File size: 219,272 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 |
"""
This is only meant to add docs to objects defined in C-extension modules.
The purpose is to allow easier editing of the docstrings without
requiring a re-compile.
NOTE: Many of the methods of ndarray have corresponding functions.
If you update these docstrings, please keep also the ones in
core/fromnumeric.py, core/defmatrix.py up-to-date.
"""
from __future__ import division, absolute_import, print_function
from numpy.lib import add_newdoc
###############################################################################
#
# flatiter
#
# flatiter needs a toplevel description
#
###############################################################################
add_newdoc('numpy.core', 'flatiter',
"""
Flat iterator object to iterate over arrays.
A `flatiter` iterator is returned by ``x.flat`` for any array `x`.
It allows iterating over the array as if it were a 1-D array,
either in a for-loop or by calling its `next` method.
Iteration is done in C-contiguous style, with the last index varying the
fastest. The iterator can also be indexed using basic slicing or
advanced indexing.
See Also
--------
ndarray.flat : Return a flat iterator over an array.
ndarray.flatten : Returns a flattened copy of an array.
Notes
-----
A `flatiter` iterator can not be constructed directly from Python code
by calling the `flatiter` constructor.
Examples
--------
>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> type(fl)
<type 'numpy.flatiter'>
>>> for item in fl:
... print item
...
0
1
2
3
4
5
>>> fl[2:4]
array([2, 3])
""")
# flatiter attributes
add_newdoc('numpy.core', 'flatiter', ('base',
"""
A reference to the array that is iterated over.
Examples
--------
>>> x = np.arange(5)
>>> fl = x.flat
>>> fl.base is x
True
"""))
add_newdoc('numpy.core', 'flatiter', ('coords',
"""
An N-dimensional tuple of current coordinates.
Examples
--------
>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> fl.coords
(0, 0)
>>> fl.next()
0
>>> fl.coords
(0, 1)
"""))
add_newdoc('numpy.core', 'flatiter', ('index',
"""
Current flat index into the array.
Examples
--------
>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> fl.index
0
>>> fl.next()
0
>>> fl.index
1
"""))
# flatiter functions
add_newdoc('numpy.core', 'flatiter', ('__array__',
"""__array__(type=None) Get array from iterator
"""))
add_newdoc('numpy.core', 'flatiter', ('copy',
"""
copy()
Get a copy of the iterator as a 1-D array.
Examples
--------
>>> x = np.arange(6).reshape(2, 3)
>>> x
array([[0, 1, 2],
[3, 4, 5]])
>>> fl = x.flat
>>> fl.copy()
array([0, 1, 2, 3, 4, 5])
"""))
###############################################################################
#
# nditer
#
###############################################################################
add_newdoc('numpy.core', 'nditer',
"""
Efficient multi-dimensional iterator object to iterate over arrays.
To get started using this object, see the
:ref:`introductory guide to array iteration <arrays.nditer>`.
Parameters
----------
op : ndarray or sequence of array_like
The array(s) to iterate over.
flags : sequence of str, optional
Flags to control the behavior of the iterator.
* "buffered" enables buffering when required.
* "c_index" causes a C-order index to be tracked.
* "f_index" causes a Fortran-order index to be tracked.
* "multi_index" causes a multi-index, or a tuple of indices
with one per iteration dimension, to be tracked.
* "common_dtype" causes all the operands to be converted to
a common data type, with copying or buffering as necessary.
* "delay_bufalloc" delays allocation of the buffers until
a reset() call is made. Allows "allocate" operands to
be initialized before their values are copied into the buffers.
* "external_loop" causes the `values` given to be
one-dimensional arrays with multiple values instead of
zero-dimensional arrays.
* "grow_inner" allows the `value` array sizes to be made
larger than the buffer size when both "buffered" and
"external_loop" is used.
* "ranged" allows the iterator to be restricted to a sub-range
of the iterindex values.
* "refs_ok" enables iteration of reference types, such as
object arrays.
* "reduce_ok" enables iteration of "readwrite" operands
which are broadcasted, also known as reduction operands.
* "zerosize_ok" allows `itersize` to be zero.
op_flags : list of list of str, optional
This is a list of flags for each operand. At minimum, one of
"readonly", "readwrite", or "writeonly" must be specified.
* "readonly" indicates the operand will only be read from.
* "readwrite" indicates the operand will be read from and written to.
* "writeonly" indicates the operand will only be written to.
* "no_broadcast" prevents the operand from being broadcasted.
* "contig" forces the operand data to be contiguous.
* "aligned" forces the operand data to be aligned.
* "nbo" forces the operand data to be in native byte order.
* "copy" allows a temporary read-only copy if required.
* "updateifcopy" allows a temporary read-write copy if required.
* "allocate" causes the array to be allocated if it is None
in the `op` parameter.
* "no_subtype" prevents an "allocate" operand from using a subtype.
* "arraymask" indicates that this operand is the mask to use
for selecting elements when writing to operands with the
'writemasked' flag set. The iterator does not enforce this,
but when writing from a buffer back to the array, it only
copies those elements indicated by this mask.
* 'writemasked' indicates that only elements where the chosen
'arraymask' operand is True will be written to.
op_dtypes : dtype or tuple of dtype(s), optional
The required data type(s) of the operands. If copying or buffering
is enabled, the data will be converted to/from their original types.
order : {'C', 'F', 'A', 'K'}, optional
Controls the iteration order. 'C' means C order, 'F' means
Fortran order, 'A' means 'F' order if all the arrays are Fortran
contiguous, 'C' order otherwise, and 'K' means as close to the
order the array elements appear in memory as possible. This also
affects the element memory order of "allocate" operands, as they
are allocated to be compatible with iteration order.
Default is 'K'.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur when making a copy
or buffering. Setting this to 'unsafe' is not recommended,
as it can adversely affect accumulations.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
op_axes : list of list of ints, optional
If provided, is a list of ints or None for each operands.
The list of axes for an operand is a mapping from the dimensions
of the iterator to the dimensions of the operand. A value of
-1 can be placed for entries, causing that dimension to be
treated as "newaxis".
itershape : tuple of ints, optional
The desired shape of the iterator. This allows "allocate" operands
with a dimension mapped by op_axes not corresponding to a dimension
of a different operand to get a value not equal to 1 for that
dimension.
buffersize : int, optional
When buffering is enabled, controls the size of the temporary
buffers. Set to 0 for the default value.
Attributes
----------
dtypes : tuple of dtype(s)
The data types of the values provided in `value`. This may be
different from the operand data types if buffering is enabled.
finished : bool
Whether the iteration over the operands is finished or not.
has_delayed_bufalloc : bool
If True, the iterator was created with the "delay_bufalloc" flag,
and no reset() function was called on it yet.
has_index : bool
If True, the iterator was created with either the "c_index" or
the "f_index" flag, and the property `index` can be used to
retrieve it.
has_multi_index : bool
If True, the iterator was created with the "multi_index" flag,
and the property `multi_index` can be used to retrieve it.
index :
When the "c_index" or "f_index" flag was used, this property
provides access to the index. Raises a ValueError if accessed
and `has_index` is False.
iterationneedsapi : bool
Whether iteration requires access to the Python API, for example
if one of the operands is an object array.
iterindex : int
An index which matches the order of iteration.
itersize : int
Size of the iterator.
itviews :
Structured view(s) of `operands` in memory, matching the reordered
and optimized iterator access pattern.
multi_index :
When the "multi_index" flag was used, this property
provides access to the index. Raises a ValueError if accessed
accessed and `has_multi_index` is False.
ndim : int
The iterator's dimension.
nop : int
The number of iterator operands.
operands : tuple of operand(s)
The array(s) to be iterated over.
shape : tuple of ints
Shape tuple, the shape of the iterator.
value :
Value of `operands` at current iteration. Normally, this is a
tuple of array scalars, but if the flag "external_loop" is used,
it is a tuple of one dimensional arrays.
Notes
-----
`nditer` supersedes `flatiter`. The iterator implementation behind
`nditer` is also exposed by the Numpy C API.
The Python exposure supplies two iteration interfaces, one which follows
the Python iterator protocol, and another which mirrors the C-style
do-while pattern. The native Python approach is better in most cases, but
if you need the iterator's coordinates or index, use the C-style pattern.
Examples
--------
Here is how we might write an ``iter_add`` function, using the
Python iterator protocol::
def iter_add_py(x, y, out=None):
addop = np.add
it = np.nditer([x, y, out], [],
[['readonly'], ['readonly'], ['writeonly','allocate']])
for (a, b, c) in it:
addop(a, b, out=c)
return it.operands[2]
Here is the same function, but following the C-style pattern::
def iter_add(x, y, out=None):
addop = np.add
it = np.nditer([x, y, out], [],
[['readonly'], ['readonly'], ['writeonly','allocate']])
while not it.finished:
addop(it[0], it[1], out=it[2])
it.iternext()
return it.operands[2]
Here is an example outer product function::
def outer_it(x, y, out=None):
mulop = np.multiply
it = np.nditer([x, y, out], ['external_loop'],
[['readonly'], ['readonly'], ['writeonly', 'allocate']],
op_axes=[range(x.ndim)+[-1]*y.ndim,
[-1]*x.ndim+range(y.ndim),
None])
for (a, b, c) in it:
mulop(a, b, out=c)
return it.operands[2]
>>> a = np.arange(2)+1
>>> b = np.arange(3)+1
>>> outer_it(a,b)
array([[1, 2, 3],
[2, 4, 6]])
Here is an example function which operates like a "lambda" ufunc::
def luf(lamdaexpr, *args, **kwargs):
"luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)"
nargs = len(args)
op = (kwargs.get('out',None),) + args
it = np.nditer(op, ['buffered','external_loop'],
[['writeonly','allocate','no_broadcast']] +
[['readonly','nbo','aligned']]*nargs,
order=kwargs.get('order','K'),
casting=kwargs.get('casting','safe'),
buffersize=kwargs.get('buffersize',0))
while not it.finished:
it[0] = lamdaexpr(*it[1:])
it.iternext()
return it.operands[0]
>>> a = np.arange(5)
>>> b = np.ones(5)
>>> luf(lambda i,j:i*i + j/2, a, b)
array([ 0.5, 1.5, 4.5, 9.5, 16.5])
""")
# nditer methods
add_newdoc('numpy.core', 'nditer', ('copy',
"""
copy()
Get a copy of the iterator in its current state.
Examples
--------
>>> x = np.arange(10)
>>> y = x + 1
>>> it = np.nditer([x, y])
>>> it.next()
(array(0), array(1))
>>> it2 = it.copy()
>>> it2.next()
(array(1), array(2))
"""))
add_newdoc('numpy.core', 'nditer', ('debug_print',
"""
debug_print()
Print the current state of the `nditer` instance and debug info to stdout.
"""))
add_newdoc('numpy.core', 'nditer', ('enable_external_loop',
"""
enable_external_loop()
When the "external_loop" was not used during construction, but
is desired, this modifies the iterator to behave as if the flag
was specified.
"""))
add_newdoc('numpy.core', 'nditer', ('iternext',
"""
iternext()
Check whether iterations are left, and perform a single internal iteration
without returning the result. Used in the C-style pattern do-while
pattern. For an example, see `nditer`.
Returns
-------
iternext : bool
Whether or not there are iterations left.
"""))
add_newdoc('numpy.core', 'nditer', ('remove_axis',
"""
remove_axis(i)
Removes axis `i` from the iterator. Requires that the flag "multi_index"
be enabled.
"""))
add_newdoc('numpy.core', 'nditer', ('remove_multi_index',
"""
remove_multi_index()
When the "multi_index" flag was specified, this removes it, allowing
the internal iteration structure to be optimized further.
"""))
add_newdoc('numpy.core', 'nditer', ('reset',
"""
reset()
Reset the iterator to its initial state.
"""))
###############################################################################
#
# broadcast
#
###############################################################################
add_newdoc('numpy.core', 'broadcast',
"""
Produce an object that mimics broadcasting.
Parameters
----------
in1, in2, ... : array_like
Input parameters.
Returns
-------
b : broadcast object
Broadcast the input parameters against one another, and
return an object that encapsulates the result.
Amongst others, it has ``shape`` and ``nd`` properties, and
may be used as an iterator.
Examples
--------
Manually adding two vectors, using broadcasting:
>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)
>>> out = np.empty(b.shape)
>>> out.flat = [u+v for (u,v) in b]
>>> out
array([[ 5., 6., 7.],
[ 6., 7., 8.],
[ 7., 8., 9.]])
Compare against built-in broadcasting:
>>> x + y
array([[5, 6, 7],
[6, 7, 8],
[7, 8, 9]])
""")
# attributes
add_newdoc('numpy.core', 'broadcast', ('index',
"""
current index in broadcasted result
Examples
--------
>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (1, 5), (1, 6))
>>> b.index
3
"""))
add_newdoc('numpy.core', 'broadcast', ('iters',
"""
tuple of iterators along ``self``'s "components."
Returns a tuple of `numpy.flatiter` objects, one for each "component"
of ``self``.
See Also
--------
numpy.flatiter
Examples
--------
>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> row, col = b.iters
>>> row.next(), col.next()
(1, 4)
"""))
add_newdoc('numpy.core', 'broadcast', ('nd',
"""
Number of dimensions of broadcasted result.
Examples
--------
>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.nd
2
"""))
add_newdoc('numpy.core', 'broadcast', ('numiter',
"""
Number of iterators possessed by the broadcasted result.
Examples
--------
>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.numiter
2
"""))
add_newdoc('numpy.core', 'broadcast', ('shape',
"""
Shape of broadcasted result.
Examples
--------
>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.shape
(3, 3)
"""))
add_newdoc('numpy.core', 'broadcast', ('size',
"""
Total size of broadcasted result.
