File size: 16,854 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
"""
A place for code to be called from core C-code.
Some things are more easily handled Python.
"""
from __future__ import division, absolute_import, print_function
import re
import sys
import warnings
from numpy.compat import asbytes, bytes
if (sys.byteorder == 'little'):
_nbo = asbytes('<')
else:
_nbo = asbytes('>')
def _makenames_list(adict, align):
from .multiarray import dtype
allfields = []
fnames = list(adict.keys())
for fname in fnames:
obj = adict[fname]
n = len(obj)
if not isinstance(obj, tuple) or n not in [2, 3]:
raise ValueError("entry not a 2- or 3- tuple")
if (n > 2) and (obj[2] == fname):
continue
num = int(obj[1])
if (num < 0):
raise ValueError("invalid offset.")
format = dtype(obj[0], align=align)
if (format.itemsize == 0):
raise ValueError("all itemsizes must be fixed.")
if (n > 2):
title = obj[2]
else:
title = None
allfields.append((fname, format, num, title))
# sort by offsets
allfields.sort(key=lambda x: x[2])
names = [x[0] for x in allfields]
formats = [x[1] for x in allfields]
offsets = [x[2] for x in allfields]
titles = [x[3] for x in allfields]
return names, formats, offsets, titles
# Called in PyArray_DescrConverter function when
# a dictionary without "names" and "formats"
# fields is used as a data-type descriptor.
def _usefields(adict, align):
from .multiarray import dtype
try:
names = adict[-1]
except KeyError:
names = None
if names is None:
names, formats, offsets, titles = _makenames_list(adict, align)
else:
formats = []
offsets = []
titles = []
for name in names:
res = adict[name]
formats.append(res[0])
offsets.append(res[1])
if (len(res) > 2):
titles.append(res[2])
else:
titles.append(None)
return dtype({"names" : names,
"formats" : formats,
"offsets" : offsets,
"titles" : titles}, align)
# construct an array_protocol descriptor list
# from the fields attribute of a descriptor
# This calls itself recursively but should eventually hit
# a descriptor that has no fields and then return
# a simple typestring
def _array_descr(descriptor):
fields = descriptor.fields
if fields is None:
subdtype = descriptor.subdtype
if subdtype is None:
if descriptor.metadata is None:
return descriptor.str
else:
new = descriptor.metadata.copy()
if new:
return (descriptor.str, new)
else:
return descriptor.str
else:
return (_array_descr(subdtype[0]), subdtype[1])
names = descriptor.names
ordered_fields = [fields[x] + (x,) for x in names]
result = []
offset = 0
for field in ordered_fields:
if field[1] > offset:
num = field[1] - offset
result.append(('', '|V%d' % num))
offset += num
if len(field) > 3:
name = (field[2], field[3])
else:
name = field[2]
if field[0].subdtype:
tup = (name, _array_descr(field[0].subdtype[0]),
field[0].subdtype[1])
else:
tup = (name, _array_descr(field[0]))
offset += field[0].itemsize
result.append(tup)
return result
# Build a new array from the information in a pickle.
# Note that the name numpy.core._internal._reconstruct is embedded in
# pickles of ndarrays made with NumPy before release 1.0
# so don't remove the name here, or you'll
# break backward compatibilty.
def _reconstruct(subtype, shape, dtype):
from .multiarray import ndarray
return ndarray.__new__(subtype, shape, dtype)
# format_re was originally from numarray by J. Todd Miller
format_re = re.compile(asbytes(
r'(?P<order1>[<>|=]?)'
r'(?P<repeats> *[(]?[ ,0-9L]*[)]? *)'
r'(?P<order2>[<>|=]?)'
r'(?P<dtype>[A-Za-z0-9.]*(?:\[[a-zA-Z0-9,.]+\])?)'))
