in ['setfield', 'getfield', 'dtype']:
raise AttributeError("Cannot set '%s' attribute" % attr)
fielddict = nt.void.__getattribute__(self, 'dtype').fields
res = fielddict.get(attr, None)
if res:
return self.setfield(val, *res[:2])
else:
if getattr(self, attr, None):
return nt.void.__setattr__(self, attr, val)
else:
raise AttributeError("'record' object has no "
"attribute '%s'" % attr)
def pprint(self):
"""Pretty-print all fields."""
# pretty-print all fields
names = self.dtype.names
maxlen = max([len(name) for name in names])
rows = []
fmt = '%% %ds: %%s' % maxlen
for name in names:
rows.append(fmt % (name, getattr(self, name)))
return "\n".join(rows)
# The recarray is almost identical to a standard array (which supports
# named fields already) The biggest difference is that it can use
# attribute-lookup to find the fields and it is constructed using
# a record.
# If byteorder is given it forces a particular byteorder on all
# the fields (and any subfields)
class recarray(ndarray):
"""
Construct an ndarray that allows field access using attributes.
Arrays may have a data-types containing fields, analogous
to columns in a spread sheet. An example is ``[(x, int), (y, float)]``,
where each entry in the array is a pair of ``(int, float)``. Normally,
these attributes are accessed using dictionary lookups such as ``arr['x']``
and ``arr['y']``. Record arrays allow the fields to be accessed as members
of the array, using ``arr.x`` and ``arr.y``.
Parameters
----------
shape : tuple
Shape of output array.
dtype : data-type, optional
The desired data-type. By default, the data-type is determined
from `formats`, `names`, `titles`, `aligned` and `byteorder`.
formats : list of data-types, optional
A list containing the data-types for the different columns, e.g.
``['i4', 'f8', 'i4']``. `formats` does *not* support the new
convention of using types directly, i.e. ``(int, float, int)``.
Note that `formats` must be a list, not a tuple.
Given that `formats` is somewhat limited, we recommend specifying
`dtype` instead.
names : tuple of str, optional
The name of each column, e.g. ``('x', 'y', 'z')``.
buf : buffer, optional
By default, a new array is created of the given shape and data-type.
If `buf` is specified and is an object exposing the buffer interface,
the array will use the memory from the existing buffer. In this case,
the `offset` and `strides` keywords are available.
Other Parameters
----------------
titles : tuple of str, optional
Aliases for column names. For example, if `names` were
``('x', 'y', 'z')`` and `titles` is
``('x_coordinate', 'y_coordinate', 'z_coordinate')``, then
``arr['x']`` is equivalent to both ``arr.x`` and ``arr.x_coordinate``.
byteorder : {'<', '>', '='}, optional
Byte-order for all fields.
aligned : bool, optional
Align the fields in memory as the C-compiler would.
strides : tuple of ints, optional
Buffer (`buf`) is interpreted according to these strides (strides
define how many bytes each array element, row, column, etc.
occupy in memory).
offset : int, optional
Start reading buffer (`buf`) from this offset onwards.
order : {'C', 'F'}, optional
Row-major or column-major order.
Returns
-------
rec : recarray
Empty array of the given shape and type.
See Also
--------
rec.fromrecords : Construct a record array from data.
record : fundamental data-type for `recarray`.
format_parser : determine a data-type from formats, names, titles.
Notes
-----
This constructor can be compared to ``empty``: it creates a new record
array but does not fill it with data. To create a record array from data,
use one of the following methods:
1. Create a standard ndarray and convert it to a record array,
using ``arr.view(np.recarray)``
2. Use the `buf` keyword.
3. Use `np.rec.fromrecords`.
Examples
--------
Create an array with two fields, ``x`` and ``y``:
>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> x
array([(1.0, 2), (3.0, 4)],
dtype=[('x', '<f8'), ('y', '<i4')])
>>> x['x']
array([ 1., 3.])
View the array as a record array:
>>> x = x.view(np.recarray)
>>> x.x
array([ 1., 3.])