Examples
--------
>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.size
9
"""))
add_newdoc('numpy.core', 'broadcast', ('reset',
"""
reset()
Reset the broadcasted result's iterator(s).
Parameters
----------
None
Returns
-------
None
Examples
--------
>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]]
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> b.next(), b.next(), b.next()
((1, 4), (2, 4), (3, 4))
>>> b.index
3
>>> b.reset()
>>> b.index
0
"""))
###############################################################################
#
# numpy functions
#
###############################################################################
add_newdoc('numpy.core.multiarray', 'array',
"""
array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
Create an array.
Parameters
----------
object : array_like
An array, any object exposing the array interface, an
object whose __array__ method returns an array, or any
(nested) sequence.
dtype : data-type, optional
The desired data-type for the array. If not given, then
the type will be determined as the minimum type required
to hold the objects in the sequence. This argument can only
be used to 'upcast' the array. For downcasting, use the
.astype(t) method.
copy : bool, optional
If true (default), then the object is copied. Otherwise, a copy
will only be made if __array__ returns a copy, if obj is a
nested sequence, or if a copy is needed to satisfy any of the other
requirements (`dtype`, `order`, etc.).
order : {'C', 'F', 'A'}, optional
Specify the order of the array. If order is 'C' (default), then the
array will be in C-contiguous order (last-index varies the
fastest). If order is 'F', then the returned array
will be in Fortran-contiguous order (first-index varies the
fastest). If order is 'A', then the returned array may
be in any order (either C-, Fortran-contiguous, or even
discontiguous).
subok : bool, optional
If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array (default).
ndmin : int, optional
Specifies the minimum number of dimensions that the resulting
array should have. Ones will be pre-pended to the shape as
needed to meet this requirement.
Returns
-------
out : ndarray
An array object satisfying the specified requirements.
See Also
--------
empty, empty_like, zeros, zeros_like, ones, ones_like, fill
Examples
--------
>>> np.array([1, 2, 3])
array([1, 2, 3])
Upcasting:
>>> np.array([1, 2, 3.0])
array([ 1., 2., 3.])
More than one dimension:
>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
[3, 4]])
Minimum dimensions 2:
>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])
Type provided:
>>> np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j, 2.+0.j, 3.+0.j])
Data-type consisting of more than one element:
>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])
Creating an array from sub-classes:
>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],
[3, 4]])
>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
[3, 4]])
""")
add_newdoc('numpy.core.multiarray', 'empty',
"""
empty(shape, dtype=float, order='C')
Return a new array of given shape and type, without initializing entries.
Parameters
----------
shape : int or tuple of int
Shape of the empty array
dtype : data-type, optional
Desired output data-type.
order : {'C', 'F'}, optional
Whether to store multi-dimensional data in C (row-major) or
Fortran (column-major) order in memory.
Returns
-------
out : ndarray
Array of uninitialized (arbitrary) data with the given
shape, dtype, and order.
See Also
--------
empty_like, zeros, ones
Notes
-----
`empty`, unlike `zeros`, does not set the array values to zero,
and may therefore be marginally faster. On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.
Examples
--------
>>> np.empty([2, 2])
array([[ -9.74499359e+001, 6.69583040e-309],
[ 2.13182611e-314, 3.06959433e-309]]) #random
>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
[ 496041986, 19249760]]) #random
""")
add_newdoc('numpy.core.multiarray', 'empty_like',
"""
empty_like(a, dtype=None, order='K', subok=True)
Return a new array with the same shape and type as a given array.
Parameters
----------
a : array_like
The shape and data-type of `a` define these same attributes of the
returned array.
dtype : data-type, optional
.. versionadded:: 1.6.0
Overrides the data type of the result.
order : {'C', 'F', 'A', or 'K'}, optional
.. versionadded:: 1.6.0
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if ``a`` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of ``a`` as closely
as possible.
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
Returns
-------
out : ndarray
Array of uninitialized (arbitrary) data with the same
shape and type as `a`.
See Also
--------
ones_like : Return an array of ones with shape and type of input.
zeros_like : Return an array of zeros with shape and type of input.
empty : Return a new uninitialized array.
ones : Return a new array setting values to one.
zeros : Return a new array setting values to zero.
Notes
-----
This function does *not* initialize the returned array; to do that use
`zeros_like` or `ones_like` instead. It may be marginally faster than
the functions that do set the array values.
Examples
--------
>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], #random
[ 0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
""")
add_newdoc('numpy.core.multiarray', 'scalar',
"""
scalar(dtype, obj)
Return a new scalar array of the given type initialized with obj.
This function is meant mainly for pickle support. `dtype` must be a
valid data-type descriptor. If `dtype` corresponds to an object
descriptor, then `obj` can be any object, otherwise `obj` must be a
string. If `obj` is not given, it will be interpreted as None for object
type and as zeros for all other types.
""")
add_newdoc('numpy.core.multiarray', 'zeros',
"""
zeros(shape, dtype=float, order='C')
Return a new array of given shape and type, filled with zeros.
Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
dtype : data-type, optional
The desired data-type for the array, e.g., `numpy.int8`. Default is
`numpy.float64`.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.
Returns
-------
out : ndarray
Array of zeros with the given shape, dtype, and order.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
--------
>>> np.zeros(5)
array([ 0., 0., 0., 0., 0.])
>>> np.zeros((5,), dtype=numpy.int)
array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1))
array([[ 0.],
[ 0.]])
>>> s = (2,2)
>>> np.zeros(s)
array([[ 0., 0.],
[ 0., 0.]])
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],
dtype=[('x', '<i4'), ('y', '<i4')])
""")
add_newdoc('numpy.core.multiarray', 'count_nonzero',
"""
count_nonzero(a)
Counts the number of non-zero values in the array ``a``.
Parameters
----------
a : array_like
The array for which to count non-zeros.
Returns
-------
count : int or array of int
Number of non-zero values in the array.
See Also
--------
nonzero : Return the coordinates of all the non-zero values.
Examples
--------
>>> np.count_nonzero(np.eye(4))
4
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
5
""")
add_newdoc('numpy.core.multiarray', 'set_typeDict',
"""set_typeDict(dict)
Set the internal dictionary that can look up an array type using a
registered code.
""")
add_newdoc('numpy.core.multiarray', 'fromstring',
"""
fromstring(string, dtype=float, count=-1, sep='')
A new 1-D array initialized from raw binary or text data in a string.
Parameters
----------
string : str
A string containing the data.
dtype : data-type, optional
The data type of the array; default: float. For binary input data,
the data must be in exactly this format.
count : int, optional
Read this number of `dtype` elements from the data. If this is
negative (the default), the count will be determined from the
length of the data.
sep : str, optional
If not provided or, equivalently, the empty string, the data will
be interpreted as binary data; otherwise, as ASCII text with
decimal numbers. Also in this latter case, this argument is
interpreted as the string separating numbers in the data; extra
whitespace between elements is also ignored.
Returns
-------
arr : ndarray
The constructed array.
Raises
------
ValueError
If the string is not the correct size to satisfy the requested
`dtype` and `count`.
See Also
--------
frombuffer, fromfile, fromiter
Examples
--------
>>> np.fromstring('\\x01\\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])
>>> np.fromstring('\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)
""")
add_newdoc('numpy.core.multiarray', 'fromiter',
"""
fromiter(iterable, dtype, count=-1)
Create a new 1-dimensional array from an iterable object.
Parameters
----------
iterable : iterable object
An iterable object providing data for the array.
dtype : data-type
The data-type of the returned array.
count : int, optional
The number of items to read from *iterable*. The default is -1,
which means all data is read.
Returns
-------
out : ndarray
The output array.
Notes
-----
Specify `count` to improve performance. It allows ``fromiter`` to
pre-allocate the output array, instead of resizing it on demand.
Examples
--------
>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, np.float)
array([ 0., 1., 4., 9., 16.])
""")
add_newdoc('numpy.core.multiarray', 'fromfile',
"""
fromfile(file, dtype=float, count=-1, sep='')
Construct an array from data in a text or binary file.
A highly efficient way of reading binary data with a known data-type,
as well as parsing simply formatted text files. Data written using the
`tofile` method can be read using this function.
Parameters
----------
file : file or str
Open file object or filename.
dtype : data-type
Data type of the returned array.
For binary files, it is used to determine the size and byte-order
of the items in the file.
count : int
Number of items to read. ``-1`` means all items (i.e., the complete
file).
sep : str
Separator between items if file is a text file.
Empty ("") separator means the file should be treated as binary.
Spaces (" ") in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one
whitespace.
See also
--------
load, save
ndarray.tofile
loadtxt : More flexible way of loading data from a text file.
Notes
-----
Do not rely on the combination of `tofile` and `fromfile` for
data storage, as the binary files generated are are not platform
independent. In particular, no byte-order or data-type information is
saved. Data can be stored in the platform independent ``.npy`` format
using `save` and `load` instead.
Examples
--------
Construct an ndarray:
>>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
Save the raw data to disk:
>>> import os
>>> fname = os.tmpnam()
>>> x.tofile(fname)
Read the raw data from disk:
>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
The recommended way to store and load data:
>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
""")
add_newdoc('numpy.core.multiarray', 'frombuffer',
"""
frombuffer(buffer, dtype=float, count=-1, offset=0)
Interpret a buffer as a 1-dimensional array.
Parameters
----------
buffer : buffer_like
An object that exposes the buffer interface.
dtype : data-type, optional
Data-type of the returned array; default: float.
count : int, optional
Number of items to read. ``-1`` means all data in the buffer.
offset : int, optional
Start reading the buffer from this offset; default: 0.
Notes
-----
If the buffer has data that is not in machine byte-order, this should
be specified as part of the data-type, e.g.::
>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)
The data of the resulting array will not be byteswapped, but will be
interpreted correctly.
Examples
--------
>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],
dtype='|S1')
""")
add_newdoc('numpy.core.multiarray', 'concatenate',
"""
concatenate((a1, a2, ...), axis=0)
Join a sequence of arrays together.
Parameters
----------
a1, a2, ... : sequence of array_like
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int, optional
The axis along which the arrays will be joined. Default is 0.
Returns
-------
res : ndarray
The concatenated array.
See Also
--------
ma.concatenate : Concatenate function that preserves input masks.
array_split : Split an array into multiple sub-arrays of equal or
near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
hsplit : Split array into multiple sub-arrays horizontally (column wise)
vsplit : Split array into multiple sub-arrays vertically (row wise)
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
hstack : Stack arrays in sequence horizontally (column wise)
vstack : Stack arrays in sequence vertically (row wise)
dstack : Stack arrays in sequence depth wise (along third dimension)
Notes
-----
When one or more of the arrays to be concatenated is a MaskedArray,
this function will return a MaskedArray object instead of an ndarray,
but the input masks are *not* preserved. In cases where a MaskedArray
is expected as input, use the ma.concatenate function from the masked
array module instead.
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
[3, 4],
[5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
[3, 4, 6]])
This function will not preserve masking of MaskedArray inputs.
>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
mask = [False True False],
fill_value = 999999)
>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],
mask = False,
fill_value = 999999)
>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
mask = [False True False False False False],
fill_value = 999999)
""")
add_newdoc('numpy.core', 'inner',
"""
inner(a, b)
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.
Parameters
----------
a, b : array_like
If `a` and `b` are nonscalar, their last dimensions of must match.
Returns
-------
out : ndarray
`out.shape = a.shape[:-1] + b.shape[:-1]`
Raises
------
ValueError
If the last dimension of `a` and `b` has different size.
See Also
--------
tensordot : Sum products over arbitrary axes.
dot : Generalised matrix product, using second last dimension of `b`.
einsum : Einstein summation convention.
Notes
-----
For vectors (1-D arrays) it computes the ordinary inner-product::
np.inner(a, b) = sum(a[:]*b[:])
More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`::
np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
or explicitly::
np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])
In addition `a` or `b` may be scalars, in which case::
np.inner(a,b) = a*b
Examples
--------
Ordinary inner product for vectors:
>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2
A multidimensional example:
>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> np.inner(a, b)
array([[ 14, 38, 62],
[ 86, 110, 134]])
An example where `b` is a scalar:
>>> np.inner(np.eye(2), 7)
array([[ 7., 0.],
[ 0., 7.]])
""")
add_newdoc('numpy.core', 'fastCopyAndTranspose',
"""_fastCopyAndTranspose(a)""")
add_newdoc('numpy.core.multiarray', 'correlate',
"""cross_correlate(a,v, mode=0)""")
add_newdoc('numpy.core.multiarray', 'arange',
"""
arange([start,] stop[, step,], dtype=None)
Return evenly spaced values within a given interval.
Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
but returns an ndarray rather than a list.
When using a non-integer step, such as 0.1, the results will often not
be consistent. It is better to use ``linspace`` for these cases.
Parameters
----------
start : number, optional
Start of interval. The interval includes this value. The default
start value is 0.
stop : number
End of interval. The interval does not include this value, except
in some cases where `step` is not an integer and floating point
round-off affects the length of `out`.
step : number, optional
Spacing between values. For any output `out`, this is the distance
between two adjacent values, ``out[i+1] - out[i]``. The default
step size is 1. If `step` is specified, `start` must also be given.
dtype : dtype
The type of the output array. If `dtype` is not given, infer the data
type from the other input arguments.
Returns
-------
arange : ndarray
Array of evenly spaced values.
For floating point arguments, the length of the result is
``ceil((stop - start)/step)``. Because of floating point overflow,
this rule may result in the last element of `out` being greater
than `stop`.
See Also
--------
linspace : Evenly spaced numbers with careful handling of endpoints.
ogrid: Arrays of evenly spaced numbers in N-dimensions.
mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
Examples
--------
>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([ 0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])
""")
add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version',
"""_get_ndarray_c_version()
Return the compile time NDARRAY_VERSION number.