sep_re = re.compile(asbytes(r'\s*,\s*'))
space_re = re.compile(asbytes(r'\s+$'))
# astr is a string (perhaps comma separated)
_convorder = {asbytes('='): _nbo}
def _commastring(astr):
startindex = 0
result = []
while startindex < len(astr):
mo = format_re.match(astr, pos=startindex)
try:
(order1, repeats, order2, dtype) = mo.groups()
except (TypeError, AttributeError):
raise ValueError('format number %d of "%s" is not recognized' %
(len(result)+1, astr))
startindex = mo.end()
# Separator or ending padding
if startindex < len(astr):
if space_re.match(astr, pos=startindex):
startindex = len(astr)
else:
mo = sep_re.match(astr, pos=startindex)
if not mo:
raise ValueError(
'format number %d of "%s" is not recognized' %
(len(result)+1, astr))
startindex = mo.end()
if order2 == asbytes(''):
order = order1
elif order1 == asbytes(''):
order = order2
else:
order1 = _convorder.get(order1, order1)
order2 = _convorder.get(order2, order2)
if (order1 != order2):
raise ValueError('inconsistent byte-order specification %s and %s' % (order1, order2))
order = order1
if order in [asbytes('|'), asbytes('='), _nbo]:
order = asbytes('')
dtype = order + dtype
if (repeats == asbytes('')):
newitem = dtype
else:
newitem = (dtype, eval(repeats))
result.append(newitem)
return result
def _getintp_ctype():
from .multiarray import dtype
val = _getintp_ctype.cache
if val is not None:
return val
char = dtype('p').char
import ctypes
if (char == 'i'):
val = ctypes.c_int
elif char == 'l':
val = ctypes.c_long
elif char == 'q':
val = ctypes.c_longlong
else:
val = ctypes.c_long
_getintp_ctype.cache = val
return val
_getintp_ctype.cache = None
# Used for .ctypes attribute of ndarray
class _missing_ctypes(object):
def cast(self, num, obj):
return num
def c_void_p(self, num):
return num
class _ctypes(object):
def __init__(self, array, ptr=None):
try:
import ctypes
self._ctypes = ctypes
except ImportError:
self._ctypes = _missing_ctypes()
self._arr = array
self._data = ptr
if self._arr.ndim == 0:
self._zerod = True
else:
self._zerod = False
def data_as(self, obj):
return self._ctypes.cast(self._data, obj)
def shape_as(self, obj):
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.shape)
def strides_as(self, obj):
if self._zerod:
return None
return (obj*self._arr.ndim)(*self._arr.strides)
def get_data(self):
return self._data
def get_shape(self):
if self._zerod:
return None
return (_getintp_ctype()*self._arr.ndim)(*self._arr.shape)
def get_strides(self):
if self._zerod:
return None
return (_getintp_ctype()*self._arr.ndim)(*self._arr.strides)
def get_as_parameter(self):
return self._ctypes.c_void_p(self._data)
data = property(get_data, None, doc="c-types data")
shape = property(get_shape, None, doc="c-types shape")
strides = property(get_strides, None, doc="c-types strides")
_as_parameter_ = property(get_as_parameter, None, doc="_as parameter_")
# Given a datatype and an order object
# return a new names tuple
# with the order indicated
def _newnames(datatype, order):
oldnames = datatype.names
nameslist = list(oldnames)
if isinstance(order, str):
order = [order]
if isinstance(order, (list, tuple)):
for name in order:
try:
nameslist.remove(name)
except ValueError:
raise ValueError("unknown field name: %s" % (name,))
return tuple(list(order) + nameslist)
raise ValueError("unsupported order value: %s" % (order,))
# Given an array with fields and a sequence of field names
# construct a new array with just those fields copied over
def _index_fields(ary, fields):
from .multiarray import empty, dtype, array
dt = ary.dtype
names = [name for name in fields if name in dt.names]
formats = [dt.fields[name][0] for name in fields if name in dt.names]
offsets = [dt.fields[name][1] for name in fields if name in dt.names]
view_dtype = {'names':names, 'formats':formats, 'offsets':offsets, 'itemsize':dt.itemsize}
view = ary.view(dtype=view_dtype)
# Return a copy for now until behavior is fully deprecated
# in favor of returning view
copy_dtype = {'names':view_dtype['names'], 'formats':view_dtype['formats']}
return array(view, dtype=copy_dtype, copy=True)
# Given a string containing a PEP 3118 format specifier,
# construct a Numpy dtype
_pep3118_native_map = {
'?': '?',
'b': 'b',
'B': 'B',
'h': 'h',
'H': 'H',
'i': 'i',
'I': 'I',
'l': 'l',
'L': 'L',
'q': 'q',
'Q': 'Q',
'e': 'e',
'f': 'f',
'd': 'd',
'g': 'g',
'Zf': 'F',
'Zd': 'D',
'Zg': 'G',
's': 'S',
'w': 'U',
'O': 'O',
'x': 'V', # padding
}
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
_pep3118_standard_map = {
'?': '?',
'b': 'b',
'B': 'B',
'h': 'i2',
'H': 'u2',
'i': 'i4',
'I': 'u4',
'l': 'i4',
'L': 'u4',
'q': 'i8',
'Q': 'u8',
'e': 'f2',
'f': 'f',
'd': 'd',
'Zf': 'F',
'Zd': 'D',
's': 'S',
'w': 'U',
'O': 'O',
'x': 'V', # padding
}