>>> x.y
array([2, 4])
Create a new, empty record array:
>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)]) #doctest: +SKIP
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])
"""
def __new__(subtype, shape, dtype=None, buf=None, offset=0, strides=None,
formats=None, names=None, titles=None,
byteorder=None, aligned=False, order='C'):
if dtype is not None:
descr = sb.dtype(dtype)
else:
descr = format_parser(formats, names, titles, aligned, byteorder)._descr
if buf is None:
self = ndarray.__new__(subtype, shape, (record, descr), order=order)
else:
self = ndarray.__new__(subtype, shape, (record, descr),
buffer=buf, offset=offset,
strides=strides, order=order)
return self
def __getattribute__(self, attr):
try:
return object.__getattribute__(self, attr)
except AttributeError: # attr must be a fieldname
pass
fielddict = ndarray.__getattribute__(self, 'dtype').fields
try:
res = fielddict[attr][:2]
except (TypeError, KeyError):
raise AttributeError("record array has no attribute %s" % attr)
obj = self.getfield(*res)
# if it has fields return a recarray, otherwise return
# normal array
if obj.dtype.fields:
return obj
if obj.dtype.char in 'SU':
return obj.view(chararray)
return obj.view(ndarray)
# Save the dictionary
# If the attr is a field name and not in the saved dictionary
# Undo any "setting" of the attribute and do a setfield
# Thus, you can't create attributes on-the-fly that are field names.
def __setattr__(self, attr, val):
newattr = attr not in self.__dict__
try:
ret = object.__setattr__(self, attr, val)
except:
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
if attr not in fielddict:
exctype, value = sys.exc_info()[:2]
raise exctype(value)
else:
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
if attr not in fielddict:
return ret
if newattr: # We just added this one
try: # or this setattr worked on an internal
# attribute.
object.__delattr__(self, attr)
except:
return ret
try:
res = fielddict[attr][:2]
except (TypeError, KeyError):
raise AttributeError("record array has no attribute %s" % attr)
return self.setfield(val, *res)
def __getitem__(self, indx):
obj = ndarray.__getitem__(self, indx)
if (isinstance(obj, ndarray) and obj.dtype.isbuiltin):
return obj.view(ndarray)
return obj
def __repr__(self) :
ret = ndarray.__repr__(self)
return ret.replace("recarray", "rec.array", 1)
def field(self, attr, val=None):
if isinstance(attr, int):
names = ndarray.__getattribute__(self, 'dtype').names
attr = names[attr]
fielddict = ndarray.__getattribute__(self, 'dtype').fields
res = fielddict[attr][:2]
if val is None:
obj = self.getfield(*res)
if obj.dtype.fields:
return obj
if obj.dtype.char in 'SU':
return obj.view(chararray)
return obj.view(ndarray)
else:
return self.setfield(val, *res)
def view(self, dtype=None, type=None):
if dtype is None:
return ndarray.view(self, type)
elif type is None:
try:
if issubclass(dtype, ndarray):
return ndarray.view(self, dtype)
except TypeError:
pass
dtype = sb.dtype(dtype)
if dtype.fields is None:
return self.__array__().view(dtype)
return ndarray.view(self, dtype)
else:
return ndarray.view(self, dtype, type)
def fromarrays(arrayList, dtype=None, shape=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None):
""" create a record array from a (flat) list of arrays
>>> x1=np.array([1,2,3,4])
>>> x2=np.array(['a','dd','xyz','12'])
>>> x3=np.array([1.1,2,3,4])
>>> r = np.core.records.fromarrays([x1,x2,x3],names='a,b,c')
>>> print r[1]
(2, 'dd', 2.0)
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])
"""
arrayList = [sb.asarray(x) for x in arrayList]
if shape is None or shape == 0:
shape = arrayList[0].shape
if isinstance(shape, int):
shape = (shape,)
if formats is None and dtype is None:
# go through each object in the list to see if it is an ndarray
# and determine the formats.
formats = ''
for obj in arrayList:
if not isinstance(obj, ndarray):
raise ValueError("item in the array list must be an ndarray.")
