File size: 83,310 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 |
from __future__ import division, absolute_import, print_function
import os
import sys
import warnings
import collections
from . import multiarray
from . import umath
from .umath import (invert, sin, UFUNC_BUFSIZE_DEFAULT, ERR_IGNORE,
ERR_WARN, ERR_RAISE, ERR_CALL, ERR_PRINT, ERR_LOG,
ERR_DEFAULT, PINF, NAN)
from . import numerictypes
from .numerictypes import longlong, intc, int_, float_, complex_, bool_
if sys.version_info[0] >= 3:
import pickle
basestring = str
else:
import cPickle as pickle
loads = pickle.loads
__all__ = ['newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc',
'arange', 'array', 'zeros', 'count_nonzero',
'empty', 'broadcast', 'dtype', 'fromstring', 'fromfile',
'frombuffer', 'int_asbuffer', 'where', 'argwhere', 'copyto',
'concatenate', 'fastCopyAndTranspose', 'lexsort', 'set_numeric_ops',
'can_cast', 'promote_types', 'min_scalar_type', 'result_type',
'asarray', 'asanyarray', 'ascontiguousarray', 'asfortranarray',
'isfortran', 'empty_like', 'zeros_like', 'ones_like',
'correlate', 'convolve', 'inner', 'dot', 'einsum', 'outer', 'vdot',
'alterdot', 'restoredot', 'roll', 'rollaxis', 'cross', 'tensordot',
'array2string', 'get_printoptions', 'set_printoptions',
'array_repr', 'array_str', 'set_string_function',
'little_endian', 'require',
'fromiter', 'array_equal', 'array_equiv',
'indices', 'fromfunction', 'isclose',
'load', 'loads', 'isscalar', 'binary_repr', 'base_repr',
'ones', 'identity', 'allclose', 'compare_chararrays', 'putmask',
'seterr', 'geterr', 'setbufsize', 'getbufsize',
'seterrcall', 'geterrcall', 'errstate', 'flatnonzero',
'Inf', 'inf', 'infty', 'Infinity',
'nan', 'NaN', 'False_', 'True_', 'bitwise_not',
'CLIP', 'RAISE', 'WRAP', 'MAXDIMS', 'BUFSIZE', 'ALLOW_THREADS',
'ComplexWarning', 'may_share_memory', 'full', 'full_like']
if sys.version_info[0] < 3:
__all__.extend(['getbuffer', 'newbuffer'])
class ComplexWarning(RuntimeWarning):
"""
The warning raised when casting a complex dtype to a real dtype.
As implemented, casting a complex number to a real discards its imaginary
part, but this behavior may not be what the user actually wants.
"""
pass
bitwise_not = invert
CLIP = multiarray.CLIP
WRAP = multiarray.WRAP
RAISE = multiarray.RAISE
MAXDIMS = multiarray.MAXDIMS
ALLOW_THREADS = multiarray.ALLOW_THREADS
BUFSIZE = multiarray.BUFSIZE
ndarray = multiarray.ndarray
flatiter = multiarray.flatiter
nditer = multiarray.nditer
nested_iters = multiarray.nested_iters
broadcast = multiarray.broadcast
dtype = multiarray.dtype
copyto = multiarray.copyto
ufunc = type(sin)
def zeros_like(a, dtype=None, order='K', subok=True):
"""
Return an array of zeros with the same shape and type as a given array.
Parameters
----------
a : array_like
The shape and data-type of `a` define these same attributes of
the returned array.
dtype : data-type, optional
.. versionadded:: 1.6.0
Overrides the data type of the result.
order : {'C', 'F', 'A', or 'K'}, optional
.. versionadded:: 1.6.0
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
Returns
-------
out : ndarray
Array of zeros with the same shape and type as `a`.
See Also
--------
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
--------
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
[3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],
[0, 0, 0]])
>>> y = np.arange(3, dtype=np.float)
>>> y
array([ 0., 1., 2.])
>>> np.zeros_like(y)
array([ 0., 0., 0.])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
# needed instead of a 0 to get same result as zeros for for string dtypes
z = zeros(1, dtype=res.dtype)
multiarray.copyto(res, z, casting='unsafe')
return res
def ones(shape, dtype=None, order='C'):
"""
Return a new array of given shape and type, filled with ones.
Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
dtype : data-type, optional
The desired data-type for the array, e.g., `numpy.int8`. Default is
`numpy.float64`.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.
Returns
-------
out : ndarray
Array of ones with the given shape, dtype, and order.
See Also
--------
zeros, ones_like
Examples
--------
>>> np.ones(5)
array([ 1., 1., 1., 1., 1.])
>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])
>>> np.ones((2, 1))
array([[ 1.],
[ 1.]])
>>> s = (2,2)
>>> np.ones(s)
array([[ 1., 1.],
[ 1., 1.]])
"""
a = empty(shape, dtype, order)
multiarray.copyto(a, 1, casting='unsafe')
return a
def ones_like(a, dtype=None, order='K', subok=True):
"""
Return an array of ones with the same shape and type as a given array.
Parameters
----------
a : array_like
The shape and data-type of `a` define these same attributes of
the returned array.
dtype : data-type, optional
.. versionadded:: 1.6.0
Overrides the data type of the result.
order : {'C', 'F', 'A', or 'K'}, optional
.. versionadded:: 1.6.0
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
Returns
-------
out : ndarray
Array of ones with the same shape and type as `a`.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
--------
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
[3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],
[1, 1, 1]])
>>> y = np.arange(3, dtype=np.float)
>>> y
array([ 0., 1., 2.])
>>> np.ones_like(y)
array([ 1., 1., 1.])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
multiarray.copyto(res, 1, casting='unsafe')
return res
def full(shape, fill_value, dtype=None, order='C'):
"""
Return a new array of given shape and type, filled with `fill_value`.
Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
fill_value : scalar
Fill value.
dtype : data-type, optional
The desired data-type for the array, e.g., `numpy.int8`. Default is
is chosen as `np.array(fill_value).dtype`.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.
Returns
-------
out : ndarray
Array of `fill_value` with the given shape, dtype, and order.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
full_like : Fill an array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
--------
>>> np.full((2, 2), np.inf)
array([[ inf, inf],
[ inf, inf]])
>>> np.full((2, 2), 10, dtype=np.int)
array([[10, 10],
[10, 10]])
"""
a = empty(shape, dtype, order)
multiarray.copyto(a, fill_value, casting='unsafe')
return a
def full_like(a, fill_value, dtype=None, order='K', subok=True):
"""
Return a full array with the same shape and type as a given array.
Parameters
----------
a : array_like
The shape and data-type of `a` define these same attributes of
the returned array.
fill_value : scalar
Fill value.
dtype : data-type, optional
Overrides the data type of the result.
order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
Returns
-------
out : ndarray
Array of `fill_value` with the same shape and type as `a`.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
full : Fill a new array.
Examples
--------
>>> x = np.arange(6, dtype=np.int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
array([ nan, nan, nan, nan, nan, nan])
>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
multiarray.copyto(res, fill_value, casting='unsafe')
return res
def extend_all(module):
adict = {}
for a in __all__:
adict[a] = 1
try:
mall = getattr(module, '__all__')
except AttributeError:
mall = [k for k in module.__dict__.keys() if not k.startswith('_')]
for a in mall:
if a not in adict:
__all__.append(a)
newaxis = None
arange = multiarray.arange
array = multiarray.array
zeros = multiarray.zeros
count_nonzero = multiarray.count_nonzero
empty = multiarray.empty
empty_like = multiarray.empty_like
fromstring = multiarray.fromstring
fromiter = multiarray.fromiter
fromfile = multiarray.fromfile
frombuffer = multiarray.frombuffer
may_share_memory = multiarray.may_share_memory
if sys.version_info[0] < 3:
newbuffer = multiarray.newbuffer
getbuffer = multiarray.getbuffer
int_asbuffer = multiarray.int_asbuffer
where = multiarray.where
concatenate = multiarray.concatenate
fastCopyAndTranspose = multiarray._fastCopyAndTranspose
set_numeric_ops = multiarray.set_numeric_ops
can_cast = multiarray.can_cast
promote_types = multiarray.promote_types
min_scalar_type = multiarray.min_scalar_type
result_type = multiarray.result_type
lexsort = multiarray.lexsort
compare_chararrays = multiarray.compare_chararrays
putmask = multiarray.putmask
einsum = multiarray.einsum
def asarray(a, dtype=None, order=None):
"""
Convert the input to an array.