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
def _dtype_from_pep3118(spec, byteorder='@', is_subdtype=False):
from numpy.core.multiarray import dtype
fields = {}
offset = 0
explicit_name = False
this_explicit_name = False
common_alignment = 1
is_padding = False
last_offset = 0
dummy_name_index = [0]
def next_dummy_name():
dummy_name_index[0] += 1
def get_dummy_name():
while True:
name = 'f%d' % dummy_name_index[0]
if name not in fields:
return name
next_dummy_name()
# Parse spec
while spec:
value = None
# End of structure, bail out to upper level
if spec[0] == '}':
spec = spec[1:]
break
# Sub-arrays (1)
shape = None
if spec[0] == '(':
j = spec.index(')')
shape = tuple(map(int, spec[1:j].split(',')))
spec = spec[j+1:]
# Byte order
if spec[0] in ('@', '=', '<', '>', '^', '!'):
byteorder = spec[0]
if byteorder == '!':
byteorder = '>'
spec = spec[1:]
# Byte order characters also control native vs. standard type sizes
if byteorder in ('@', '^'):
type_map = _pep3118_native_map
type_map_chars = _pep3118_native_typechars
else:
type_map = _pep3118_standard_map
type_map_chars = _pep3118_standard_typechars
# Item sizes
itemsize = 1
if spec[0].isdigit():
j = 1
for j in range(1, len(spec)):
if not spec[j].isdigit():
break
itemsize = int(spec[:j])
spec = spec[j:]
# Data types
is_padding = False
if spec[:2] == 'T{':
value, spec, align, next_byteorder = _dtype_from_pep3118(
spec[2:], byteorder=byteorder, is_subdtype=True)
elif spec[0] in type_map_chars:
next_byteorder = byteorder
if spec[0] == 'Z':
j = 2
else:
j = 1
typechar = spec[:j]
spec = spec[j:]
is_padding = (typechar == 'x')
dtypechar = type_map[typechar]
if dtypechar in 'USV':
dtypechar += '%d' % itemsize
itemsize = 1
numpy_byteorder = {'@': '=', '^': '='}.get(byteorder, byteorder)
value = dtype(numpy_byteorder + dtypechar)
align = value.alignment
else:
raise ValueError("Unknown PEP 3118 data type specifier %r" % spec)
#
# Native alignment may require padding
#
# Here we assume that the presence of a '@' character implicitly implies
# that the start of the array is *already* aligned.
#
extra_offset = 0
if byteorder == '@':
start_padding = (-offset) % align
intra_padding = (-value.itemsize) % align
offset += start_padding
if intra_padding != 0:
if itemsize > 1 or (shape is not None and _prod(shape) > 1):
# Inject internal padding to the end of the sub-item
value = _add_trailing_padding(value, intra_padding)
else:
# We can postpone the injection of internal padding,
# as the item appears at most once
extra_offset += intra_padding
# Update common alignment
common_alignment = (align*common_alignment
/ _gcd(align, common_alignment))
# Convert itemsize to sub-array
if itemsize != 1:
value = dtype((value, (itemsize,)))
# Sub-arrays (2)
if shape is not None:
value = dtype((value, shape))
# Field name
this_explicit_name = False
if spec and spec.startswith(':'):
i = spec[1:].index(':') + 1
name = spec[1:i]
spec = spec[i+1:]
explicit_name = True
this_explicit_name = True
else:
name = get_dummy_name()
if not is_padding or this_explicit_name:
if name in fields:
raise RuntimeError("Duplicate field name '%s' in PEP3118 format"
% name)
fields[name] = (value, offset)
last_offset = offset
if not this_explicit_name:
next_dummy_name()
byteorder = next_byteorder
offset += value.itemsize
offset += extra_offset
# Check if this was a simple 1-item type
if len(fields) == 1 and not explicit_name and fields['f0'][1] == 0 \
and not is_subdtype:
ret = fields['f0'][0]
else:
ret = dtype(fields)
# Trailing padding must be explicitly added
padding = offset - ret.itemsize
if byteorder == '@':
padding += (-offset) % common_alignment
if is_padding and not this_explicit_name:
ret = _add_trailing_padding(ret, padding)
# Finished
if is_subdtype:
return ret, spec, common_alignment, byteorder
else:
return ret
def _add_trailing_padding(value, padding):
"""Inject the specified number of padding bytes at the end of a dtype"""
from numpy.core.multiarray import dtype
if value.fields is None:
vfields = {'f0': (value, 0)}
else:
vfields = dict(value.fields)
if value.names and value.names[-1] == '' and \
value[''].char == 'V':
# A trailing padding field is already present
vfields[''] = ('V%d' % (vfields[''][0].itemsize + padding),
vfields[''][1])
value = dtype(vfields)
else:
# Get a free name for the padding field
j = 0
while True:
name = 'pad%d' % j
if name not in vfields:
vfields[name] = ('V%d' % padding, value.itemsize)
break
j += 1
value = dtype(vfields)
if '' not in vfields:
# Strip out the name of the padding field
names = list(value.names)
names[-1] = ''
value.names = tuple(names)
return value
def _prod(a):
p = 1
for x in a:
p *= x
return p
def _gcd(a, b):
"""Calculate the greatest common divisor of a and b"""
while b:
a, b = b, a%b
return a
|