""")
add_newdoc('numpy.core.multiarray', '_reconstruct',
"""_reconstruct(subtype, shape, dtype)
Construct an empty array. Used by Pickles.
""")
add_newdoc('numpy.core.multiarray', 'set_string_function',
"""
set_string_function(f, repr=1)
Internal method to set a function to be used when pretty printing arrays.
""")
add_newdoc('numpy.core.multiarray', 'set_numeric_ops',
"""
set_numeric_ops(op1=func1, op2=func2, ...)
Set numerical operators for array objects.
Parameters
----------
op1, op2, ... : callable
Each ``op = func`` pair describes an operator to be replaced.
For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace
addition by modulus 5 addition.
Returns
-------
saved_ops : list of callables
A list of all operators, stored before making replacements.
Notes
-----
.. WARNING::
Use with care! Incorrect usage may lead to memory errors.
A function replacing an operator cannot make use of that operator.
For example, when replacing add, you may not use ``+``. Instead,
directly call ufuncs.
Examples
--------
>>> def add_mod5(x, y):
... return np.add(x, y) % 5
...
>>> old_funcs = np.set_numeric_ops(add=add_mod5)
>>> x = np.arange(12).reshape((3, 4))
>>> x + x
array([[0, 2, 4, 1],
[3, 0, 2, 4],
[1, 3, 0, 2]])
>>> ignore = np.set_numeric_ops(**old_funcs) # restore operators
""")
add_newdoc('numpy.core.multiarray', 'where',
"""
where(condition, [x, y])
Return elements, either from `x` or `y`, depending on `condition`.
If only `condition` is given, return ``condition.nonzero()``.
Parameters
----------
condition : array_like, bool
When True, yield `x`, otherwise yield `y`.
x, y : array_like, optional
Values from which to choose. `x` and `y` need to have the same
shape as `condition`.
Returns
-------
out : ndarray or tuple of ndarrays
If both `x` and `y` are specified, the output array contains
elements of `x` where `condition` is True, and elements from
`y` elsewhere.
If only `condition` is given, return the tuple
``condition.nonzero()``, the indices where `condition` is True.
See Also
--------
nonzero, choose
Notes
-----
If `x` and `y` are given and input arrays are 1-D, `where` is
equivalent to::
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
Examples
--------
>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[ 0., 1., 2.],
[ 3., 4., -1.],
[-1., -1., -1.]])
Find the indices of elements of `x` that are in `goodvalues`.
>>> goodvalues = [3, 4, 7]
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
>>> ix
array([[False, False, False],
[ True, True, False],
[False, True, False]], dtype=bool)
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))
""")
add_newdoc('numpy.core.multiarray', 'lexsort',
"""
lexsort(keys, axis=-1)
Perform an indirect sort using a sequence of keys.
Given multiple sorting keys, which can be interpreted as columns in a
spreadsheet, lexsort returns an array of integer indices that describes
the sort order by multiple columns. The last key in the sequence is used
for the primary sort order, the second-to-last key for the secondary sort
order, and so on. The keys argument must be a sequence of objects that
can be converted to arrays of the same shape. If a 2D array is provided
for the keys argument, it's rows are interpreted as the sorting keys and
sorting is according to the last row, second last row etc.
Parameters
----------
keys : (k, N) array or tuple containing k (N,)-shaped sequences
The `k` different "columns" to be sorted. The last column (or row if
`keys` is a 2D array) is the primary sort key.
axis : int, optional
Axis to be indirectly sorted. By default, sort over the last axis.
Returns
-------
indices : (N,) ndarray of ints
Array of indices that sort the keys along the specified axis.
See Also
--------
argsort : Indirect sort.
ndarray.sort : In-place sort.
sort : Return a sorted copy of an array.
Examples
--------
Sort names: first by surname, then by name.
>>> surnames = ('Hertz', 'Galilei', 'Hertz')
>>> first_names = ('Heinrich', 'Galileo', 'Gustav')
>>> ind = np.lexsort((first_names, surnames))
>>> ind
array([1, 2, 0])
>>> [surnames[i] + ", " + first_names[i] for i in ind]
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
Sort two columns of numbers:
>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by a, then by b
>>> print ind
[2 0 4 6 5 3 1]
>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
Note that sorting is first according to the elements of ``a``.
Secondary sorting is according to the elements of ``b``.
A normal ``argsort`` would have yielded:
>>> [(a[i],b[i]) for i in np.argsort(a)]
[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]
Structured arrays are sorted lexically by ``argsort``:
>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
... dtype=np.dtype([('x', int), ('y', int)]))
>>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
array([2, 0, 4, 6, 5, 3, 1])
""")
add_newdoc('numpy.core.multiarray', 'can_cast',
"""
can_cast(from, totype, casting = 'safe')
Returns True if cast between data types can occur according to the
casting rule. If from is a scalar or array scalar, also returns
True if the scalar value can be cast without overflow or truncation
to an integer.
Parameters
----------
from : dtype, dtype specifier, scalar, or array
Data type, scalar, or array to cast from.
totype : dtype or dtype specifier
Data type to cast to.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
Returns
-------
out : bool
True if cast can occur according to the casting rule.
Notes
-----
Starting in NumPy 1.9, can_cast function now returns False in 'safe'
casting mode for integer/float dtype and string dtype if the string dtype
length is not long enough to store the max integer/float value converted
to a string. Previously can_cast in 'safe' mode returned True for
integer/float dtype and a string dtype of any length.
See also
--------
dtype, result_type
Examples
--------
Basic examples
>>> np.can_cast(np.int32, np.int64)
True
>>> np.can_cast(np.float64, np.complex)
True
>>> np.can_cast(np.complex, np.float)
False
>>> np.can_cast('i8', 'f8')
True
>>> np.can_cast('i8', 'f4')
False
>>> np.can_cast('i4', 'S4')
False
Casting scalars
>>> np.can_cast(100, 'i1')
True
>>> np.can_cast(150, 'i1')
False
>>> np.can_cast(150, 'u1')
True
>>> np.can_cast(3.5e100, np.float32)
False
>>> np.can_cast(1000.0, np.float32)
True
Array scalar checks the value, array does not
>>> np.can_cast(np.array(1000.0), np.float32)
True
>>> np.can_cast(np.array([1000.0]), np.float32)
False
Using the casting rules
>>> np.can_cast('i8', 'i8', 'no')
True
>>> np.can_cast('<i8', '>i8', 'no')
False
>>> np.can_cast('<i8', '>i8', 'equiv')
True
>>> np.can_cast('<i4', '>i8', 'equiv')
False
>>> np.can_cast('<i4', '>i8', 'safe')
True
>>> np.can_cast('<i8', '>i4', 'safe')
False
>>> np.can_cast('<i8', '>i4', 'same_kind')
True
>>> np.can_cast('<i8', '>u4', 'same_kind')
False
>>> np.can_cast('<i8', '>u4', 'unsafe')
True
""")
add_newdoc('numpy.core.multiarray', 'promote_types',
"""
promote_types(type1, type2)
Returns the data type with the smallest size and smallest scalar
kind to which both ``type1`` and ``type2`` may be safely cast.
The returned data type is always in native byte order.
This function is symmetric and associative.
Parameters
----------
type1 : dtype or dtype specifier
First data type.
type2 : dtype or dtype specifier
Second data type.
Returns
-------
out : dtype
The promoted data type.
Notes
-----
.. versionadded:: 1.6.0
Starting in NumPy 1.9, promote_types function now returns a valid string
length when given an integer or float dtype as one argument and a string
dtype as another argument. Previously it always returned the input string
dtype, even if it wasn't long enough to store the max integer/float value
converted to a string.
See Also
--------
result_type, dtype, can_cast
Examples
--------
>>> np.promote_types('f4', 'f8')
dtype('float64')
>>> np.promote_types('i8', 'f4')
dtype('float64')
>>> np.promote_types('>i8', '<c8')
dtype('complex128')
>>> np.promote_types('i4', 'S8')
dtype('S11')
""")
add_newdoc('numpy.core.multiarray', 'min_scalar_type',
"""
min_scalar_type(a)
For scalar ``a``, returns the data type with the smallest size
and smallest scalar kind which can hold its value. For non-scalar
array ``a``, returns the vector's dtype unmodified.
Floating point values are not demoted to integers,
and complex values are not demoted to floats.
Parameters
----------
a : scalar or array_like
The value whose minimal data type is to be found.
Returns
-------
out : dtype
The minimal data type.
Notes
-----
.. versionadded:: 1.6.0
See Also
--------
result_type, promote_types, dtype, can_cast
Examples
--------
>>> np.min_scalar_type(10)
dtype('uint8')
>>> np.min_scalar_type(-260)
dtype('int16')
>>> np.min_scalar_type(3.1)
dtype('float16')
>>> np.min_scalar_type(1e50)
dtype('float64')
>>> np.min_scalar_type(np.arange(4,dtype='f8'))
dtype('float64')
""")
add_newdoc('numpy.core.multiarray', 'result_type',
"""
result_type(*arrays_and_dtypes)
Returns the type that results from applying the NumPy
type promotion rules to the arguments.
Type promotion in NumPy works similarly to the rules in languages
like C++, with some slight differences. When both scalars and
arrays are used, the array's type takes precedence and the actual value
of the scalar is taken into account.
For example, calculating 3*a, where a is an array of 32-bit floats,
intuitively should result in a 32-bit float output. If the 3 is a
32-bit integer, the NumPy rules indicate it can't convert losslessly
into a 32-bit float, so a 64-bit float should be the result type.
By examining the value of the constant, '3', we see that it fits in
an 8-bit integer, which can be cast losslessly into the 32-bit float.
Parameters
----------
arrays_and_dtypes : list of arrays and dtypes
The operands of some operation whose result type is needed.
Returns
-------
out : dtype
The result type.
See also
--------
dtype, promote_types, min_scalar_type, can_cast
Notes
-----
.. versionadded:: 1.6.0
The specific algorithm used is as follows.
Categories are determined by first checking which of boolean,
integer (int/uint), or floating point (float/complex) the maximum
kind of all the arrays and the scalars are.
If there are only scalars or the maximum category of the scalars
is higher than the maximum category of the arrays,
the data types are combined with :func:`promote_types`
to produce the return value.
Otherwise, `min_scalar_type` is called on each array, and
the resulting data types are all combined with :func:`promote_types`
to produce the return value.
The set of int values is not a subset of the uint values for types
with the same number of bits, something not reflected in
:func:`min_scalar_type`, but handled as a special case in `result_type`.
Examples
--------
>>> np.result_type(3, np.arange(7, dtype='i1'))
dtype('int8')
>>> np.result_type('i4', 'c8')
dtype('complex128')
>>> np.result_type(3.0, -2)
dtype('float64')
""")
add_newdoc('numpy.core.multiarray', 'newbuffer',
"""
newbuffer(size)
Return a new uninitialized buffer object.
Parameters
----------
size : int
Size in bytes of returned buffer object.
Returns
-------
newbuffer : buffer object
Returned, uninitialized buffer object of `size` bytes.
""")
add_newdoc('numpy.core.multiarray', 'getbuffer',
"""
getbuffer(obj [,offset[, size]])
Create a buffer object from the given object referencing a slice of
length size starting at offset.
Default is the entire buffer. A read-write buffer is attempted followed
by a read-only buffer.
Parameters
----------
obj : object
offset : int, optional
size : int, optional
Returns
-------
buffer_obj : buffer
Examples
--------
>>> buf = np.getbuffer(np.ones(5), 1, 3)
>>> len(buf)
3
>>> buf[0]
'\\x00'
>>> buf
<read-write buffer for 0x8af1e70, size 3, offset 1 at 0x8ba4ec0>
""")
add_newdoc('numpy.core', 'dot',
"""
dot(a, b, out=None)
Dot product of two arrays.
For 2-D arrays it is equivalent to matrix multiplication, and for 1-D
arrays to inner product of vectors (without complex conjugation). For
N dimensions it is a sum product over the last axis of `a` and
the second-to-last of `b`::
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
Parameters
----------
a : array_like
First argument.
b : array_like
Second argument.
out : ndarray, optional
Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be
C-contiguous, and its dtype must be the dtype that would be returned
for `dot(a,b)`. This is a performance feature. Therefore, if these
conditions are not met, an exception is raised, instead of attempting
to be flexible.
Returns
-------
output : ndarray
Returns the dot product of `a` and `b`. If `a` and `b` are both
scalars or both 1-D arrays then a scalar is returned; otherwise
an array is returned.
If `out` is given, then it is returned.
Raises
------
ValueError
If the last dimension of `a` is not the same size as
the second-to-last dimension of `b`.
See Also
--------
vdot : Complex-conjugating dot product.
tensordot : Sum products over arbitrary axes.
einsum : Einstein summation convention.
Examples
--------
>>> np.dot(3, 4)
12
Neither argument is complex-conjugated:
>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)
For 2-D arrays it's the matrix product:
>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
[2, 2]])
>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128
""")
add_newdoc('numpy.core', 'einsum',
"""
einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe')
Evaluates the Einstein summation convention on the operands.
Using the Einstein summation convention, many common multi-dimensional
array operations can be represented in a simple fashion. This function
provides a way compute such summations. The best way to understand this
function is to try the examples below, which show how many common NumPy
functions can be implemented as calls to `einsum`.
Parameters
----------
subscripts : str
Specifies the subscripts for summation.
operands : list of array_like
These are the arrays for the operation.
out : ndarray, optional
If provided, the calculation is done into this array.
dtype : data-type, optional
If provided, forces the calculation to use the data type specified.
Note that you may have to also give a more liberal `casting`
parameter to allow the conversions.
order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout of the output. 'C' means it should
be C contiguous. 'F' means it should be Fortran contiguous,
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
'K' means it should be as close to the layout as the inputs as
is possible, including arbitrarily permuted axes.