Parameters
----------
a : array_like
Input data, in any form that can be converted to an array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and ndarrays.
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
Whether to use row-major ('C') or column-major ('F' for FORTRAN)
memory representation. Defaults to 'C'.
Returns
-------
out : ndarray
Array interpretation of `a`. No copy is performed if the input
is already an ndarray. If `a` is a subclass of ndarray, a base
class ndarray is returned.
See Also
--------
asanyarray : Similar function which passes through subclasses.
ascontiguousarray : Convert input to a contiguous array.
asfarray : Convert input to a floating point ndarray.
asfortranarray : Convert input to an ndarray with column-major
memory order.
asarray_chkfinite : Similar function which checks input for NaNs and Infs.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
positions.
Examples
--------
Convert a list into an array:
>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])
Existing arrays are not copied:
>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True
If `dtype` is set, array is copied only if dtype does not match:
>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False
Contrary to `asanyarray`, ndarray subclasses are not passed through:
>>> issubclass(np.matrix, np.ndarray)
True
>>> a = np.matrix([[1, 2]])
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True
"""
return array(a, dtype, copy=False, order=order)
def asanyarray(a, dtype=None, order=None):
"""
Convert the input to an ndarray, but pass ndarray subclasses through.
Parameters
----------
a : array_like
Input data, in any form that can be converted to an array. This
includes scalars, lists, lists of tuples, tuples, tuples of tuples,
tuples of lists, and ndarrays.
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
Whether to use row-major ('C') or column-major ('F') memory
representation. Defaults to 'C'.
Returns
-------
out : ndarray or an ndarray subclass
Array interpretation of `a`. If `a` is an ndarray or a subclass
of ndarray, it is returned as-is and no copy is performed.
See Also
--------
asarray : Similar function which always returns ndarrays.
ascontiguousarray : Convert input to a contiguous array.
asfarray : Convert input to a floating point ndarray.
asfortranarray : Convert input to an ndarray with column-major
memory order.
asarray_chkfinite : Similar function which checks input for NaNs and
Infs.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
positions.
Examples
--------
Convert a list into an array:
>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])
Instances of `ndarray` subclasses are passed through as-is:
>>> a = np.matrix([1, 2])
>>> np.asanyarray(a) is a
True
"""
return array(a, dtype, copy=False, order=order, subok=True)
def ascontiguousarray(a, dtype=None):
"""
Return a contiguous array in memory (C order).
Parameters
----------
a : array_like
Input array.
dtype : str or dtype object, optional
Data-type of returned array.
Returns
-------
out : ndarray
Contiguous array of same shape and content as `a`, with type `dtype`
if specified.
See Also
--------
asfortranarray : Convert input to an ndarray with column-major
memory order.
require : Return an ndarray that satisfies requirements.
ndarray.flags : Information about the memory layout of the array.
Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> np.ascontiguousarray(x, dtype=np.float32)
array([[ 0., 1., 2.],
[ 3., 4., 5.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True
"""
return array(a, dtype, copy=False, order='C', ndmin=1)
def asfortranarray(a, dtype=None):
"""
Return an array laid out in Fortran order in memory.
Parameters
----------
a : array_like
Input array.
dtype : str or dtype object, optional
By default, the data-type is inferred from the input data.
Returns
-------
out : ndarray
The input `a` in Fortran, or column-major, order.
See Also
--------
ascontiguousarray : Convert input to a contiguous (C order) array.
asanyarray : Convert input to an ndarray with either row or
column-major memory order.
require : Return an ndarray that satisfies requirements.
ndarray.flags : Information about the memory layout of the array.
Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> y = np.asfortranarray(x)
>>> x.flags['F_CONTIGUOUS']
False
>>> y.flags['F_CONTIGUOUS']
True
"""
return array(a, dtype, copy=False, order='F', ndmin=1)
def require(a, dtype=None, requirements=None):
"""
Return an ndarray of the provided type that satisfies requirements.
This function is useful to be sure that an array with the correct flags
is returned for passing to compiled code (perhaps through ctypes).
Parameters
----------
a : array_like
The object to be converted to a type-and-requirement-satisfying array.
dtype : data-type
The required data-type, the default data-type is float64).
requirements : str or list of str
The requirements list can be any of the following
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
* 'ALIGNED' ('A') - ensure a data-type aligned array
* 'WRITEABLE' ('W') - ensure a writable array
* 'OWNDATA' ('O') - ensure an array that owns its own data
See Also
--------
asarray : Convert input to an ndarray.
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
ascontiguousarray : Convert input to a contiguous array.
asfortranarray : Convert input to an ndarray with column-major
memory order.
ndarray.flags : Information about the memory layout of the array.
Notes
-----
The returned array will be guaranteed to have the listed requirements
by making a copy if needed.
Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
>>> y.flags
C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
"""
if requirements is None:
requirements = []
else:
requirements = [x.upper() for x in requirements]
if not requirements:
return asanyarray(a, dtype=dtype)
if 'ENSUREARRAY' in requirements or 'E' in requirements:
subok = False
else:
subok = True
arr = array(a, dtype=dtype, copy=False, subok=subok)
copychar = 'A'
if 'FORTRAN' in requirements or \
'F_CONTIGUOUS' in requirements or \
'F' in requirements:
copychar = 'F'
elif 'CONTIGUOUS' in requirements or \
'C_CONTIGUOUS' in requirements or \
'C' in requirements:
copychar = 'C'
for prop in requirements:
if not arr.flags[prop]:
arr = arr.copy(copychar)
break
return arr
def isfortran(a):
"""
Returns True if array is arranged in Fortran-order in memory
and not C-order.
Parameters
----------
a : ndarray
Input array.
Examples
--------
np.array allows to specify whether the array is written in C-contiguous
order (last index varies the fastest), or FORTRAN-contiguous order in
memory (first index varies the fastest).
>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> np.isfortran(a)
False
>>> b = np.array([[1, 2, 3], [4, 5, 6]], order='FORTRAN')
>>> b
array([[1, 2, 3],
[4, 5, 6]])
>>> np.isfortran(b)
True
The transpose of a C-ordered array is a FORTRAN-ordered array.
>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> np.isfortran(a)
False
>>> b = a.T
>>> b
array([[1, 4],
[2, 5],
[3, 6]])
>>> np.isfortran(b)
True
C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.
>>> np.isfortran(np.array([1, 2], order='FORTRAN'))
False
"""
return a.flags.fnc
def argwhere(a):
"""
Find the indices of array elements that are non-zero, grouped by element.
Parameters
----------
a : array_like
Input data.
Returns
-------
index_array : ndarray
Indices of elements that are non-zero. Indices are grouped by element.
See Also
--------
where, nonzero
Notes
-----
``np.argwhere(a)`` is the same as ``np.transpose(np.nonzero(a))``.
The output of ``argwhere`` is not suitable for indexing arrays.
For this purpose use ``where(a)`` instead.
Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> x
array([[0, 1, 2],
[3, 4, 5]])
>>> np.argwhere(x>1)
array([[0, 2],
[1, 0],
[1, 1],
[1, 2]])
"""
return transpose(nonzero(a))
def flatnonzero(a):
"""
Return indices that are non-zero in the flattened version of a.