formats += _typestr[obj.dtype.type]
if issubclass(obj.dtype.type, nt.flexible):
formats += repr(obj.itemsize)
formats += ','
formats = formats[:-1]
if dtype is not None:
descr = sb.dtype(dtype)
_names = descr.names
else:
parsed = format_parser(formats, names, titles, aligned, byteorder)
_names = parsed._names
descr = parsed._descr
# Determine shape from data-type.
if len(descr) != len(arrayList):
raise ValueError("mismatch between the number of fields "
"and the number of arrays")
d0 = descr[0].shape
nn = len(d0)
if nn > 0:
shape = shape[:-nn]
for k, obj in enumerate(arrayList):
nn = len(descr[k].shape)
testshape = obj.shape[:len(obj.shape) - nn]
if testshape != shape:
raise ValueError("array-shape mismatch in array %d" % k)
_array = recarray(shape, descr)
# populate the record array (makes a copy)
for i in range(len(arrayList)):
_array[_names[i]] = arrayList[i]
return _array
# shape must be 1-d if you use list of lists...
def fromrecords(recList, dtype=None, shape=None, formats=None, names=None,
titles=None, aligned=False, byteorder=None):
""" create a recarray from a list of records in text form
The data in the same field can be heterogeneous, they will be promoted
to the highest data type. This method is intended for creating
smaller record arrays. If used to create large array without formats
defined
r=fromrecords([(2,3.,'abc')]*100000)
it can be slow.
If formats is None, then this will auto-detect formats. Use list of
tuples rather than list of lists for faster processing.
>>> r=np.core.records.fromrecords([(456,'dbe',1.2),(2,'de',1.3)],
... names='col1,col2,col3')
>>> print r[0]
(456, 'dbe', 1.2)
>>> r.col1
array([456, 2])
>>> r.col2
chararray(['dbe', 'de'],
dtype='|S3')
>>> import pickle
>>> print pickle.loads(pickle.dumps(r))
[(456, 'dbe', 1.2) (2, 'de', 1.3)]
"""
nfields = len(recList[0])
if formats is None and dtype is None: # slower
obj = sb.array(recList, dtype=object)
arrlist = [sb.array(obj[..., i].tolist()) for i in range(nfields)]
return fromarrays(arrlist, formats=formats, shape=shape, names=names,
titles=titles, aligned=aligned, byteorder=byteorder)
if dtype is not None:
descr = sb.dtype((record, dtype))
else:
descr = format_parser(formats, names, titles, aligned, byteorder)._descr
try:
retval = sb.array(recList, dtype=descr)
except TypeError: # list of lists instead of list of tuples
if (shape is None or shape == 0):
shape = len(recList)
if isinstance(shape, (int, long)):
shape = (shape,)
if len(shape) > 1:
raise ValueError("Can only deal with 1-d array.")
_array = recarray(shape, descr)
for k in range(_array.size):
_array[k] = tuple(recList[k])
return _array
else:
if shape is not None and retval.shape != shape:
retval.shape = shape
res = retval.view(recarray)
return res
def fromstring(datastring, dtype=None, shape=None, offset=0, formats=None,
names=None, titles=None, aligned=False, byteorder=None):
""" create a (read-only) record array from binary data contained in
a string"""
if dtype is None and formats is None:
raise ValueError("Must have dtype= or formats=")
if dtype is not None:
descr = sb.dtype(dtype)
else:
descr = format_parser(formats, names, titles, aligned, byteorder)._descr
itemsize = descr.itemsize
if (shape is None or shape == 0 or shape == -1):
shape = (len(datastring) - offset) / itemsize
_array = recarray(shape, descr, buf=datastring, offset=offset)
return _array
def get_remaining_size(fd):
try:
fn = fd.fileno()
except AttributeError:
return os.path.getsize(fd.name) - fd.tell()
st = os.fstat(fn)
size = st.st_size - fd.tell()
return size
def fromfile(fd, dtype=None, shape=None, offset=0, formats=None,
names=None, titles=None, aligned=False, byteorder=None):
"""Create an array from binary file data
If file is a string then that file is opened, else it is assumed
to be a file object.