Default is 'K'.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur. Setting this to
'unsafe' is not recommended, as it can adversely affect accumulations.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
Returns
-------
output : ndarray
The calculation based on the Einstein summation convention.
See Also
--------
dot, inner, outer, tensordot
Notes
-----
.. versionadded:: 1.6.0
The subscripts string is a comma-separated list of subscript labels,
where each label refers to a dimension of the corresponding operand.
Repeated subscripts labels in one operand take the diagonal. For example,
``np.einsum('ii', a)`` is equivalent to ``np.trace(a)``.
Whenever a label is repeated, it is summed, so ``np.einsum('i,i', a, b)``
is equivalent to ``np.inner(a,b)``. If a label appears only once,
it is not summed, so ``np.einsum('i', a)`` produces a view of ``a``
with no changes.
The order of labels in the output is by default alphabetical. This
means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
``np.einsum('ji', a)`` takes its transpose.
The output can be controlled by specifying output subscript labels
as well. This specifies the label order, and allows summing to
be disallowed or forced when desired. The call ``np.einsum('i->', a)``
is like ``np.sum(a, axis=-1)``, and ``np.einsum('ii->i', a)``
is like ``np.diag(a)``. The difference is that `einsum` does not
allow broadcasting by default.
To enable and control broadcasting, use an ellipsis. Default
NumPy-style broadcasting is done by adding an ellipsis
to the left of each term, like ``np.einsum('...ii->...i', a)``.
To take the trace along the first and last axes,
you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
product with the left-most indices instead of rightmost, you can do
``np.einsum('ij...,jk...->ik...', a, b)``.
When there is only one operand, no axes are summed, and no output
parameter is provided, a view into the operand is returned instead
of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
produces a view.
An alternative way to provide the subscripts and operands is as
``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. The examples
below have corresponding `einsum` calls with the two parameter methods.
Examples
--------
>>> a = np.arange(25).reshape(5,5)
>>> b = np.arange(5)
>>> c = np.arange(6).reshape(2,3)
>>> np.einsum('ii', a)
60
>>> np.einsum(a, [0,0])
60
>>> np.trace(a)
60
>>> np.einsum('ii->i', a)
array([ 0, 6, 12, 18, 24])
>>> np.einsum(a, [0,0], [0])
array([ 0, 6, 12, 18, 24])
>>> np.diag(a)
array([ 0, 6, 12, 18, 24])
>>> np.einsum('ij,j', a, b)
array([ 30, 80, 130, 180, 230])
>>> np.einsum(a, [0,1], b, [1])
array([ 30, 80, 130, 180, 230])
>>> np.dot(a, b)
array([ 30, 80, 130, 180, 230])
>>> np.einsum('...j,j', a, b)
array([ 30, 80, 130, 180, 230])
>>> np.einsum('ji', c)
array([[0, 3],
[1, 4],
[2, 5]])
>>> np.einsum(c, [1,0])
array([[0, 3],
[1, 4],
[2, 5]])
>>> c.T
array([[0, 3],
[1, 4],
[2, 5]])
>>> np.einsum('..., ...', 3, c)
array([[ 0, 3, 6],
[ 9, 12, 15]])
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
array([[ 0, 3, 6],
[ 9, 12, 15]])
>>> np.multiply(3, c)
array([[ 0, 3, 6],
[ 9, 12, 15]])
>>> np.einsum('i,i', b, b)
30
>>> np.einsum(b, [0], b, [0])
30
>>> np.inner(b,b)
30
>>> np.einsum('i,j', np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
>>> np.einsum(np.arange(2)+1, [0], b, [1])
array([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
>>> np.outer(np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
>>> np.einsum('i...->...', a)
array([50, 55, 60, 65, 70])
>>> np.einsum(a, [0,Ellipsis], [Ellipsis])
array([50, 55, 60, 65, 70])
>>> np.sum(a, axis=0)
array([50, 55, 60, 65, 70])
>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> np.einsum('ijk,jil->kl', a, b)
array([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
array([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
>>> np.tensordot(a,b, axes=([1,0],[0,1]))
array([[ 4400., 4730.],
[ 4532., 4874.],
[ 4664., 5018.],
[ 4796., 5162.],
[ 4928., 5306.]])
>>> a = np.arange(6).reshape((3,2))
>>> b = np.arange(12).reshape((4,3))
>>> np.einsum('ki,jk->ij', a, b)
array([[10, 28, 46, 64],
[13, 40, 67, 94]])
>>> np.einsum('ki,...k->i...', a, b)
array([[10, 28, 46, 64],
[13, 40, 67, 94]])
>>> np.einsum('k...,jk', a, b)
array([[10, 28, 46, 64],
[13, 40, 67, 94]])
""")
add_newdoc('numpy.core', 'alterdot',
"""
Change `dot`, `vdot`, and `inner` to use accelerated BLAS functions.
Typically, as a user of Numpy, you do not explicitly call this function. If
Numpy is built with an accelerated BLAS, this function is automatically
called when Numpy is imported.
When Numpy is built with an accelerated BLAS like ATLAS, these functions
are replaced to make use of the faster implementations. The faster
implementations only affect float32, float64, complex64, and complex128
arrays. Furthermore, the BLAS API only includes matrix-matrix,
matrix-vector, and vector-vector products. Products of arrays with larger
dimensionalities use the built in functions and are not accelerated.
See Also
--------
restoredot : `restoredot` undoes the effects of `alterdot`.
""")
add_newdoc('numpy.core', 'restoredot',
"""
Restore `dot`, `vdot`, and `innerproduct` to the default non-BLAS
implementations.
Typically, the user will only need to call this when troubleshooting and
installation problem, reproducing the conditions of a build without an
accelerated BLAS, or when being very careful about benchmarking linear
algebra operations.
See Also
--------
alterdot : `restoredot` undoes the effects of `alterdot`.
""")
add_newdoc('numpy.core', 'vdot',
"""
vdot(a, b)
Return the dot product of two vectors.
The vdot(`a`, `b`) function handles complex numbers differently than
dot(`a`, `b`). If the first argument is complex the complex conjugate
of the first argument is used for the calculation of the dot product.
Note that `vdot` handles multidimensional arrays differently than `dot`:
it does *not* perform a matrix product, but flattens input arguments
to 1-D vectors first. Consequently, it should only be used for vectors.
Parameters
----------
a : array_like
If `a` is complex the complex conjugate is taken before calculation
of the dot product.
b : array_like
Second argument to the dot product.
Returns
-------
output : ndarray
Dot product of `a` and `b`. Can be an int, float, or
complex depending on the types of `a` and `b`.
See Also
--------
dot : Return the dot product without using the complex conjugate of the
first argument.
Examples
--------
>>> a = np.array([1+2j,3+4j])
>>> b = np.array([5+6j,7+8j])
>>> np.vdot(a, b)
(70-8j)
>>> np.vdot(b, a)
(70+8j)
Note that higher-dimensional arrays are flattened!
>>> a = np.array([[1, 4], [5, 6]])
>>> b = np.array([[4, 1], [2, 2]])
>>> np.vdot(a, b)
30
>>> np.vdot(b, a)
30
>>> 1*4 + 4*1 + 5*2 + 6*2
30
""")
##############################################################################
#
# Documentation for ndarray attributes and methods
#
##############################################################################
##############################################################################
#
# ndarray object
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray',
"""
ndarray(shape, dtype=float, buffer=None, offset=0,
strides=None, order=None)
An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes it
occupies in memory, whether it is an integer, a floating point number,
or something else, etc.)
Arrays should be constructed using `array`, `zeros` or `empty` (refer
to the See Also section below). The parameters given here refer to
a low-level method (`ndarray(...)`) for instantiating an array.
For more information, refer to the `numpy` module and examine the
the methods and attributes of an array.
Parameters
----------
(for the __new__ method; see Notes below)
shape : tuple of ints
Shape of created array.
dtype : data-type, optional
Any object that can be interpreted as a numpy data type.
buffer : object exposing buffer interface, optional
Used to fill the array with data.
offset : int, optional
Offset of array data in buffer.
strides : tuple of ints, optional
Strides of data in memory.
order : {'C', 'F'}, optional
Row-major or column-major order.
Attributes
----------
T : ndarray
Transpose of the array.
data : buffer
The array's elements, in memory.
dtype : dtype object
Describes the format of the elements in the array.
flags : dict
Dictionary containing information related to memory use, e.g.,
'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
flat : numpy.flatiter object
Flattened version of the array as an iterator. The iterator
allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
assignment examples; TODO).
imag : ndarray
Imaginary part of the array.
real : ndarray
Real part of the array.
size : int
Number of elements in the array.
itemsize : int
The memory use of each array element in bytes.
nbytes : int
The total number of bytes required to store the array data,
i.e., ``itemsize * size``.
ndim : int
The array's number of dimensions.
shape : tuple of ints
Shape of the array.
strides : tuple of ints
The step-size required to move from one element to the next in
memory. For example, a contiguous ``(3, 4)`` array of type
``int16`` in C-order has strides ``(8, 2)``. This implies that
to move from element to element in memory requires jumps of 2 bytes.
To move from row-to-row, one needs to jump 8 bytes at a time
(``2 * 4``).
ctypes : ctypes object
Class containing properties of the array needed for interaction
with ctypes.
base : ndarray
If the array is a view into another array, that array is its `base`
(unless that array is also a view). The `base` array is where the
array data is actually stored.
See Also
--------
array : Construct an array.
zeros : Create an array, each element of which is zero.
empty : Create an array, but leave its allocated memory unchanged (i.e.,
it contains "garbage").
dtype : Create a data-type.
Notes
-----
There are two modes of creating an array using ``__new__``:
1. If `buffer` is None, then only `shape`, `dtype`, and `order`
are used.
2. If `buffer` is an object exposing the buffer interface, then
all keywords are interpreted.
No ``__init__`` method is needed because the array is fully initialized
after the ``__new__`` method.
Examples
--------
These examples illustrate the low-level `ndarray` constructor. Refer
to the `See Also` section above for easier ways of constructing an
ndarray.
First mode, `buffer` is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[ -1.13698227e+002, 4.25087011e-303],
[ 2.88528414e-306, 3.27025015e-309]]) #random
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])
""")
##############################################################################
#
# ndarray attributes
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
"""Array protocol: Python side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
"""None."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
"""Array priority."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
"""Array protocol: C-struct side."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('_as_parameter_',
"""Allow the array to be interpreted as a ctypes object by returning the
data-memory location as an integer
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
"""
Base object if memory is from some other object.
Examples
--------
The base of an array that owns its memory is None:
>>> x = np.array([1,2,3,4])
>>> x.base is None
True
Slicing creates a view, whose memory is shared with x:
>>> y = x[2:]
>>> y.base is x
True
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
"""
An object to simplify the interaction of the array with the ctypes
module.
This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.
Parameters
----------
None
Returns
-------
c : Python object
Possessing attributes data, shape, strides, etc.
See Also
--------
numpy.ctypeslib
Notes
-----
Below are the public attributes of this object which were documented
in "Guide to NumPy" (we have omitted undocumented public attributes,
as well as documented private attributes):
* data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_['data'][0].
* shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype('p') on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.
* strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.
* data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).
* shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).
* strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).
Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
``(a+b).ctypes.data_as(ctypes.c_void_p)`` returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either ``c=a+b`` or ``ct=(a+b).ctypes``. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.
If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.
Examples
--------
>>> import ctypes
>>> x
array([[0, 1],
[2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
"""Python buffer object pointing to the start of the array's data."""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
"""
Data-type of the array's elements.
Parameters
----------
None
Returns
-------
d : numpy dtype object
See Also
--------
numpy.dtype
Examples
--------
>>> x
array([[0, 1],
[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
"""
The imaginary part of the array.
Examples
--------
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([ 0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
"""
Length of one array element in bytes.
Examples
--------
>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
"""
Information about the memory layout of the array.
Attributes
----------
C_CONTIGUOUS (C)
The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F)
The data is in a single, Fortran-style contiguous segment.
OWNDATA (O)
The array owns the memory it uses or borrows it from another object.
WRITEABLE (W)
The data area can be written to. Setting this to False locks
the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
from its base array at creation time, but a view of a writeable
array may be subsequently locked while the base array remains writeable.
(The opposite is not true, in that a view of a locked array may not
be made writeable. However, currently, locking a base object does not
lock any views that already reference it, so under that circumstance it
is possible to alter the contents of a locked array via a previously
created writeable view onto it.) Attempting to change a non-writeable
array raises a RuntimeError exception.
ALIGNED (A)
The data and all elements are aligned appropriately for the hardware.
UPDATEIFCOPY (U)
This array is a copy of some other array. When this array is
deallocated, the base array will be updated with the contents of
this array.
FNC
F_CONTIGUOUS and not C_CONTIGUOUS.
FORC
F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
BEHAVED (B)
ALIGNED and WRITEABLE.
CARRAY (CA)
BEHAVED and C_CONTIGUOUS.
FARRAY (FA)
BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
Notes
-----
The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),
or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag
names are only supported in dictionary access.
Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry,
or by calling `ndarray.setflags`.
The array flags cannot be set arbitrarily:
- UPDATEIFCOPY can only be set ``False``.
- ALIGNED can only be set ``True`` if the data is truly aligned.
- WRITEABLE can only be set ``True`` if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.
Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.
Even for contiguous arrays a stride for a given dimension
``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
or the array has no elements.
It does *not* generally hold that ``self.strides[-1] == self.itemsize``
for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
Fortran-style contiguous arrays is true.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
"""
A 1-D iterator over the array.
This is a `numpy.flatiter` instance, which acts similarly to, but is not
a subclass of, Python's built-in iterator object.