This is equivalent to a.ravel().nonzero()[0].
Parameters
----------
a : ndarray
Input array.
Returns
-------
res : ndarray
Output array, containing the indices of the elements of `a.ravel()`
that are non-zero.
See Also
--------
nonzero : Return the indices of the non-zero elements of the input array.
ravel : Return a 1-D array containing the elements of the input array.
Examples
--------
>>> x = np.arange(-2, 3)
>>> x
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(x)
array([0, 1, 3, 4])
Use the indices of the non-zero elements as an index array to extract
these elements:
>>> x.ravel()[np.flatnonzero(x)]
array([-2, -1, 1, 2])
"""
return a.ravel().nonzero()[0]
_mode_from_name_dict = {'v': 0,
's' : 1,
'f' : 2}
def _mode_from_name(mode):
if isinstance(mode, basestring):
return _mode_from_name_dict[mode.lower()[0]]
return mode
def correlate(a, v, mode='valid', old_behavior=False):
"""
Cross-correlation of two 1-dimensional sequences.
This function computes the correlation as generally defined in signal
processing texts::
c_{av}[k] = sum_n a[n+k] * conj(v[n])
with a and v sequences being zero-padded where necessary and conj being
the conjugate.
Parameters
----------
a, v : array_like
Input sequences.
mode : {'valid', 'same', 'full'}, optional
Refer to the `convolve` docstring. Note that the default
is `valid`, unlike `convolve`, which uses `full`.
old_behavior : bool
If True, uses the old behavior from Numeric,
(correlate(a,v) == correlate(v,a), and the conjugate is not taken
for complex arrays). If False, uses the conventional signal
processing definition.
Returns
-------
out : ndarray
Discrete cross-correlation of `a` and `v`.
See Also
--------
convolve : Discrete, linear convolution of two one-dimensional sequences.
Notes
-----
The definition of correlation above is not unique and sometimes correlation
may be defined differently. Another common definition is::
c'_{av}[k] = sum_n a[n] conj(v[n+k])
which is related to ``c_{av}[k]`` by ``c'_{av}[k] = c_{av}[-k]``.
Examples
--------
>>> np.correlate([1, 2, 3], [0, 1, 0.5])
array([ 3.5])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
array([ 2. , 3.5, 3. ])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
array([ 0.5, 2. , 3.5, 3. , 0. ])
Using complex sequences:
>>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ])
Note that you get the time reversed, complex conjugated result
when the two input sequences change places, i.e.,
``c_{va}[k] = c^{*}_{av}[-k]``:
>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])
"""
mode = _mode_from_name(mode)
# the old behavior should be made available under a different name, see thread
# http://thread.gmane.org/gmane.comp.python.numeric.general/12609/focus=12630
if old_behavior:
warnings.warn("""
The old behavior of correlate was deprecated for 1.4.0, and will be completely removed
for NumPy 2.0.
The new behavior fits the conventional definition of correlation: inputs are
never swapped, and the second argument is conjugated for complex arrays.""",
DeprecationWarning)
return multiarray.correlate(a, v, mode)
else:
return multiarray.correlate2(a, v, mode)
def convolve(a,v,mode='full'):
"""
Returns the discrete, linear convolution of two one-dimensional sequences.
The convolution operator is often seen in signal processing, where it
models the effect of a linear time-invariant system on a signal [1]_. In
probability theory, the sum of two independent random variables is
distributed according to the convolution of their individual
distributions.
If `v` is longer than `a`, the arrays are swapped before computation.
Parameters
----------
a : (N,) array_like
First one-dimensional input array.
v : (M,) array_like
Second one-dimensional input array.
mode : {'full', 'valid', 'same'}, optional
'full':
By default, mode is 'full'. This returns the convolution
at each point of overlap, with an output shape of (N+M-1,). At
the end-points of the convolution, the signals do not overlap
completely, and boundary effects may be seen.
'same':
Mode `same` returns output of length ``max(M, N)``. Boundary
effects are still visible.
'valid':
Mode `valid` returns output of length
``max(M, N) - min(M, N) + 1``. The convolution product is only given
for points where the signals overlap completely. Values outside
the signal boundary have no effect.
Returns
-------
out : ndarray
Discrete, linear convolution of `a` and `v`.
See Also
--------
scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier
Transform.
scipy.linalg.toeplitz : Used to construct the convolution operator.
polymul : Polynomial multiplication. Same output as convolve, but also
accepts poly1d objects as input.
Notes
-----
The discrete convolution operation is defined as
.. math:: (a * v)[n] = \\sum_{m = -\\infty}^{\\infty} a[m] v[n - m]
It can be shown that a convolution :math:`x(t) * y(t)` in time/space
is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier
domain, after appropriate padding (padding is necessary to prevent
circular convolution). Since multiplication is more efficient (faster)
than convolution, the function `scipy.signal.fftconvolve` exploits the
FFT to calculate the convolution of large data-sets.
References
----------
.. [1] Wikipedia, "Convolution", http://en.wikipedia.org/wiki/Convolution.
Examples
--------
Note how the convolution operator flips the second array
before "sliding" the two across one another:
>>> np.convolve([1, 2, 3], [0, 1, 0.5])
array([ 0. , 1. , 2.5, 4. , 1.5])
Only return the middle values of the convolution.
Contains boundary effects, where zeros are taken
into account:
>>> np.convolve([1,2,3],[0,1,0.5], 'same')
array([ 1. , 2.5, 4. ])
The two arrays are of the same length, so there
is only one position where they completely overlap:
>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
array([ 2.5])
"""
a, v = array(a, ndmin=1), array(v, ndmin=1)
if (len(v) > len(a)):
a, v = v, a
if len(a) == 0 :
raise ValueError('a cannot be empty')
if len(v) == 0 :
raise ValueError('v cannot be empty')
mode = _mode_from_name(mode)
return multiarray.correlate(a, v[::-1], mode)
def outer(a, b, out=None):
"""
Compute the outer product of two vectors.
Given two vectors, ``a = [a0, a1, ..., aM]`` and
``b = [b0, b1, ..., bN]``,
the outer product [1]_ is::
[[a0*b0 a0*b1 ... a0*bN ]
[a1*b0 .
[ ... .
[aM*b0 aM*bN ]]
Parameters
----------
a : (M,) array_like
First input vector. Input is flattened if
not already 1-dimensional.
b : (N,) array_like
Second input vector. Input is flattened if
not already 1-dimensional.
out : (M, N) ndarray, optional
A location where the result is stored
.. versionadded:: 1.9.0
Returns
-------
out : (M, N) ndarray
``out[i, j] = a[i] * b[j]``
See also
--------
inner, einsum
References
----------
.. [1] : G. H. Golub and C. F. van Loan, *Matrix Computations*, 3rd
ed., Baltimore, MD, Johns Hopkins University Press, 1996,
pg. 8.
Examples
--------
Make a (*very* coarse) grid for computing a Mandelbrot set:
>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[ 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
[ 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[ 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[ 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
An example using a "vector" of letters:
>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],
[b, bb, bbb],
[c, cc, ccc]], dtype=object)
"""
a = asarray(a)
b = asarray(b)
return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis,:], out)
# try to import blas optimized dot if available
envbak = os.environ.copy()
try:
# importing this changes the dot function for basic 4 types
# to blas-optimized versions.
# disables openblas affinity setting of the main thread that limits
# python threads or processes to one core
if 'OPENBLAS_MAIN_FREE' not in os.environ:
os.environ['OPENBLAS_MAIN_FREE'] = '1'
if 'GOTOBLAS_MAIN_FREE' not in os.environ:
os.environ['GOTOBLAS_MAIN_FREE'] = '1'
from ._dotblas import dot, vdot, inner, alterdot, restoredot
except ImportError:
# docstrings are in add_newdocs.py
inner = multiarray.inner
dot = multiarray.dot
def vdot(a, b):
return dot(asarray(a).ravel().conj(), asarray(b).ravel())
def alterdot():
pass
def restoredot():
pass
finally:
os.environ.clear()
os.environ.update(envbak)
del envbak
def tensordot(a, b, axes=2):
"""
Compute tensor dot product along specified axes for arrays >= 1-D.