>>> from tempfile import TemporaryFile
>>> a = np.empty(10,dtype='f8,i4,a5')
>>> a[5] = (0.5,10,'abcde')
>>>
>>> fd=TemporaryFile()
>>> a = a.newbyteorder('<')
>>> a.tofile(fd)
>>>
>>> fd.seek(0)
>>> r=np.core.records.fromfile(fd, formats='f8,i4,a5', shape=10,
... byteorder='<')
>>> print r[5]
(0.5, 10, 'abcde')
>>> r.shape
(10,)
"""
if (shape is None or shape == 0):
shape = (-1,)
elif isinstance(shape, (int, long)):
shape = (shape,)
name = 0
if isinstance(fd, str):
name = 1
fd = open(fd, 'rb')
if (offset > 0):
fd.seek(offset, 1)
size = get_remaining_size(fd)
if dtype is not None:
descr = sb.dtype(dtype)
else:
descr = format_parser(formats, names, titles, aligned, byteorder)._descr
itemsize = descr.itemsize
shapeprod = sb.array(shape).prod()
shapesize = shapeprod * itemsize
if shapesize < 0:
shape = list(shape)
shape[ shape.index(-1) ] = size / -shapesize
shape = tuple(shape)
shapeprod = sb.array(shape).prod()
nbytes = shapeprod * itemsize
if nbytes > size:
raise ValueError(
"Not enough bytes left in file for specified shape and type")
# create the array
_array = recarray(shape, descr)
nbytesread = fd.readinto(_array.data)
if nbytesread != nbytes:
raise IOError("Didn't read as many bytes as expected")
if name:
fd.close()
return _array
def array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None,
names=None, titles=None, aligned=False, byteorder=None, copy=True):
"""Construct a record array from a wide-variety of objects.
"""
if (isinstance(obj, (type(None), str)) or isfileobj(obj)) \
and (formats is None) \
and (dtype is None):
raise ValueError("Must define formats (or dtype) if object is "\
"None, string, or an open file")
kwds = {}
if dtype is not None:
dtype = sb.dtype(dtype)
elif formats is not None:
dtype = format_parser(formats, names, titles,
aligned, byteorder)._descr
else:
kwds = {'formats': formats,
'names' : names,
'titles' : titles,
'aligned' : aligned,
'byteorder' : byteorder
}
if obj is None:
if shape is None:
raise ValueError("Must define a shape if obj is None")
return recarray(shape, dtype, buf=obj, offset=offset, strides=strides)
elif isinstance(obj, bytes):
return fromstring(obj, dtype, shape=shape, offset=offset, **kwds)
elif isinstance(obj, (list, tuple)):
if isinstance(obj[0], (tuple, list)):
return fromrecords(obj, dtype=dtype, shape=shape, **kwds)
else:
return fromarrays(obj, dtype=dtype, shape=shape, **kwds)
elif isinstance(obj, recarray):
if dtype is not None and (obj.dtype != dtype):
new = obj.view(dtype)
else:
new = obj
if copy:
new = new.copy()
return new
elif isfileobj(obj):
return fromfile(obj, dtype=dtype, shape=shape, offset=offset)
elif isinstance(obj, ndarray):
if dtype is not None and (obj.dtype != dtype):
new = obj.view(dtype)
else:
new = obj
if copy:
new = new.copy()
res = new.view(recarray)
if issubclass(res.dtype.type, nt.void):
res.dtype = sb.dtype((record, res.dtype))
return res
else:
interface = getattr(obj, "__array_interface__", None)
if interface is None or not isinstance(interface, dict):
raise ValueError("Unknown input type")
obj = sb.array(obj)
if dtype is not None and (obj.dtype != dtype):
obj = obj.view(dtype)
res = obj.view(recarray)
if issubclass(res.dtype.type, nt.void):
res.dtype = sb.dtype((record, res.dtype))
return res
|