See Also
--------
flatten : Return a copy of the array collapsed into one dimension.
flatiter
Examples
--------
>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
[2, 5],
[3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>
An assignment example:
>>> x.flat = 3; x
array([[3, 3, 3],
[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
[3, 1, 3]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
"""
Total bytes consumed by the elements of the array.
Notes
-----
Does not include memory consumed by non-element attributes of the
array object.
Examples
--------
>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
"""
Number of array dimensions.
Examples
--------
>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
"""
The real part of the array.
Examples
--------
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([ 1. , 0.70710678])
>>> x.real.dtype
dtype('float64')
See Also
--------
numpy.real : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
"""
Tuple of array dimensions.
Notes
-----
May be used to "reshape" the array, as long as this would not
require a change in the total number of elements
Examples
--------
>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
"""
Number of elements in the array.
Equivalent to ``np.prod(a.shape)``, i.e., the product of the array's
dimensions.
Examples
--------
>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
"""
Tuple of bytes to step in each dimension when traversing an array.
The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
is::
offset = sum(np.array(i) * a.strides)
A more detailed explanation of strides can be found in the
"ndarray.rst" file in the NumPy reference guide.
Notes
-----
Imagine an array of 32-bit integers (each 4 bytes)::
x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)
This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array `x` will be
``(20, 4)``.
See Also
--------
numpy.lib.stride_tricks.as_strided
Examples
--------
>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17
>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
"""
Same as self.transpose(), except that self is returned if
self.ndim < 2.
Examples
--------
>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[ 1., 2.],
[ 3., 4.]])
>>> x.T
array([[ 1., 3.],
[ 2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([ 1., 2., 3., 4.])
>>> x.T
array([ 1., 2., 3., 4.])
"""))
##############################################################################
#
# ndarray methods
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
""" a.__array__(|dtype) -> reference if type unchanged, copy otherwise.
Returns either a new reference to self if dtype is not given or a new array
of provided data type if dtype is different from the current dtype of the
array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__',
"""a.__array_prepare__(obj) -> Object of same type as ndarray object obj.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
"""a.__array_wrap__(obj) -> Object of same type as ndarray object a.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
"""a.__copy__([order])
Return a copy of the array.
Parameters
----------
order : {'C', 'F', 'A'}, optional
If order is 'C' (False) then the result is contiguous (default).
If order is 'Fortran' (True) then the result has fortran order.
If order is 'Any' (None) then the result has fortran order
only if the array already is in fortran order.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
"""a.__deepcopy__() -> Deep copy of array.
Used if copy.deepcopy is called on an array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
"""a.__reduce__()
For pickling.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
"""a.__setstate__(version, shape, dtype, isfortran, rawdata)
For unpickling.
Parameters
----------
version : int
optional pickle version. If omitted defaults to 0.
shape : tuple
dtype : data-type
isFortran : bool
rawdata : string or list
a binary string with the data (or a list if 'a' is an object array)
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
"""
a.all(axis=None, out=None)
Returns True if all elements evaluate to True.
Refer to `numpy.all` for full documentation.
See Also
--------
numpy.all : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
"""
a.any(axis=None, out=None)
Returns True if any of the elements of `a` evaluate to True.
Refer to `numpy.any` for full documentation.
See Also
--------
numpy.any : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
"""
a.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.
Refer to `numpy.argmax` for full documentation.
See Also
--------
numpy.argmax : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
"""
a.argmin(axis=None, out=None)
Return indices of the minimum values along the given axis of `a`.
Refer to `numpy.argmin` for detailed documentation.
See Also
--------
numpy.argmin : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
"""
a.argsort(axis=-1, kind='quicksort', order=None)
Returns the indices that would sort this array.
Refer to `numpy.argsort` for full documentation.
See Also
--------
numpy.argsort : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition',
"""
a.argpartition(kth, axis=-1, kind='introselect', order=None)
Returns the indices that would partition this array.
Refer to `numpy.argpartition` for full documentation.
.. versionadded:: 1.8.0
See Also
--------
numpy.argpartition : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
"""
a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
Copy of the array, cast to a specified type.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout order of the result.
'C' means C order, 'F' means Fortran order, 'A'
means 'F' order if all the arrays are Fortran contiguous,
'C' order otherwise, and 'K' means as close to the
order the array elements appear in memory as possible.
Default is 'K'.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur. Defaults to 'unsafe'
for backwards compatibility.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
subok : bool, optional
If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.
copy : bool, optional
By default, astype always returns a newly allocated array. If this
is set to false, and the `dtype`, `order`, and `subok`
requirements are satisfied, the input array is returned instead
of a copy.
Returns
-------
arr_t : ndarray
Unless `copy` is False and the other conditions for returning the input
array are satisfied (see description for `copy` input paramter), `arr_t`
is a new array of the same shape as the input array, with dtype, order
given by `dtype`, `order`.
Notes
-----
Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in 'safe' casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.
Raises
------
ComplexWarning
When casting from complex to float or int. To avoid this,
one should use ``a.real.astype(t)``.
Examples
--------
>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. , 2. , 2.5])
>>> x.astype(int)
array([1, 2, 2])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
"""
a.byteswap(inplace)
Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.
Parameters
----------
inplace : bool, optional
If ``True``, swap bytes in-place, default is ``False``.
Returns
-------
out : ndarray
The byteswapped array. If `inplace` is ``True``, this is
a view to self.
Examples
--------
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([ 256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']
Arrays of strings are not swapped
>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
dtype='|S3')
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
"""
a.choose(choices, out=None, mode='raise')
Use an index array to construct a new array from a set of choices.
Refer to `numpy.choose` for full documentation.
See Also
--------
numpy.choose : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
"""
a.clip(a_min, a_max, out=None)
Return an array whose values are limited to ``[a_min, a_max]``.
Refer to `numpy.clip` for full documentation.
See Also
--------
numpy.clip : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
"""
a.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to `numpy.compress` for full documentation.
See Also
--------
numpy.compress : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
"""
a.conj()
Complex-conjugate all elements.
Refer to `numpy.conjugate` for full documentation.
See Also
--------
numpy.conjugate : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
"""
a.conjugate()
Return the complex conjugate, element-wise.
Refer to `numpy.conjugate` for full documentation.
See Also
--------
numpy.conjugate : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
"""
a.copy(order='C')
Return a copy of the array.
Parameters
----------
order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout of the copy. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible. (Note that this function and :func:numpy.copy are very
similar, but have different default values for their order=
arguments.)
See also
--------
numpy.copy
numpy.copyto
Examples
--------
>>> x = np.array([[1,2,3],[4,5,6]], order='F')
>>> y = x.copy()
>>> x.fill(0)
>>> x
array([[0, 0, 0],
[0, 0, 0]])
>>> y
array([[1, 2, 3],
[4, 5, 6]])
>>> y.flags['C_CONTIGUOUS']
True
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
"""
a.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.
Refer to `numpy.cumprod` for full documentation.
See Also
--------
numpy.cumprod : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
"""
a.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to `numpy.cumsum` for full documentation.
See Also
--------
numpy.cumsum : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
"""
a.diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
NumPy 1.10 the read-only restriction will be removed.
Refer to :func:`numpy.diagonal` for full documentation.
See Also
--------
numpy.diagonal : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dot',
"""
a.dot(b, out=None)
Dot product of two arrays.
Refer to `numpy.dot` for full documentation.
See Also
--------
numpy.dot : equivalent function
Examples
--------
>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[ 2., 2.],
[ 2., 2.]])
This array method can be conveniently chained:
>>> a.dot(b).dot(b)
array([[ 8., 8.],
[ 8., 8.]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
"""a.dump(file)
Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.
Parameters
----------
file : str
A string naming the dump file.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
"""
a.dumps()
Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.
Parameters
----------
None
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
"""
a.fill(value)
Fill the array with a scalar value.
Parameters
----------
value : scalar
All elements of `a` will be assigned this value.
Examples
--------
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1., 1.])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
"""
a.flatten(order='C')
Return a copy of the array collapsed into one dimension.
Parameters
----------
order : {'C', 'F', 'A'}, optional
Whether to flatten in C (row-major), Fortran (column-major) order,
or preserve the C/Fortran ordering from `a`.
The default is 'C'.
Returns
-------
y : ndarray
A copy of the input array, flattened to one dimension.
See Also
--------
ravel : Return a flattened array.
flat : A 1-D flat iterator over the array.
Examples
--------
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
"""
a.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.
A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.
Parameters
----------
dtype : str or dtype
The data type of the view. The dtype size of the view can not be larger
than that of the array itself.
offset : int
Number of bytes to skip before beginning the element view.
Examples
--------
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[ 1.+1.j, 0.+0.j],
[ 0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[ 1., 0.],
[ 0., 2.]])
By choosing an offset of 8 bytes we can select the complex part of the
array for our view:
>>> x.getfield(np.float64, offset=8)
array([[ 1., 0.],
[ 0., 4.]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
"""
a.item(*args)
Copy an element of an array to a standard Python scalar and return it.
Parameters
----------
\\*args : Arguments (variable number and type)
* none: in this case, the method only works for arrays
with one element (`a.size == 1`), which element is
copied into a standard Python scalar object and returned.
* int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.
* tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.
Returns
-------
z : Standard Python scalar object
A copy of the specified element of the array as a suitable
Python scalar
Notes
-----
When the data type of `a` is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.
`item` is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python's optimized math.
Examples
--------
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
[2, 8, 3],
[8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset',
"""
a.itemset(*args)
Insert scalar into an array (scalar is cast to array's dtype, if possible)
There must be at least 1 argument, and define the last argument
as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster
than ``a[args] = item``. The item should be a scalar value and `args`
must select a single item in the array `a`.
Parameters
----------
\*args : Arguments
If one argument: a scalar, only used in case `a` is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.
Notes
-----
Compared to indexing syntax, `itemset` provides some speed increase
for placing a scalar into a particular location in an `ndarray`,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using `itemset` (and `item`) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.
Examples
--------
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
[2, 8, 3],
[8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
[2, 0, 3],
[8, 5, 9]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setasflat',
"""
a.setasflat(arr)
Equivalent to a.flat = arr.flat, but is generally more efficient.
This function does not check for overlap, so if ``arr`` and ``a``
are viewing the same data with different strides, the results will
be unpredictable.
Parameters
----------
arr : array_like
The array to copy into a.
Examples
--------
>>> a = np.arange(2*4).reshape(2,4)[:,:-1]; a
array([[0, 1, 2],
[4, 5, 6]])
>>> b = np.arange(3*3, dtype='f4').reshape(3,3).T[::-1,:-1]; b
array([[ 2., 5.],
[ 1., 4.],
[ 0., 3.]], dtype=float32)
>>> a.setasflat(b)
>>> a
array([[2, 5, 1],
[4, 0, 3]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
"""
a.max(axis=None, out=None)
Return the maximum along a given axis.
Refer to `numpy.amax` for full documentation.
See Also
--------
numpy.amax : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
"""
a.mean(axis=None, dtype=None, out=None)
Returns the average of the array elements along given axis.
Refer to `numpy.mean` for full documentation.
See Also
--------
numpy.mean : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
"""
a.min(axis=None, out=None)
Return the minimum along a given axis.
Refer to `numpy.amin` for full documentation.
See Also
--------
numpy.amin : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'may_share_memory',
"""
Determine if two arrays can share memory
The memory-bounds of a and b are computed. If they overlap then
this function returns True. Otherwise, it returns False.
A return of True does not necessarily mean that the two arrays
share any element. It just means that they *might*.
Parameters
----------
a, b : ndarray
Returns
-------
out : bool
Examples
--------
>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
False
""")
add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
"""
arr.newbyteorder(new_order='S')
Return the array with the same data viewed with a different byte order.
Equivalent to::
arr.view(arr.dtype.newbytorder(new_order))
Changes are also made in all fields and sub-arrays of the array data
type.
Parameters
----------
new_order : string, optional
Byte order to force; a value from the byte order specifications
above. `new_order` codes can be any of::
* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)
The default value ('S') results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of `new_order` for the alternatives above. For example,
any of 'B' or 'b' or 'biggish' are valid to specify big-endian.
Returns
-------
new_arr : array
New array object with the dtype reflecting given change to the
byte order.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
"""
a.nonzero()
Return the indices of the elements that are non-zero.
Refer to `numpy.nonzero` for full documentation.
See Also
--------
numpy.nonzero : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
"""
a.prod(axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis
Refer to `numpy.prod` for full documentation.
See Also
--------
numpy.prod : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
"""
a.ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.
Refer to `numpy.ptp` for full documentation.
See Also
--------
numpy.ptp : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
"""
a.put(indices, values, mode='raise')
Set ``a.flat[n] = values[n]`` for all `n` in indices.
Refer to `numpy.put` for full documentation.
See Also
--------
numpy.put : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'copyto',
"""
copyto(dst, src, casting='same_kind', where=None, preservena=False)
Copies values from one array to another, broadcasting as necessary.
Raises a TypeError if the `casting` rule is violated, and if
`where` is provided, it selects which elements to copy.
.. versionadded:: 1.7.0
Parameters
----------
dst : ndarray
The array into which values are copied.
src : array_like
The array from which values are copied.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur when copying.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
where : array_like of bool, optional
A boolean array which is broadcasted to match the dimensions
of `dst`, and selects elements to copy from `src` to `dst`
wherever it contains the value True.
preservena : bool, optional
If set to True, leaves any NA values in `dst` untouched. This
is similar to the "hard mask" feature in numpy.ma.
""")
add_newdoc('numpy.core.multiarray', 'putmask',
"""
putmask(a, mask, values)
Changes elements of an array based on conditional and input values.
Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
If `values` is not the same size as `a` and `mask` then it will repeat.