Given two tensors (arrays of dimension greater than or equal to one),
`a` and `b`, and an array_like object containing two array_like
objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s
elements (components) over the axes specified by ``a_axes`` and
``b_axes``. The third argument can be a single non-negative
integer_like scalar, ``N``; if it is such, then the last ``N``
dimensions of `a` and the first ``N`` dimensions of `b` are summed
over.
Parameters
----------
a, b : array_like, len(shape) >= 1
Tensors to "dot".
axes : variable type
* integer_like scalar
Number of axes to sum over (applies to both arrays); or
* (2,) array_like, both elements array_like of the same length
List of axes to be summed over, first sequence applying to `a`,
second to `b`.
See Also
--------
dot, einsum
Notes
-----
When there is more than one axis to sum over - and they are not the last
(first) axes of `a` (`b`) - the argument `axes` should consist of
two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.
Examples
--------
A "traditional" example:
>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> c
array([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
>>> # A slower but equivalent way of computing the same...
>>> d = np.zeros((5,2))
>>> for i in range(5):
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += a[k,n,i] * b[n,k,j]
>>> c == d
array([[ True, True],
[ True, True],
[ True, True],
[ True, True],
[ True, True]], dtype=bool)
An extended example taking advantage of the overloading of + and \\*:
>>> a = np.array(range(1, 9))
>>> a.shape = (2, 2, 2)
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a; A
array([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])
array([[a, b],
[c, d]], dtype=object)
>>> np.tensordot(a, A) # third argument default is 2
array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)
>>> np.tensordot(a, A, 1)
array([[[acc, bdd],
[aaacccc, bbbdddd]],
[[aaaaacccccc, bbbbbdddddd],
[aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)
>>> np.tensordot(a, A, 0) # "Left for reader" (result too long to incl.)
array([[[[[a, b],
[c, d]],
...
>>> np.tensordot(a, A, (0, 1))
array([[[abbbbb, cddddd],
[aabbbbbb, ccdddddd]],
[[aaabbbbbbb, cccddddddd],
[aaaabbbbbbbb, ccccdddddddd]]], dtype=object)
>>> np.tensordot(a, A, (2, 1))
array([[[abb, cdd],
[aaabbbb, cccdddd]],
[[aaaaabbbbbb, cccccdddddd],
[aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)
>>> np.tensordot(a, A, ((0, 1), (0, 1)))
array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)
>>> np.tensordot(a, A, ((2, 1), (1, 0)))
array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)
"""
try:
iter(axes)
except:
axes_a = list(range(-axes, 0))
axes_b = list(range(0, axes))
else:
axes_a, axes_b = axes
try:
na = len(axes_a)
axes_a = list(axes_a)
except TypeError:
axes_a = [axes_a]
na = 1
try:
nb = len(axes_b)
axes_b = list(axes_b)
except TypeError:
axes_b = [axes_b]
nb = 1
a, b = asarray(a), asarray(b)
as_ = a.shape
nda = len(a.shape)
bs = b.shape
ndb = len(b.shape)
equal = True
if (na != nb): equal = False
else:
for k in range(na):
if as_[axes_a[k]] != bs[axes_b[k]]:
equal = False
break
if axes_a[k] < 0:
axes_a[k] += nda
if axes_b[k] < 0:
axes_b[k] += ndb
if not equal:
raise ValueError("shape-mismatch for sum")
# Move the axes to sum over to the end of "a"
# and to the front of "b"
notin = [k for k in range(nda) if k not in axes_a]
newaxes_a = notin + axes_a
N2 = 1
for axis in axes_a:
N2 *= as_[axis]
newshape_a = (-1, N2)
olda = [as_[axis] for axis in notin]
notin = [k for k in range(ndb) if k not in axes_b]
newaxes_b = axes_b + notin
N2 = 1
for axis in axes_b:
N2 *= bs[axis]
newshape_b = (N2, -1)
oldb = [bs[axis] for axis in notin]
at = a.transpose(newaxes_a).reshape(newshape_a)
bt = b.transpose(newaxes_b).reshape(newshape_b)
res = dot(at, bt)
return res.reshape(olda + oldb)
def roll(a, shift, axis=None):
"""
Roll array elements along a given axis.
Elements that roll beyond the last position are re-introduced at
the first.
Parameters
----------
a : array_like
Input array.
shift : int
The number of places by which elements are shifted.
axis : int, optional
The axis along which elements are shifted. By default, the array
is flattened before shifting, after which the original
shape is restored.
Returns
-------
res : ndarray
Output array, with the same shape as `a`.
See Also
--------
rollaxis : Roll the specified axis backwards, until it lies in a
given position.
Examples
--------
>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],
[4, 5, 6, 7, 8]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],
[0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],
[9, 5, 6, 7, 8]])
"""
a = asanyarray(a)
if axis is None:
n = a.size
reshape = True
else:
try:
n = a.shape[axis]
except IndexError:
raise ValueError('axis must be >= 0 and < %d' % a.ndim)
reshape = False
if n == 0:
return a
shift %= n
indexes = concatenate((arange(n - shift, n), arange(n - shift)))
res = a.take(indexes, axis)
if reshape:
res = res.reshape(a.shape)
return res
def rollaxis(a, axis, start=0):
"""
Roll the specified axis backwards, until it lies in a given position.
Parameters
----------
a : ndarray
Input array.
axis : int
The axis to roll backwards. The positions of the other axes do not
change relative to one another.
start : int, optional
The axis is rolled until it lies before this position. The default,
0, results in a "complete" roll.
Returns
-------
res : ndarray
Output array.
See Also
--------
roll : Roll the elements of an array by a number of positions along a
given axis.
Examples
--------
>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)
>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)
"""
n = a.ndim
if axis < 0:
axis += n
if start < 0:
start += n
msg = 'rollaxis: %s (%d) must be >=0 and < %d'
if not (0 <= axis < n):
raise ValueError(msg % ('axis', axis, n))
if not (0 <= start < n+1):
raise ValueError(msg % ('start', start, n+1))
if (axis < start): # it's been removed
start -= 1
if axis==start:
return a
axes = list(range(0, n))
axes.remove(axis)
axes.insert(start, axis)
return a.transpose(axes)
# fix hack in scipy which imports this function
def _move_axis_to_0(a, axis):
return rollaxis(a, axis, 0)
def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
"""
Return the cross product of two (arrays of) vectors.
The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular
to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors
are defined by the last axis of `a` and `b` by default, and these axes
can have dimensions 2 or 3. Where the dimension of either `a` or `b` is
2, the third component of the input vector is assumed to be zero and the
cross product calculated accordingly. In cases where both input vectors
have dimension 2, the z-component of the cross product is returned.
Parameters
----------
a : array_like
Components of the first vector(s).
b : array_like
Components of the second vector(s).
axisa : int, optional
Axis of `a` that defines the vector(s). By default, the last axis.
axisb : int, optional
Axis of `b` that defines the vector(s). By default, the last axis.
axisc : int, optional
Axis of `c` containing the cross product vector(s). By default, the
last axis.
axis : int, optional
If defined, the axis of `a`, `b` and `c` that defines the vector(s)
and cross product(s). Overrides `axisa`, `axisb` and `axisc`.
Returns
-------
c : ndarray
Vector cross product(s).
Raises
------
ValueError
When the dimension of the vector(s) in `a` and/or `b` does not
equal 2 or 3.
See Also
--------
inner : Inner product
outer : Outer product.
ix_ : Construct index arrays.
Notes
-----
.. versionadded:: 1.9.0
Supports full broadcasting of the inputs.
Examples
--------
Vector cross-product.
>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([-3, 6, -3])
One vector with dimension 2.
>>> x = [1, 2]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])
Equivalently:
>>> x = [1, 2, 0]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])
Both vectors with dimension 2.
>>> x = [1,2]
>>> y = [4,5]
>>> np.cross(x, y)
-3
Multiple vector cross-products. Note that the direction of the cross
product vector is defined by the `right-hand rule`.
>>> x = np.array([[1,2,3], [4,5,6]])
>>> y = np.array([[4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-3, 6, -3],
[ 3, -6, 3]])
The orientation of `c` can be changed using the `axisc` keyword.
>>> np.cross(x, y, axisc=0)
array([[-3, 3],
[ 6, -6],
[-3, 3]])
Change the vector definition of `x` and `y` using `axisa` and `axisb`.
>>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
>>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[ -6, 12, -6],
[ 0, 0, 0],
[ 6, -12, 6]])
>>> np.cross(x, y, axisa=0, axisb=0)
array([[-24, 48, -24],
[-30, 60, -30],
[-36, 72, -36]])
"""
if axis is not None:
axisa, axisb, axisc = (axis,) * 3
a = asarray(a)
b = asarray(b)
# Move working axis to the end of the shape
a = rollaxis(a, axisa, a.ndim)
b = rollaxis(b, axisb, b.ndim)
msg = ("incompatible dimensions for cross product\n"
"(dimension must be 2 or 3)")
if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
raise ValueError(msg)
# Create the output array
shape = broadcast(a[..., 0], b[..., 0]).shape
if a.shape[-1] == 3 or b.shape[-1] == 3:
shape += (3,)
dtype = promote_types(a.dtype, b.dtype)
cp = empty(shape, dtype)
# create local aliases for readability
a0 = a[..., 0]
a1 = a[..., 1]
if a.shape[-1] == 3:
a2 = a[..., 2]
b0 = b[..., 0]
b1 = b[..., 1]
if b.shape[-1] == 3:
b2 = b[..., 2]
if cp.ndim != 0 and cp.shape[-1] == 3:
cp0 = cp[..., 0]
cp1 = cp[..., 1]
cp2 = cp[..., 2]
if a.shape[-1] == 2:
if b.shape[-1] == 2:
# a0 * b1 - a1 * b0
multiply(a0, b1, out=cp)
cp -= a1 * b0
if cp.ndim == 0:
return cp
else:
# This works because we are moving the last axis
return rollaxis(cp, -1, axisc)
else:
# cp0 = a1 * b2 - 0 (a2 = 0)
# cp1 = 0 - a0 * b2 (a2 = 0)
# cp2 = a0 * b1 - a1 * b0
multiply(a1, b2, out=cp0)
multiply(a0, b2, out=cp1)
negative(cp1, out=cp1)
multiply(a0, b1, out=cp2)
cp2 -= a1 * b0
elif a.shape[-1] == 3:
if b.shape[-1] == 3:
# cp0 = a1 * b2 - a2 * b1
# cp1 = a2 * b0 - a0 * b2
# cp2 = a0 * b1 - a1 * b0
multiply(a1, b2, out=cp0)
tmp = array(a2 * b1)
cp0 -= tmp
multiply(a2, b0, out=cp1)
multiply(a0, b2, out=tmp)
cp1 -= tmp
multiply(a0, b1, out=cp2)
multiply(a1, b0, out=tmp)
cp2 -= tmp
else:
# cp0 = 0 - a2 * b1 (b2 = 0)
# cp1 = a2 * b0 - 0 (b2 = 0)
# cp2 = a0 * b1 - a1 * b0
multiply(a2, b1, out=cp0)
negative(cp0, out=cp0)
multiply(a2, b0, out=cp1)
multiply(a0, b1, out=cp2)
cp2 -= a1 * b0
if cp.ndim == 1:
return cp
else:
# This works because we are moving the last axis
return rollaxis(cp, -1, axisc)
#Use numarray's printing function
from .arrayprint import array2string, get_printoptions, set_printoptions
_typelessdata = [int_, float_, complex_]
if issubclass(intc, int):
_typelessdata.append(intc)
if issubclass(longlong, int):
_typelessdata.append(longlong)
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
"""
Return the string representation of an array.
Parameters
----------
arr : ndarray
Input array.
max_line_width : int, optional
The maximum number of columns the string should span. Newline
characters split the string appropriately after array elements.
precision : int, optional
Floating point precision. Default is the current printing precision
(usually 8), which can be altered using `set_printoptions`.
suppress_small : bool, optional
Represent very small numbers as zero, default is False. Very small
is defined by `precision`, if the precision is 8 then
numbers smaller than 5e-9 are represented as zero.
Returns
-------
string : str
The string representation of an array.
See Also
--------
array_str, array2string, set_printoptions
Examples
--------
>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
'MaskedArray([ 0.])'
>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'
>>> x = np.array([1e-6, 4e-7, 2, 3])
>>> np.array_repr(x, precision=6, suppress_small=True)
'array([ 0.000001, 0. , 2. , 3. ])'
"""
if arr.size > 0 or arr.shape==(0,):
lst = array2string(arr, max_line_width, precision, suppress_small,
', ', "array(")
else: # show zero-length shape unless it is (0,)
lst = "[], shape=%s" % (repr(arr.shape),)
if arr.__class__ is not ndarray:
cName= arr.__class__.__name__
else:
cName = "array"
skipdtype = (arr.dtype.type in _typelessdata) and arr.size > 0
if skipdtype:
return "%s(%s)" % (cName, lst)
else:
typename = arr.dtype.name
# Quote typename in the output if it is "complex".
if typename and not (typename[0].isalpha() and typename.isalnum()):
typename = "'%s'" % typename
lf = ''
if issubclass(arr.dtype.type, flexible):
if arr.dtype.names:
typename = "%s" % str(arr.dtype)
else:
typename = "'%s'" % str(arr.dtype)
lf = '\n'+' '*len("array(")
return cName + "(%s, %sdtype=%s)" % (lst, lf, typename)
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
"""
Return a string representation of the data in an array.
The data in the array is returned as a single string. This function is
similar to `array_repr`, the difference being that `array_repr` also
returns information on the kind of array and its data type.
Parameters
----------
a : ndarray
Input array.
max_line_width : int, optional
Inserts newlines if text is longer than `max_line_width`. The
default is, indirectly, 75.
precision : int, optional
Floating point precision. Default is the current printing precision
(usually 8), which can be altered using `set_printoptions`.
suppress_small : bool, optional
Represent numbers "very close" to zero as zero; default is False.
Very close is defined by precision: if the precision is 8, e.g.,
numbers smaller (in absolute value) than 5e-9 are represented as
zero.
See Also
--------
array2string, array_repr, set_printoptions
Examples
--------
>>> np.array_str(np.arange(3))
'[0 1 2]'
"""
return array2string(a, max_line_width, precision, suppress_small, ' ', "", str)
def set_string_function(f, repr=True):
"""
Set a Python function to be used when pretty printing arrays.
Parameters
----------
f : function or None
Function to be used to pretty print arrays. The function should expect
a single array argument and return a string of the representation of
the array. If None, the function is reset to the default NumPy function
to print arrays.
repr : bool, optional
If True (default), the function for pretty printing (``__repr__``)
is set, if False the function that returns the default string
representation (``__str__``) is set.
See Also
--------
set_printoptions, get_printoptions
Examples
--------
>>> def pprint(arr):
... return 'HA! - What are you going to do now?'