This gives behavior different from ``a[mask] = values``.
.. note:: The `putmask` functionality is also provided by `copyto`, which
can be significantly faster and in addition is NA-aware
(`preservena` keyword). Replacing `putmask` with
``np.copyto(a, values, where=mask)`` is recommended.
Parameters
----------
a : array_like
Target array.
mask : array_like
Boolean mask array. It has to be the same shape as `a`.
values : array_like
Values to put into `a` where `mask` is True. If `values` is smaller
than `a` it will be repeated.
See Also
--------
place, put, take, copyto
Examples
--------
>>> x = np.arange(6).reshape(2, 3)
>>> np.putmask(x, x>2, x**2)
>>> x
array([[ 0, 1, 2],
[ 9, 16, 25]])
If `values` is smaller than `a` it is repeated:
>>> x = np.arange(5)
>>> np.putmask(x, x>1, [-33, -44])
>>> x
array([ 0, 1, -33, -44, -33])
""")
add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
"""
a.ravel([order])
Return a flattened array.
Refer to `numpy.ravel` for full documentation.
See Also
--------
numpy.ravel : equivalent function
ndarray.flat : a flat iterator on the array.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
"""
a.repeat(repeats, axis=None)
Repeat elements of an array.
Refer to `numpy.repeat` for full documentation.
See Also
--------
numpy.repeat : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
"""
a.reshape(shape, order='C')
Returns an array containing the same data with a new shape.
Refer to `numpy.reshape` for full documentation.
See Also
--------
numpy.reshape : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
"""
a.resize(new_shape, refcheck=True)
Change shape and size of array in-place.
Parameters
----------
new_shape : tuple of ints, or `n` ints
Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.
Returns
-------
None
Raises
------
ValueError
If `a` does not own its own data or references or views to it exist,
and the data memory must be changed.
SystemError
If the `order` keyword argument is specified. This behaviour is a
bug in NumPy.
See Also
--------
resize : Return a new array with the specified shape.
Notes
-----
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be
resized.
The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
`refcheck` to False.
Examples
--------
Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:
>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
[1]])
>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
[2]])
Enlarging an array: as above, but missing entries are filled with zeros:
>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
[3, 0, 0]])
Referencing an array prevents resizing...
>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...
Unless `refcheck` is False:
>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
"""
a.round(decimals=0, out=None)
Return `a` with each element rounded to the given number of decimals.
Refer to `numpy.around` for full documentation.
See Also
--------
numpy.around : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
"""
a.searchsorted(v, side='left', sorter=None)
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see `numpy.searchsorted`
See Also
--------
numpy.searchsorted : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
"""
a.setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.
Place `val` into `a`'s field defined by `dtype` and beginning `offset`
bytes into the field.
Parameters
----------
val : object
Value to be placed in field.
dtype : dtype object
Data-type of the field in which to place `val`.
offset : int, optional
The number of bytes into the field at which to place `val`.
Returns
-------
None
See Also
--------
getfield
Examples
--------
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
[3, 3, 3],
[3, 3, 3]])
>>> x
array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
[ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
[ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
"""
a.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory
area used by `a` (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the
ultimate owner of the memory exposes a writeable buffer interface,
or is a string. (The exception for string is made so that unpickling
can be done without copying memory.)
Parameters
----------
write : bool, optional
Describes whether or not `a` can be written to.
align : bool, optional
Describes whether or not `a` is aligned properly for its type.
uic : bool, optional
Describes whether or not `a` is a copy of another "base" array.
Notes
-----
Array flags provide information about how the memory area used
for the array is to be interpreted. There are 6 Boolean flags
in use, only three of which can be changed by the user:
UPDATEIFCOPY, WRITEABLE, and ALIGNED.
WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);
UPDATEIFCOPY (U) this array is a copy of some other array (referenced
by .base). When this array is deallocated, the base array will be
updated with the contents of this array.
All flags can be accessed using their first (upper case) letter as well
as the full name.
Examples
--------
>>> y
array([[3, 1, 7],
[2, 0, 0],
[8, 5, 9]])
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
"""
a.sort(axis=-1, kind='quicksort', order=None)
Sort an array, in-place.
Parameters
----------
axis : int, optional
Axis along which to sort. Default is -1, which means sort along the
last axis.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
Sorting algorithm. Default is 'quicksort'.
order : list, optional
When `a` is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
See Also
--------
numpy.sort : Return a sorted copy of an array.
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find elements in sorted array.
partition: Partial sort.
Notes
-----
See ``sort`` for notes on the different sorting algorithms.
Examples
--------
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
[1, 4]])
Use the `order` keyword to specify a field to use when sorting a
structured array:
>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
dtype=[('x', '|S1'), ('y', '<i4')])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('partition',
"""
a.partition(kth, axis=-1, kind='introselect', order=None)
Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.
.. versionadded:: 1.8.0
Parameters
----------
kth : int or sequence of ints
Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.
axis : int, optional
Axis along which to sort. Default is -1, which means sort along the
last axis.
kind : {'introselect'}, optional
Selection algorithm. Default is 'introselect'.
order : list, optional
When `a` is an array with fields defined, this argument specifies
which fields to compare first, second, etc. Not all fields need be
specified.
See Also
--------
numpy.partition : Return a parititioned copy of an array.
argpartition : Indirect partition.
sort : Full sort.
Notes
-----
See ``np.partition`` for notes on the different algorithms.
Examples
--------
>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])
>>> a.partition((1, 3))
array([1, 2, 3, 4])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
"""
a.squeeze(axis=None)
Remove single-dimensional entries from the shape of `a`.
Refer to `numpy.squeeze` for full documentation.
See Also
--------
numpy.squeeze : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
"""
a.std(axis=None, dtype=None, out=None, ddof=0)
Returns the standard deviation of the array elements along given axis.
Refer to `numpy.std` for full documentation.
See Also
--------
numpy.std : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
"""
a.sum(axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to `numpy.sum` for full documentation.
See Also
--------
numpy.sum : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
"""
a.swapaxes(axis1, axis2)
Return a view of the array with `axis1` and `axis2` interchanged.
Refer to `numpy.swapaxes` for full documentation.
See Also
--------
numpy.swapaxes : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
"""
a.take(indices, axis=None, out=None, mode='raise')
Return an array formed from the elements of `a` at the given indices.
Refer to `numpy.take` for full documentation.
See Also
--------
numpy.take : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
"""
a.tofile(fid, sep="", format="%s")
Write array to a file as text or binary (default).
Data is always written in 'C' order, independent of the order of `a`.
The data produced by this method can be recovered using the function
fromfile().
Parameters
----------
fid : file or str
An open file object, or a string containing a filename.
sep : str
Separator between array items for text output.
If "" (empty), a binary file is written, equivalent to
``file.write(a.tobytes())``.
format : str
Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using "format" % item.
Notes
-----
This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
"""
a.tolist()
Return the array as a (possibly nested) list.
Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.
Parameters
----------
none
Returns
-------
y : list
The possibly nested list of array elements.
Notes
-----
The array may be recreated, ``a = np.array(a.tolist())``.
Examples
--------
>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]
"""))
tobytesdoc = """
a.{name}(order='C')
Construct Python bytes containing the raw data bytes in the array.
Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either 'C' or 'Fortran',
or 'Any' order (the default is 'C'-order). 'Any' order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means 'Fortran' order.
{deprecated}
Parameters
----------
order : {{'C', 'F', None}}, optional
Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.
Returns
-------
s : bytes
Python bytes exhibiting a copy of `a`'s raw data.
Examples
--------
>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x03\\x00\\x00\\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x03\\x00\\x00\\x00'
"""
add_newdoc('numpy.core.multiarray', 'ndarray',
('tostring', tobytesdoc.format(name='tostring',
deprecated=
'This function is a compatibility '
'alias for tobytes. Despite its '
'name it returns bytes not '
'strings.')))
add_newdoc('numpy.core.multiarray', 'ndarray',
('tobytes', tobytesdoc.format(name='tobytes',
deprecated='.. versionadded:: 1.9.0')))
add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
"""
a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to `numpy.trace` for full documentation.
See Also
--------
numpy.trace : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
"""
a.transpose(*axes)
Returns a view of the array with axes transposed.
For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then
``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``.
Parameters
----------
axes : None, tuple of ints, or `n` ints
* None or no argument: reverses the order of the axes.
* tuple of ints: `i` in the `j`-th place in the tuple means `a`'s
`i`-th axis becomes `a.transpose()`'s `j`-th axis.
* `n` ints: same as an n-tuple of the same ints (this form is
intended simply as a "convenience" alternative to the tuple form)
Returns
-------
out : ndarray
View of `a`, with axes suitably permuted.
See Also
--------
ndarray.T : Array property returning the array transposed.
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
[3, 4]])
>>> a.transpose()
array([[1, 3],
[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
[2, 4]])
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
"""
a.var(axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the array elements, along given axis.
Refer to `numpy.var` for full documentation.
See Also
--------
numpy.var : equivalent function
"""))
add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
"""
a.view(dtype=None, type=None)
New view of array with the same data.
Parameters
----------
dtype : data-type or ndarray sub-class, optional
Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as `a`.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the ``type`` parameter).
type : Python type, optional
Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.
Notes
-----
``a.view()`` is used two different ways:
``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
of the array's memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.
``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
returns an instance of `ndarray_subclass` that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.
For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of ``a`` (shown
by ``print(a)``). It also depends on exactly how ``a`` is stored in
memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.
Examples
--------
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
Viewing array data using a different type and dtype:
>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>
Creating a view on a structured array so it can be used in calculations
>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2., 3.])
Making changes to the view changes the underlying array
>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]
Using a view to convert an array to a record array:
>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)
Views share data:
>>> x[0] = (9, 10)
>>> z[0]
(9, 10)
Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])
"""))
##############################################################################
#
# umath functions
#
##############################################################################
add_newdoc('numpy.core.umath', 'frompyfunc',
"""
frompyfunc(func, nin, nout)
Takes an arbitrary Python function and returns a Numpy ufunc.
Can be used, for example, to add broadcasting to a built-in Python
function (see Examples section).
Parameters
----------
func : Python function object
An arbitrary Python function.
nin : int
The number of input arguments.
nout : int
The number of objects returned by `func`.
Returns
-------
out : ufunc
Returns a Numpy universal function (``ufunc``) object.
Notes
-----
The returned ufunc always returns PyObject arrays.
Examples
--------
Use frompyfunc to add broadcasting to the Python function ``oct``:
>>> oct_array = np.frompyfunc(oct, 1, 1)
>>> oct_array(np.array((10, 30, 100)))
array([012, 036, 0144], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison
array(['012', '036', '0144'],
dtype='|S4')
""")
add_newdoc('numpy.core.umath', 'geterrobj',
"""
geterrobj()
Return the current object that defines floating-point error handling.
The error object contains all information that defines the error handling
behavior in Numpy. `geterrobj` is used internally by the other
functions that get and set error handling behavior (`geterr`, `seterr`,
`geterrcall`, `seterrcall`).
Returns
-------
errobj : list
The error object, a list containing three elements:
[internal numpy buffer size, error mask, error callback function].
The error mask is a single integer that holds the treatment information
on all four floating point errors. The information for each error type
is contained in three bits of the integer. If we print it in base 8, we
can see what treatment is set for "invalid", "under", "over", and
"divide" (in that order). The printed string can be interpreted with
* 0 : 'ignore'
* 1 : 'warn'
* 2 : 'raise'
* 3 : 'call'
* 4 : 'print'
* 5 : 'log'
See Also
--------
seterrobj, seterr, geterr, seterrcall, geterrcall
getbufsize, setbufsize
Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> np.geterrobj() # first get the defaults
[10000, 0, None]
>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
...
>>> old_bufsize = np.setbufsize(20000)
>>> old_err = np.seterr(divide='raise')
>>> old_handler = np.seterrcall(err_handler)
>>> np.geterrobj()
[20000, 2, <function err_handler at 0x91dcaac>]
>>> old_err = np.seterr(all='ignore')
>>> np.base_repr(np.geterrobj()[1], 8)
'0'
>>> old_err = np.seterr(divide='warn', over='log', under='call',
invalid='print')
>>> np.base_repr(np.geterrobj()[1], 8)
'4351'
""")
add_newdoc('numpy.core.umath', 'seterrobj',
"""
seterrobj(errobj)
Set the object that defines floating-point error handling.
The error object contains all information that defines the error handling
behavior in Numpy. `seterrobj` is used internally by the other
functions that set error handling behavior (`seterr`, `seterrcall`).
Parameters
----------
errobj : list
The error object, a list containing three elements:
[internal numpy buffer size, error mask, error callback function].
The error mask is a single integer that holds the treatment information
on all four floating point errors. The information for each error type
is contained in three bits of the integer. If we print it in base 8, we
can see what treatment is set for "invalid", "under", "over", and
"divide" (in that order). The printed string can be interpreted with
* 0 : 'ignore'
* 1 : 'warn'
* 2 : 'raise'
* 3 : 'call'
* 4 : 'print'
* 5 : 'log'
See Also
--------
geterrobj, seterr, geterr, seterrcall, geterrcall
getbufsize, setbufsize
Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see `seterr`.
Examples
--------
>>> old_errobj = np.geterrobj() # first get the defaults
>>> old_errobj
[10000, 0, None]
>>> def err_handler(type, flag):
... print "Floating point error (%s), with flag %s" % (type, flag)
...
>>> new_errobj = [20000, 12, err_handler]
>>> np.seterrobj(new_errobj)
>>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
'14'
>>> np.geterr()
{'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
>>> np.geterrcall() is err_handler
True
""")
##############################################################################
#
# lib._compiled_base functions
#
##############################################################################
add_newdoc('numpy.lib._compiled_base', 'digitize',
"""
digitize(x, bins, right=False)
Return the indices of the bins to which each value in input array belongs.