...
>>> np.set_string_function(pprint)
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
>>> print a
[0 1 2 3 4 5 6 7 8 9]
We can reset the function to the default:
>>> np.set_string_function(None)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
`repr` affects either pretty printing or normal string representation.
Note that ``__repr__`` is still affected by setting ``__str__``
because the width of each array element in the returned string becomes
equal to the length of the result of ``__str__()``.
>>> x = np.arange(4)
>>> np.set_string_function(lambda x:'random', repr=False)
>>> x.__str__()
'random'
>>> x.__repr__()
'array([ 0, 1, 2, 3])'
"""
if f is None:
if repr:
return multiarray.set_string_function(array_repr, 1)
else:
return multiarray.set_string_function(array_str, 0)
else:
return multiarray.set_string_function(f, repr)
set_string_function(array_str, 0)
set_string_function(array_repr, 1)
little_endian = (sys.byteorder == 'little')
def indices(dimensions, dtype=int):
"""
Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values 0,1,...
varying only along the corresponding axis.
Parameters
----------
dimensions : sequence of ints
The shape of the grid.
dtype : dtype, optional
Data type of the result.
Returns
-------
grid : ndarray
The array of grid indices,
``grid.shape = (len(dimensions),) + tuple(dimensions)``.
See Also
--------
mgrid, meshgrid
Notes
-----
The output shape is obtained by prepending the number of dimensions
in front of the tuple of dimensions, i.e. if `dimensions` is a tuple
``(r0, ..., rN-1)`` of length ``N``, the output shape is
``(N,r0,...,rN-1)``.
The subarrays ``grid[k]`` contains the N-D array of indices along the
``k-th`` axis. Explicitly::
grid[k,i0,i1,...,iN-1] = ik
Examples
--------
>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],
[1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],
[0, 1, 2]])
The indices can be used as an index into an array.
>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],
[4, 5, 6]])
Note that it would be more straightforward in the above example to
extract the required elements directly with ``x[:2, :3]``.
"""
dimensions = tuple(dimensions)
N = len(dimensions)
if N == 0:
return array([], dtype=dtype)
res = empty((N,)+dimensions, dtype=dtype)
for i, dim in enumerate(dimensions):
tmp = arange(dim, dtype=dtype)
tmp.shape = (1,)*i + (dim,)+(1,)*(N-i-1)
newdim = dimensions[:i] + (1,)+ dimensions[i+1:]
val = zeros(newdim, dtype)
add(tmp, val, res[i])
return res
def fromfunction(function, shape, **kwargs):
"""
Construct an array by executing a function over each coordinate.
The resulting array therefore has a value ``fn(x, y, z)`` at
coordinate ``(x, y, z)``.
Parameters
----------
function : callable
The function is called with N parameters, where N is the rank of
`shape`. Each parameter represents the coordinates of the array
varying along a specific axis. For example, if `shape`
were ``(2, 2)``, then the parameters in turn be (0, 0), (0, 1),
(1, 0), (1, 1).
shape : (N,) tuple of ints
Shape of the output array, which also determines the shape of
the coordinate arrays passed to `function`.
dtype : data-type, optional
Data-type of the coordinate arrays passed to `function`.
By default, `dtype` is float.
Returns
-------
fromfunction : any
The result of the call to `function` is passed back directly.
Therefore the shape of `fromfunction` is completely determined by
`function`. If `function` returns a scalar value, the shape of
`fromfunction` would match the `shape` parameter.
See Also
--------
indices, meshgrid
Notes
-----
Keywords other than `dtype` are passed to `function`.
Examples
--------
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[ True, False, False],
[False, True, False],
[False, False, True]], dtype=bool)
>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
[1, 2, 3],
[2, 3, 4]])
"""
dtype = kwargs.pop('dtype', float)
args = indices(shape, dtype=dtype)
return function(*args,**kwargs)
def isscalar(num):
"""
Returns True if the type of `num` is a scalar type.
Parameters
----------
num : any
Input argument, can be of any type and shape.
Returns
-------
val : bool
True if `num` is a scalar type, False if it is not.
Examples
--------
>>> np.isscalar(3.1)
True
>>> np.isscalar([3.1])
False
>>> np.isscalar(False)
True
"""
if isinstance(num, generic):
return True
else:
return type(num) in ScalarType
_lkup = {
'0':'0000',
'1':'0001',
'2':'0010',
'3':'0011',
'4':'0100',
'5':'0101',
'6':'0110',
'7':'0111',
'8':'1000',
'9':'1001',
'a':'1010',
'b':'1011',
'c':'1100',
'd':'1101',
'e':'1110',
'f':'1111',
'A':'1010',
'B':'1011',
'C':'1100',
'D':'1101',
'E':'1110',
'F':'1111',
'L':''}
def binary_repr(num, width=None):
"""
Return the binary representation of the input number as a string.
For negative numbers, if width is not given, a minus sign is added to the
front. If width is given, the two's complement of the number is
returned, with respect to that width.
In a two's-complement system negative numbers are represented by the two's
complement of the absolute value. This is the most common method of
representing signed integers on computers [1]_. A N-bit two's-complement
system can represent every integer in the range
:math:`-2^{N-1}` to :math:`+2^{N-1}-1`.
Parameters
----------
num : int
Only an integer decimal number can be used.
width : int, optional
The length of the returned string if `num` is positive, the length of
the two's complement if `num` is negative.
Returns
-------
bin : str
Binary representation of `num` or two's complement of `num`.
See Also
--------
base_repr: Return a string representation of a number in the given base
system.
Notes
-----
`binary_repr` is equivalent to using `base_repr` with base 2, but about 25x
faster.
References
----------
.. [1] Wikipedia, "Two's complement",
http://en.wikipedia.org/wiki/Two's_complement
Examples
--------
>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'
The two's complement is returned when the input number is negative and
width is specified:
>>> np.binary_repr(-3, width=4)
'1101'
"""
# ' <-- unbreak Emacs fontification
sign = ''
if num < 0:
if width is None:
sign = '-'
num = -num
else:
# replace num with its 2-complement
num = 2**width + num
elif num == 0:
return '0'*(width or 1)
ostr = hex(num)
bin = ''.join([_lkup[ch] for ch in ostr[2:]])
bin = bin.lstrip('0')
if width is not None:
bin = bin.zfill(width)
return sign + bin
def base_repr(number, base=2, padding=0):
"""
Return a string representation of a number in the given base system.
Parameters
----------
number : int
The value to convert. Only positive values are handled.
base : int, optional
Convert `number` to the `base` number system. The valid range is 2-36,
the default value is 2.
padding : int, optional
Number of zeros padded on the left. Default is 0 (no padding).
Returns
-------
out : str
String representation of `number` in `base` system.
See Also
--------
binary_repr : Faster version of `base_repr` for base 2.
Examples
--------
>>> np.base_repr(5)
'101'
>>> np.base_repr(6, 5)
'11'
>>> np.base_repr(7, base=5, padding=3)
'00012'
>>> np.base_repr(10, base=16)
'A'
>>> np.base_repr(32, base=16)
'20'
"""
digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
if base > len(digits):
raise ValueError("Bases greater than 36 not handled in base_repr.")
num = abs(number)
res = []
while num:
res.append(digits[num % base])
num //= base
if padding:
res.append('0' * padding)
if number < 0:
res.append('-')
return ''.join(reversed(res or '0'))
def load(file):
"""
Wrapper around cPickle.load which accepts either a file-like object or
a filename.
Note that the NumPy binary format is not based on pickle/cPickle anymore.
For details on the preferred way of loading and saving files, see `load`
and `save`.
See Also
--------
load, save
"""
if isinstance(file, type("")):
file = open(file, "rb")
return pickle.load(file)
# These are all essentially abbreviations
# These might wind up in a special abbreviations module
def _maketup(descr, val):
dt = dtype(descr)
# Place val in all scalar tuples:
fields = dt.fields
if fields is None:
return val
else:
res = [_maketup(fields[name][0], val) for name in dt.names]
return tuple(res)
def identity(n, dtype=None):
"""
Return the identity array.
The identity array is a square array with ones on
the main diagonal.
Parameters
----------
n : int
Number of rows (and columns) in `n` x `n` output.
dtype : data-type, optional
Data-type of the output. Defaults to ``float``.
Returns
-------
out : ndarray
`n` x `n` array with its main diagonal set to one,
and all other elements 0.
Examples
--------
>>> np.identity(3)
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
"""
from numpy import eye
return eye(n, dtype=dtype)
def allclose(a, b, rtol=1.e-5, atol=1.e-8):
"""
Returns True if two arrays are element-wise equal within a tolerance.
The tolerance values are positive, typically very small numbers. The
relative difference (`rtol` * abs(`b`)) and the absolute difference
`atol` are added together to compare against the absolute difference
between `a` and `b`.
If either array contains one or more NaNs, False is returned.
Infs are treated as equal if they are in the same place and of the same
sign in both arrays.
Parameters
----------
a, b : array_like
Input arrays to compare.
rtol : float
The relative tolerance parameter (see Notes).
atol : float
The absolute tolerance parameter (see Notes).
Returns
-------
allclose : bool
Returns True if the two arrays are equal within the given
tolerance; False otherwise.
See Also
--------
isclose, all, any
Notes
-----
If the following equation is element-wise True, then allclose returns
True.
absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
The above equation is not symmetric in `a` and `b`, so that
`allclose(a, b)` might be different from `allclose(b, a)` in
some rare cases.
Examples
--------
>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
False
>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
True
>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan])
False
"""
x = array(a, copy=False, ndmin=1)
y = array(b, copy=False, ndmin=1)
# make sure y is an inexact type to avoid abs(MIN_INT); will cause
# casting of x later.
dtype = multiarray.result_type(y, 1.)
y = array(y, dtype=dtype, copy=False)
xinf = isinf(x)
yinf = isinf(y)
if any(xinf) or any(yinf):
# Check that x and y have inf's only in the same positions
if not all(xinf == yinf):
return False
# Check that sign of inf's in x and y is the same
if not all(x[xinf] == y[xinf]):
return False
x = x[~xinf]
y = y[~xinf]
# ignore invalid fpe's
with errstate(invalid='ignore'):
r = all(less_equal(abs(x - y), atol + rtol * abs(y)))
return r
def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
"""
Returns a boolean array where two arrays are element-wise equal within a
tolerance.
The tolerance values are positive, typically very small numbers. The
relative difference (`rtol` * abs(`b`)) and the absolute difference
`atol` are added together to compare against the absolute difference
between `a` and `b`.
Parameters
----------
a, b : array_like
Input arrays to compare.
rtol : float
The relative tolerance parameter (see Notes).
atol : float
The absolute tolerance parameter (see Notes).
equal_nan : bool
Whether to compare NaN's as equal. If True, NaN's in `a` will be
considered equal to NaN's in `b` in the output array.
Returns
-------
y : array_like
Returns a boolean array of where `a` and `b` are equal within the
given tolerance. If both `a` and `b` are scalars, returns a single
boolean value.
See Also
--------
allclose
Notes
-----
.. versionadded:: 1.7.0
For finite values, isclose uses the following equation to test whether
two floating point values are equivalent.
absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
The above equation is not symmetric in `a` and `b`, so that
`isclose(a, b)` might be different from `isclose(b, a)` in
some rare cases.
Examples
--------
>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
array([True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([True, True])
"""
def within_tol(x, y, atol, rtol):
with errstate(invalid='ignore'):
result = less_equal(abs(x-y), atol + rtol * abs(y))
if isscalar(a) and isscalar(b):
result = bool(result)
return result
x = array(a, copy=False, subok=True, ndmin=1)
y = array(b, copy=False, subok=True, ndmin=1)
xfin = isfinite(x)
yfin = isfinite(y)
if all(xfin) and all(yfin):
return within_tol(x, y, atol, rtol)
else:
finite = xfin & yfin
cond = zeros_like(finite, subok=True)
# Because we're using boolean indexing, x & y must be the same shape.
# Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in
# lib.stride_tricks, though, so we can't import it here.
x = x * ones_like(cond)
y = y * ones_like(cond)
# Avoid subtraction with infinite/nan values...
cond[finite] = within_tol(x[finite], y[finite], atol, rtol)
# Check for equality of infinite values...
cond[~finite] = (x[~finite] == y[~finite])
if equal_nan:
# Make NaN == NaN
both_nan = isnan(x) & isnan(y)
cond[both_nan] = both_nan[both_nan]
return cond
def array_equal(a1, a2):
"""
True if two arrays have the same shape and elements, False otherwise.
Parameters
----------
a1, a2 : array_like
Input arrays.
Returns
-------
b : bool
Returns True if the arrays are equal.
See Also
--------
allclose: Returns True if two arrays are element-wise equal within a
tolerance.
array_equiv: Returns True if input arrays are shape consistent and all
elements equal.
Examples
--------
>>> np.array_equal([1, 2], [1, 2])
True
>>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
True
>>> np.array_equal([1, 2], [1, 2, 3])
False
>>> np.array_equal([1, 2], [1, 4])
False
"""
try:
a1, a2 = asarray(a1), asarray(a2)
except:
return False
if a1.shape != a2.shape:
return False
return bool(asarray(a1 == a2).all())
def array_equiv(a1, a2):
"""
Returns True if input arrays are shape consistent and all elements equal.
Shape consistent means they are either the same shape, or one input array
can be broadcasted to create the same shape as the other one.
Parameters
----------
a1, a2 : array_like
Input arrays.
Returns
-------
out : bool
True if equivalent, False otherwise.
Examples
--------
>>> np.array_equiv([1, 2], [1, 2])
True
>>> np.array_equiv([1, 2], [1, 3])
False
Showing the shape equivalence:
>>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
True
>>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
False
>>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
False
"""
try:
a1, a2 = asarray(a1), asarray(a2)
except:
return False
try:
multiarray.broadcast(a1, a2)
except:
return False
return bool(asarray(a1 == a2).all())
_errdict = {"ignore":ERR_IGNORE,
"warn":ERR_WARN,
"raise":ERR_RAISE,
"call":ERR_CALL,
"print":ERR_PRINT,
"log":ERR_LOG}
_errdict_rev = {}
for key in _errdict.keys():
_errdict_rev[_errdict[key]] = key
del key
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
"""
Set how floating-point errors are handled.
Note that operations on integer scalar types (such as `int16`) are
handled like floating point, and are affected by these settings.
Parameters
----------
all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Set treatment for all types of floating-point errors at once:
- ignore: Take no action when the exception occurs.
- warn: Print a `RuntimeWarning` (via the Python `warnings` module).
- raise: Raise a `FloatingPointError`.
- call: Call a function specified using the `seterrcall` function.
- print: Print a warning directly to ``stdout``.
- log: Record error in a Log object specified by `seterrcall`.
The default is not to change the current behavior.
divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for division by zero.
over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for floating-point overflow.
under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for floating-point underflow.
invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
Treatment for invalid floating-point operation.
Returns
-------
old_settings : dict
Dictionary containing the old settings.
See also
--------
seterrcall : Set a callback function for the 'call' mode.
geterr, geterrcall, errstate
Notes
-----
The floating-point exceptions are defined in the IEEE 754 standard [1]:
- Division by zero: infinite result obtained from finite numbers.
- Overflow: result too large to be expressed.
- Underflow: result so close to zero that some precision
was lost.
- Invalid operation: result is not an expressible number, typically
indicates that a NaN was produced.