Each index ``i`` returned is such that ``bins[i-1] <= x < bins[i]`` if
`bins` is monotonically increasing, or ``bins[i-1] > x >= bins[i]`` if
`bins` is monotonically decreasing. If values in `x` are beyond the
bounds of `bins`, 0 or ``len(bins)`` is returned as appropriate. If right
is True, then the right bin is closed so that the index ``i`` is such
that ``bins[i-1] < x <= bins[i]`` or bins[i-1] >= x > bins[i]`` if `bins`
is monotonically increasing or decreasing, respectively.
Parameters
----------
x : array_like
Input array to be binned. It has to be 1-dimensional.
bins : array_like
Array of bins. It has to be 1-dimensional and monotonic.
right : bool, optional
Indicating whether the intervals include the right or the left bin
edge. Default behavior is (right==False) indicating that the interval
does not include the right edge. The left bin and is open in this
case. Ie., bins[i-1] <= x < bins[i] is the default behavior for
monotonically increasing bins.
Returns
-------
out : ndarray of ints
Output array of indices, of same shape as `x`.
Raises
------
ValueError
If the input is not 1-dimensional, or if `bins` is not monotonic.
TypeError
If the type of the input is complex.
See Also
--------
bincount, histogram, unique
Notes
-----
If values in `x` are such that they fall outside the bin range,
attempting to index `bins` with the indices that `digitize` returns
will result in an IndexError.
Examples
--------
>>> x = np.array([0.2, 6.4, 3.0, 1.6])
>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
>>> inds = np.digitize(x, bins)
>>> inds
array([1, 4, 3, 2])
>>> for n in range(x.size):
... print bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5
>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
>>> bins = np.array([0,5,10,15,20])
>>> np.digitize(x,bins,right=True)
array([1, 2, 3, 4, 4])
>>> np.digitize(x,bins,right=False)
array([1, 3, 3, 4, 5])
""")
add_newdoc('numpy.lib._compiled_base', 'bincount',
"""
bincount(x, weights=None, minlength=None)
Count number of occurrences of each value in array of non-negative ints.
The number of bins (of size 1) is one larger than the largest value in
`x`. If `minlength` is specified, there will be at least this number
of bins in the output array (though it will be longer if necessary,
depending on the contents of `x`).
Each bin gives the number of occurrences of its index value in `x`.
If `weights` is specified the input array is weighted by it, i.e. if a
value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
of ``out[n] += 1``.
Parameters
----------
x : array_like, 1 dimension, nonnegative ints
Input array.
weights : array_like, optional
Weights, array of the same shape as `x`.
minlength : int, optional
.. versionadded:: 1.6.0
A minimum number of bins for the output array.
Returns
-------
out : ndarray of ints
The result of binning the input array.
The length of `out` is equal to ``np.amax(x)+1``.
Raises
------
ValueError
If the input is not 1-dimensional, or contains elements with negative
values, or if `minlength` is non-positive.
TypeError
If the type of the input is float or complex.
See Also
--------
histogram, digitize, unique
Examples
--------
>>> np.bincount(np.arange(5))
array([1, 1, 1, 1, 1])
>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
array([1, 3, 1, 1, 0, 0, 0, 1])
>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
>>> np.bincount(x).size == np.amax(x)+1
True
The input array needs to be of integer dtype, otherwise a
TypeError is raised:
>>> np.bincount(np.arange(5, dtype=np.float))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: array cannot be safely cast to required type
A possible use of ``bincount`` is to perform sums over
variable-size chunks of an array, using the ``weights`` keyword.
>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
>>> x = np.array([0, 1, 1, 2, 2, 2])
>>> np.bincount(x, weights=w)
array([ 0.3, 0.7, 1.1])
""")
add_newdoc('numpy.lib._compiled_base', 'ravel_multi_index',
"""
ravel_multi_index(multi_index, dims, mode='raise', order='C')
Converts a tuple of index arrays into an array of flat
indices, applying boundary modes to the multi-index.
Parameters
----------
multi_index : tuple of array_like
A tuple of integer arrays, one array for each dimension.
dims : tuple of ints
The shape of array into which the indices from ``multi_index`` apply.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices are handled. Can specify
either one mode or a tuple of modes, one mode per index.
* 'raise' -- raise an error (default)
* 'wrap' -- wrap around
* 'clip' -- clip to the range
In 'clip' mode, a negative index which would normally
wrap will clip to 0 instead.
order : {'C', 'F'}, optional
Determines whether the multi-index should be viewed as indexing in
C (row-major) order or FORTRAN (column-major) order.
Returns
-------
raveled_indices : ndarray
An array of indices into the flattened version of an array
of dimensions ``dims``.
See Also
--------
unravel_index
Notes
-----
.. versionadded:: 1.6.0
Examples
--------
>>> arr = np.array([[3,6,6],[4,5,1]])
>>> np.ravel_multi_index(arr, (7,6))
array([22, 41, 37])
>>> np.ravel_multi_index(arr, (7,6), order='F')
array([31, 41, 13])
>>> np.ravel_multi_index(arr, (4,6), mode='clip')
array([22, 23, 19])
>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
array([12, 13, 13])
>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1621
""")
add_newdoc('numpy.lib._compiled_base', 'unravel_index',
"""
unravel_index(indices, dims, order='C')
Converts a flat index or array of flat indices into a tuple
of coordinate arrays.
Parameters
----------
indices : array_like
An integer array whose elements are indices into the flattened
version of an array of dimensions ``dims``. Before version 1.6.0,
this function accepted just one index value.
dims : tuple of ints
The shape of the array to use for unraveling ``indices``.
order : {'C', 'F'}, optional
.. versionadded:: 1.6.0
Determines whether the indices should be viewed as indexing in
C (row-major) order or FORTRAN (column-major) order.
Returns
-------
unraveled_coords : tuple of ndarray
Each array in the tuple has the same shape as the ``indices``
array.
See Also
--------
ravel_multi_index
Examples
--------
>>> np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index([31, 41, 13], (7,6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index(1621, (6,7,8,9))
(3, 1, 4, 1)
""")
add_newdoc('numpy.lib._compiled_base', 'add_docstring',
"""
add_docstring(obj, docstring)
Add a docstring to a built-in obj if possible.
If the obj already has a docstring raise a RuntimeError
If this routine does not know how to add a docstring to the object
raise a TypeError
""")
add_newdoc('numpy.lib._compiled_base', 'add_newdoc_ufunc',
"""
add_ufunc_docstring(ufunc, new_docstring)
Replace the docstring for a ufunc with new_docstring.
This method will only work if the current docstring for
the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.)
Parameters
----------
ufunc : numpy.ufunc
A ufunc whose current doc is NULL.
new_docstring : string
The new docstring for the ufunc.
Notes
-----
This method allocates memory for new_docstring on
the heap. Technically this creates a mempory leak, since this
memory will not be reclaimed until the end of the program
even if the ufunc itself is removed. However this will only
be a problem if the user is repeatedly creating ufuncs with
no documentation, adding documentation via add_newdoc_ufunc,
and then throwing away the ufunc.
""")
add_newdoc('numpy.lib._compiled_base', 'packbits',
"""
packbits(myarray, axis=None)
Packs the elements of a binary-valued array into bits in a uint8 array.
The result is padded to full bytes by inserting zero bits at the end.
Parameters
----------
myarray : array_like
An integer type array whose elements should be packed to bits.
axis : int, optional
The dimension over which bit-packing is done.
``None`` implies packing the flattened array.
Returns
-------
packed : ndarray
Array of type uint8 whose elements represent bits corresponding to the
logical (0 or nonzero) value of the input elements. The shape of
`packed` has the same number of dimensions as the input (unless `axis`
is None, in which case the output is 1-D).
See Also
--------
unpackbits: Unpacks elements of a uint8 array into a binary-valued output
array.
Examples
--------
>>> a = np.array([[[1,0,1],
... [0,1,0]],
... [[1,1,0],
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
array([[[160],[64]],[[192],[32]]], dtype=uint8)
Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
and 32 = 0010 0000.
""")
add_newdoc('numpy.lib._compiled_base', 'unpackbits',
"""
unpackbits(myarray, axis=None)
Unpacks elements of a uint8 array into a binary-valued output array.
Each element of `myarray` represents a bit-field that should be unpacked
into a binary-valued output array. The shape of the output array is either
1-D (if `axis` is None) or the same shape as the input array with unpacking
done along the axis specified.
Parameters
----------
myarray : ndarray, uint8 type
Input array.
axis : int, optional
Unpacks along this axis.
Returns
-------
unpacked : ndarray, uint8 type
The elements are binary-valued (0 or 1).
See Also
--------
packbits : Packs the elements of a binary-valued array into bits in a uint8
array.
Examples
--------
>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array([[ 2],
[ 7],
[23]], dtype=uint8)
>>> b = np.unpackbits(a, axis=1)
>>> b
array([[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
""")
##############################################################################
#
# Documentation for ufunc attributes and methods
#
##############################################################################
##############################################################################
#
# ufunc object
#
##############################################################################
add_newdoc('numpy.core', 'ufunc',
"""
Functions that operate element by element on whole arrays.
To see the documentation for a specific ufunc, use np.info(). For
example, np.info(np.sin). Because ufuncs are written in C
(for speed) and linked into Python with NumPy's ufunc facility,
Python's help() function finds this page whenever help() is called
on a ufunc.
A detailed explanation of ufuncs can be found in the "ufuncs.rst"
file in the NumPy reference guide.
Unary ufuncs:
=============
op(X, out=None)
Apply op to X elementwise
Parameters
----------
X : array_like
Input array.
out : array_like
An array to store the output. Must be the same shape as `X`.
Returns
-------
r : array_like
`r` will have the same shape as `X`; if out is provided, `r`
will be equal to out.
Binary ufuncs:
==============
op(X, Y, out=None)
Apply `op` to `X` and `Y` elementwise. May "broadcast" to make
the shapes of `X` and `Y` congruent.
The broadcasting rules are:
* Dimensions of length 1 may be prepended to either array.
* Arrays may be repeated along dimensions of length 1.
Parameters
----------
X : array_like
First input array.
Y : array_like
Second input array.
out : array_like
An array to store the output. Must be the same shape as the
output would have.
Returns
-------
r : array_like
The return value; if out is provided, `r` will be equal to out.
""")
##############################################################################
#
# ufunc attributes
#
##############################################################################
add_newdoc('numpy.core', 'ufunc', ('identity',
"""
The identity value.
Data attribute containing the identity element for the ufunc, if it has one.
If it does not, the attribute value is None.
Examples
--------
>>> np.add.identity
0
>>> np.multiply.identity
1
>>> np.power.identity
1
>>> print np.exp.identity
None
"""))
add_newdoc('numpy.core', 'ufunc', ('nargs',
"""
The number of arguments.
Data attribute containing the number of arguments the ufunc takes, including
optional ones.
Notes
-----
Typically this value will be one more than what you might expect because all
ufuncs take the optional "out" argument.
Examples
--------
>>> np.add.nargs
3
>>> np.multiply.nargs
3
>>> np.power.nargs
3
>>> np.exp.nargs
2
"""))
add_newdoc('numpy.core', 'ufunc', ('nin',
"""
The number of inputs.
Data attribute containing the number of arguments the ufunc treats as input.
Examples
--------
>>> np.add.nin
2
>>> np.multiply.nin
2
>>> np.power.nin
2
>>> np.exp.nin
1
"""))
add_newdoc('numpy.core', 'ufunc', ('nout',
"""
The number of outputs.
Data attribute containing the number of arguments the ufunc treats as output.
Notes
-----
Since all ufuncs can take output arguments, this will always be (at least) 1.
Examples
--------
>>> np.add.nout
1
>>> np.multiply.nout
1
>>> np.power.nout
1
>>> np.exp.nout
1
"""))
add_newdoc('numpy.core', 'ufunc', ('ntypes',
"""
The number of types.
The number of numerical NumPy types - of which there are 18 total - on which
the ufunc can operate.
See Also
--------
numpy.ufunc.types
Examples
--------
>>> np.add.ntypes
18
>>> np.multiply.ntypes
18
>>> np.power.ntypes
17
>>> np.exp.ntypes
7
>>> np.remainder.ntypes
14
"""))
add_newdoc('numpy.core', 'ufunc', ('types',
"""
Returns a list with types grouped input->output.
Data attribute listing the data-type "Domain-Range" groupings the ufunc can
deliver. The data-types are given using the character codes.
See Also
--------
numpy.ufunc.ntypes
Examples
--------
>>> np.add.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']
>>> np.multiply.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']
>>> np.power.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'OO->O']
>>> np.exp.types
['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']
"""))
##############################################################################
#
# ufunc methods
#
##############################################################################
add_newdoc('numpy.core', 'ufunc', ('reduce',
"""
reduce(a, axis=0, dtype=None, out=None, keepdims=False)
Reduces `a`'s dimension by one, by applying ufunc along one axis.
Let :math:`a.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then
:math:`ufunc.reduce(a, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
ufunc to each :math:`a[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
For a one-dimensional array, reduce produces results equivalent to:
::
r = op.identity # op = ufunc
for i in range(len(A)):
r = op(r, A[i])
return r
For example, add.reduce() is equivalent to sum().
Parameters
----------
a : array_like
The array to act on.
axis : None or int or tuple of ints, optional
Axis or axes along which a reduction is performed.
The default (`axis` = 0) is perform a reduction over the first
dimension of the input array. `axis` may be negative, in
which case it counts from the last to the first axis.
.. versionadded:: 1.7.0
If this is `None`, a reduction is performed over all the axes.
If this is a tuple of ints, a reduction is performed on multiple
axes, instead of a single axis or all the axes as before.