.. [1] http://en.wikipedia.org/wiki/IEEE_754
Examples
--------
>>> old_settings = np.seterr(all='ignore') #seterr to known value
>>> np.seterr(over='raise')
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
'under': 'ignore'}
>>> np.seterr(**old_settings) # reset to default
{'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
>>> np.int16(32000) * np.int16(3)
30464
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in short_scalars
>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'}
>>> np.int16(32000) * np.int16(3)
Warning: overflow encountered in short_scalars
30464
"""
pyvals = umath.geterrobj()
old = geterr()
if divide is None: divide = all or old['divide']
if over is None: over = all or old['over']
if under is None: under = all or old['under']
if invalid is None: invalid = all or old['invalid']
maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
(_errdict[over] << SHIFT_OVERFLOW ) +
(_errdict[under] << SHIFT_UNDERFLOW) +
(_errdict[invalid] << SHIFT_INVALID))
pyvals[1] = maskvalue
umath.seterrobj(pyvals)
return old
def geterr():
"""
Get the current way of handling floating-point errors.
Returns
-------
res : dict
A dictionary with keys "divide", "over", "under", and "invalid",
whose values are from the strings "ignore", "print", "log", "warn",
"raise", and "call". The keys represent possible floating-point
exceptions, and the values define how these exceptions are handled.
See Also
--------
geterrcall, seterr, seterrcall
Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}
>>> np.arange(3.) / np.arange(3.)
array([ NaN, 1., 1.])
>>> oldsettings = np.seterr(all='warn', over='raise')
>>> np.geterr()
{'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
>>> np.arange(3.) / np.arange(3.)
__main__:1: RuntimeWarning: invalid value encountered in divide
array([ NaN, 1., 1.])
"""
maskvalue = umath.geterrobj()[1]
mask = 7
res = {}
val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
res['divide'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_OVERFLOW) & mask
res['over'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_UNDERFLOW) & mask
res['under'] = _errdict_rev[val]
val = (maskvalue >> SHIFT_INVALID) & mask
res['invalid'] = _errdict_rev[val]
return res
def setbufsize(size):
"""
Set the size of the buffer used in ufuncs.
Parameters
----------
size : int
Size of buffer.
"""
if size > 10e6:
raise ValueError("Buffer size, %s, is too big." % size)
if size < 5:
raise ValueError("Buffer size, %s, is too small." %size)
if size % 16 != 0:
raise ValueError("Buffer size, %s, is not a multiple of 16." %size)
pyvals = umath.geterrobj()
old = getbufsize()
pyvals[0] = size
umath.seterrobj(pyvals)
return old
def getbufsize():
"""
Return the size of the buffer used in ufuncs.
Returns
-------
getbufsize : int
Size of ufunc buffer in bytes.
"""
return umath.geterrobj()[0]
def seterrcall(func):
"""
Set the floating-point error callback function or log object.
There are two ways to capture floating-point error messages. The first
is to set the error-handler to 'call', using `seterr`. Then, set
the function to call using this function.
The second is to set the error-handler to 'log', using `seterr`.
Floating-point errors then trigger a call to the 'write' method of
the provided object.
Parameters
----------
func : callable f(err, flag) or object with write method
Function to call upon floating-point errors ('call'-mode) or
object whose 'write' method is used to log such message ('log'-mode).
The call function takes two arguments. The first is the
type of error (one of "divide", "over", "under", or "invalid"),
and the second is the status flag. The flag is a byte, whose
least-significant bits indicate the status::
[0 0 0 0 invalid over under invalid]
In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
If an object is provided, its write method should take one argument,
a string.
Returns
-------
h : callable, log instance or None
The old error handler.
See Also
--------
seterr, geterr, geterrcall
Examples
--------
Callback upon error:
>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
...
>>> saved_handler = np.seterrcall(err_handler)
>>> save_err = np.seterr(all='call')
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([ Inf, Inf, Inf])
>>> np.seterrcall(saved_handler)
<function err_handler at 0x...>
>>> np.seterr(**save_err)
{'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'}
Log error message:
>>> class Log(object):
... def write(self, msg):
... print "LOG: %s" % msg
...
>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')
>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in divide
<BLANKLINE>
array([ Inf, Inf, Inf])
>>> np.seterrcall(saved_handler)
<__main__.Log object at 0x...>
>>> np.seterr(**save_err)
{'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'}
"""
if func is not None and not isinstance(func, collections.Callable):
if not hasattr(func, 'write') or not isinstance(func.write, collections.Callable):
raise ValueError("Only callable can be used as callback")
pyvals = umath.geterrobj()
old = geterrcall()
pyvals[2] = func
umath.seterrobj(pyvals)
return old
def geterrcall():
"""
Return the current callback function used on floating-point errors.
When the error handling for a floating-point error (one of "divide",
"over", "under", or "invalid") is set to 'call' or 'log', the function
that is called or the log instance that is written to is returned by
`geterrcall`. This function or log instance has been set with
`seterrcall`.
Returns
-------
errobj : callable, log instance or None
The current error handler. If no handler was set through `seterrcall`,
``None`` is returned.
See Also
--------
seterrcall, seterr, geterr
Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> np.geterrcall() # we did not yet set a handler, returns None
>>> oldsettings = np.seterr(all='call')
>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
>>> oldhandler = np.seterrcall(err_handler)
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([ Inf, Inf, Inf])
>>> cur_handler = np.geterrcall()
>>> cur_handler is err_handler
True
"""
return umath.geterrobj()[2]
class _unspecified(object):
pass
_Unspecified = _unspecified()
class errstate(object):
"""
errstate(**kwargs)
Context manager for floating-point error handling.
Using an instance of `errstate` as a context manager allows statements in
that context to execute with a known error handling behavior. Upon entering
the context the error handling is set with `seterr` and `seterrcall`, and
upon exiting it is reset to what it was before.
Parameters
----------
kwargs : {divide, over, under, invalid}
Keyword arguments. The valid keywords are the possible floating-point
exceptions. Each keyword should have a string value that defines the
treatment for the particular error. Possible values are
{'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
See Also
--------
seterr, geterr, seterrcall, geterrcall
Notes
-----
The ``with`` statement was introduced in Python 2.5, and can only be used
there by importing it: ``from __future__ import with_statement``. In
earlier Python versions the ``with`` statement is not available.
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> from __future__ import with_statement # use 'with' in Python 2.5
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
>>> np.arange(3) / 0.
array([ NaN, Inf, Inf])
>>> with np.errstate(divide='warn'):
... np.arange(3) / 0.
...
__main__:2: RuntimeWarning: divide by zero encountered in divide
array([ NaN, Inf, Inf])
>>> np.sqrt(-1)
nan
>>> with np.errstate(invalid='raise'):
... np.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
FloatingPointError: invalid value encountered in sqrt
Outside the context the error handling behavior has not changed:
>>> np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}
"""
# Note that we don't want to run the above doctests because they will fail
# without a from __future__ import with_statement
def __init__(self, **kwargs):
self.call = kwargs.pop('call', _Unspecified)
self.kwargs = kwargs
def __enter__(self):
self.oldstate = seterr(**self.kwargs)
if self.call is not _Unspecified:
self.oldcall = seterrcall(self.call)
def __exit__(self, *exc_info):
seterr(**self.oldstate)
if self.call is not _Unspecified:
seterrcall(self.oldcall)
def _setdef():
defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None]
umath.seterrobj(defval)
# set the default values
_setdef()
Inf = inf = infty = Infinity = PINF
nan = NaN = NAN
False_ = bool_(False)
True_ = bool_(True)
from .umath import *
from .numerictypes import *
from . import fromnumeric
from .fromnumeric import *
extend_all(fromnumeric)
extend_all(umath)
extend_all(numerictypes)
|