For operations which are either not commutative or not associative,
doing a reduction over multiple axes is not well-defined. The
ufuncs do not currently raise an exception in this case, but will
likely do so in the future.
dtype : data-type code, optional
The type used to represent the intermediate results. Defaults
to the data-type of the output array if this is provided, or
the data-type of the input array if no output array is provided.
out : ndarray, optional
A location into which the result is stored. If not provided, a
freshly-allocated array is returned.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `arr`.
.. versionadded:: 1.7.0
Returns
-------
r : ndarray
The reduced array. If `out` was supplied, `r` is a reference to it.
Examples
--------
>>> np.multiply.reduce([2,3,5])
30
A multi-dimensional array example:
>>> X = np.arange(8).reshape((2,2,2))
>>> X
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> np.add.reduce(X, 0)
array([[ 4, 6],
[ 8, 10]])
>>> np.add.reduce(X) # confirm: default axis value is 0
array([[ 4, 6],
[ 8, 10]])
>>> np.add.reduce(X, 1)
array([[ 2, 4],
[10, 12]])
>>> np.add.reduce(X, 2)
array([[ 1, 5],
[ 9, 13]])
"""))
add_newdoc('numpy.core', 'ufunc', ('accumulate',
"""
accumulate(array, axis=0, dtype=None, out=None)
Accumulate the result of applying the operator to all elements.
For a one-dimensional array, accumulate produces results equivalent to::
r = np.empty(len(A))
t = op.identity # op = the ufunc being applied to A's elements
for i in range(len(A)):
t = op(t, A[i])
r[i] = t
return r
For example, add.accumulate() is equivalent to np.cumsum().
For a multi-dimensional array, accumulate is applied along only one
axis (axis zero by default; see Examples below) so repeated use is
necessary if one wants to accumulate over multiple axes.
Parameters
----------
array : array_like
The array to act on.
axis : int, optional
The axis along which to apply the accumulation; default is zero.
dtype : data-type code, optional
The data-type used to represent the intermediate results. Defaults
to the data-type of the output array if such is provided, or the
the data-type of the input array if no output array is provided.
out : ndarray, optional
A location into which the result is stored. If not provided a
freshly-allocated array is returned.
Returns
-------
r : ndarray
The accumulated values. If `out` was supplied, `r` is a reference to
`out`.
Examples
--------
1-D array examples:
>>> np.add.accumulate([2, 3, 5])
array([ 2, 5, 10])
>>> np.multiply.accumulate([2, 3, 5])
array([ 2, 6, 30])
2-D array examples:
>>> I = np.eye(2)
>>> I
array([[ 1., 0.],
[ 0., 1.]])
Accumulate along axis 0 (rows), down columns:
>>> np.add.accumulate(I, 0)
array([[ 1., 0.],
[ 1., 1.]])
>>> np.add.accumulate(I) # no axis specified = axis zero
array([[ 1., 0.],
[ 1., 1.]])
Accumulate along axis 1 (columns), through rows:
>>> np.add.accumulate(I, 1)
array([[ 1., 1.],
[ 0., 1.]])
"""))
add_newdoc('numpy.core', 'ufunc', ('reduceat',
"""
reduceat(a, indices, axis=0, dtype=None, out=None)
Performs a (local) reduce with specified slices over a single axis.
For i in ``range(len(indices))``, `reduceat` computes
``ufunc.reduce(a[indices[i]:indices[i+1]])``, which becomes the i-th
generalized "row" parallel to `axis` in the final result (i.e., in a
2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
`axis = 1`, it becomes the i-th column). There are three exceptions to this:
* when ``i = len(indices) - 1`` (so for the last index),
``indices[i+1] = a.shape[axis]``.
* if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
simply ``a[indices[i]]``.
* if ``indices[i] >= len(a)`` or ``indices[i] < 0``, an error is raised.
The shape of the output depends on the size of `indices`, and may be
larger than `a` (this happens if ``len(indices) > a.shape[axis]``).
Parameters
----------
a : array_like
The array to act on.
indices : array_like
Paired indices, comma separated (not colon), specifying slices to
reduce.
axis : int, optional
The axis along which to apply the reduceat.
dtype : data-type code, optional
The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or
the data type of the input array if no output array is provided.
out : ndarray, optional
A location into which the result is stored. If not provided a
freshly-allocated array is returned.
Returns
-------
r : ndarray
The reduced values. If `out` was supplied, `r` is a reference to
`out`.
Notes
-----
A descriptive example:
If `a` is 1-D, the function `ufunc.accumulate(a)` is the same as
``ufunc.reduceat(a, indices)[::2]`` where `indices` is
``range(len(array) - 1)`` with a zero placed
in every other element:
``indices = zeros(2 * len(a) - 1)``, ``indices[1::2] = range(1, len(a))``.
Don't be fooled by this attribute's name: `reduceat(a)` is not
necessarily smaller than `a`.
Examples
--------
To take the running sum of four successive values:
>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
array([ 6, 10, 14, 18])
A 2-D example:
>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])
::
# reduce such that the result has the following five rows:
# [row1 + row2 + row3]
# [row4]
# [row2]
# [row3]
# [row1 + row2 + row3 + row4]
>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
array([[ 12., 15., 18., 21.],
[ 12., 13., 14., 15.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 24., 28., 32., 36.]])
::
# reduce such that result has the following two columns:
# [col1 * col2 * col3, col4]
>>> np.multiply.reduceat(x, [0, 3], 1)
array([[ 0., 3.],
[ 120., 7.],
[ 720., 11.],
[ 2184., 15.]])
"""))
add_newdoc('numpy.core', 'ufunc', ('outer',
"""
outer(A, B)
Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
``op.outer(A, B)`` is an array of dimension M + N such that:
.. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
For `A` and `B` one-dimensional, this is equivalent to::
r = empty(len(A),len(B))
for i in range(len(A)):
for j in range(len(B)):
r[i,j] = op(A[i], B[j]) # op = ufunc in question
Parameters
----------
A : array_like
First array
B : array_like
Second array
Returns
-------
r : ndarray
Output array
See Also
--------
numpy.outer
Examples
--------
>>> np.multiply.outer([1, 2, 3], [4, 5, 6])
array([[ 4, 5, 6],
[ 8, 10, 12],
[12, 15, 18]])
A multi-dimensional example:
>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[ 1, 2, 3, 4]],
[[ 2, 4, 6, 8]],
[[ 3, 6, 9, 12]]],
[[[ 4, 8, 12, 16]],
[[ 5, 10, 15, 20]],
[[ 6, 12, 18, 24]]]])
"""))
add_newdoc('numpy.core', 'ufunc', ('at',
"""
at(a, indices, b=None)
Performs unbuffered in place operation on operand 'a' for elements
specified by 'indices'. For addition ufunc, this method is equivalent to
`a[indices] += b`, except that results are accumulated for elements that
are indexed more than once. For example, `a[[0,0]] += 1` will only
increment the first element once because of buffering, whereas
`add.at(a, [0,0], 1)` will increment the first element twice.
.. versionadded:: 1.8.0
Parameters
----------
a : array_like
The array to perform in place operation on.
indices : array_like or tuple
Array like index object or slice object for indexing into first
operand. If first operand has multiple dimensions, indices can be a
tuple of array like index objects or slice objects.
b : array_like
Second operand for ufuncs requiring two operands. Operand must be
broadcastable over first operand after indexing or slicing.
Examples
--------
Set items 0 and 1 to their negative values:
>>> a = np.array([1, 2, 3, 4])
>>> np.negative.at(a, [0, 1])
>>> print(a)
array([-1, -2, 3, 4])
::
Increment items 0 and 1, and increment item 2 twice:
>>> a = np.array([1, 2, 3, 4])
>>> np.add.at(a, [0, 1, 2, 2], 1)
>>> print(a)
array([2, 3, 5, 4])
::
Add items 0 and 1 in first array to second array,
and store results in first array:
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([1, 2])
>>> np.add.at(a, [0, 1], b)
>>> print(a)
array([2, 4, 3, 4])
"""))
##############################################################################
#
# Documentation for dtype attributes and methods
#
##############################################################################
##############################################################################
#
# dtype object
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'dtype',
"""
dtype(obj, align=False, copy=False)
Create a data type object.
A numpy array is homogeneous, and contains elements described by a
dtype object. A dtype object can be constructed from different
combinations of fundamental numeric types.
Parameters
----------
obj
Object to be converted to a data type object.
align : bool, optional
Add padding to the fields to match what a C compiler would output
for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
or a comma-separated string. If a struct dtype is being created,
this also sets a sticky alignment flag ``isalignedstruct``.
copy : bool, optional
Make a new copy of the data-type object. If ``False``, the result
may just be a reference to a built-in data-type object.
See also
--------
result_type
Examples
--------
Using array-scalar type:
>>> np.dtype(np.int16)
dtype('int16')
Record, one field name 'f1', containing int16:
>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])
Record, one field named 'f1', in itself containing a record with one field:
>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])
Record, two fields: the first field contains an unsigned int, the
second an int32:
>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])
Using array-protocol type strings:
>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])
Using comma-separated field formats. The shape is (2,3):
>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
is a flexible type, here of size 10:
>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])
Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
the offsets in bytes:
>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
Using dictionaries. Two fields named 'gender' and 'age':
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])
Offsets in bytes, here 0 and 25:
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])
""")
##############################################################################
#
# dtype attributes
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'dtype', ('alignment',
"""
The required alignment (bytes) of this data-type according to the compiler.
More information is available in the C-API section of the manual.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder',
"""
A character indicating the byte-order of this data-type object.
One of:
=== ==============
'=' native
'<' little-endian
'>' big-endian
'|' not applicable
=== ==============
All built-in data-type objects have byteorder either '=' or '|'.
Examples
--------
>>> dt = np.dtype('i2')
>>> dt.byteorder
'='
>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('i1').byteorder
'|'
>>> # or ASCII strings
>>> np.dtype('S2').byteorder
'|'
>>> # Even if specific code is given, and it is native
>>> # '=' is the byteorder
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> dt = np.dtype(native_code + 'i2')
>>> dt.byteorder
'='
>>> # Swapped code shows up as itself
>>> dt = np.dtype(swapped_code + 'i2')
>>> dt.byteorder == swapped_code
True
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('char',
"""A unique character code for each of the 21 different built-in types."""))
add_newdoc('numpy.core.multiarray', 'dtype', ('descr',
"""
Array-interface compliant full description of the data-type.
The format is that required by the 'descr' key in the
`__array_interface__` attribute.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('fields',
"""
Dictionary of named fields defined for this data type, or ``None``.
The dictionary is indexed by keys that are the names of the fields.
Each entry in the dictionary is a tuple fully describing the field::
(dtype, offset[, title])
If present, the optional title can be any object (if it is a string
or unicode then it will also be a key in the fields dictionary,
otherwise it's meta-data). Notice also that the first two elements
of the tuple can be passed directly as arguments to the ``ndarray.getfield``
and ``ndarray.setfield`` methods.
See Also
--------
ndarray.getfield, ndarray.setfield
Examples
--------
>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print dt.fields
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('flags',
"""
Bit-flags describing how this data type is to be interpreted.
Bit-masks are in `numpy.core.multiarray` as the constants
`ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`,
`NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation
of these flags is in C-API documentation; they are largely useful
for user-defined data-types.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject',
"""
Boolean indicating whether this dtype contains any reference-counted
objects in any fields or sub-dtypes.
Recall that what is actually in the ndarray memory representing
the Python object is the memory address of that object (a pointer).
Special handling may be required, and this attribute is useful for
distinguishing data types that may contain arbitrary Python objects
and data-types that won't.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin',
"""
Integer indicating how this dtype relates to the built-in dtypes.
Read-only.
= ========================================================================
0 if this is a structured array type, with fields
1 if this is a dtype compiled into numpy (such as ints, floats etc)
2 if the dtype is for a user-defined numpy type
A user-defined type uses the numpy C-API machinery to extend
numpy to handle a new array type. See
:ref:`user.user-defined-data-types` in the Numpy manual.
= ========================================================================
Examples
--------
>>> dt = np.dtype('i2')
>>> dt.isbuiltin
1
>>> dt = np.dtype('f8')
>>> dt.isbuiltin
1
>>> dt = np.dtype([('field1', 'f8')])
>>> dt.isbuiltin
0
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('isnative',
"""
Boolean indicating whether the byte order of this dtype is native
to the platform.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct',
"""
Boolean indicating whether the dtype is a struct which maintains
field alignment. This flag is sticky, so when combining multiple
structs together, it is preserved and produces new dtypes which
are also aligned.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize',
"""
The element size of this data-type object.
For 18 of the 21 types this number is fixed by the data-type.
For the flexible data-types, this number can be anything.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('kind',
"""
A character code (one of 'biufcOSUV') identifying the general kind of data.
= ======================
b boolean
i signed integer
u unsigned integer
f floating-point
c complex floating-point
O object
S (byte-)string
U Unicode
V void
= ======================
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('name',
"""
A bit-width name for this data-type.
Un-sized flexible data-type objects do not have this attribute.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('names',
"""
Ordered list of field names, or ``None`` if there are no fields.
The names are ordered according to increasing byte offset. This can be
used, for example, to walk through all of the named fields in offset order.
Examples
--------
>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('num',
"""
A unique number for each of the 21 different built-in types.
These are roughly ordered from least-to-most precision.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('shape',
"""
Shape tuple of the sub-array if this data type describes a sub-array,
and ``()`` otherwise.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('str',
"""The array-protocol typestring of this data-type object."""))
add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype',
"""
Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and
None otherwise.
The *shape* is the fixed shape of the sub-array described by this
data type, and *item_dtype* the data type of the array.
If a field whose dtype object has this attribute is retrieved,
then the extra dimensions implied by *shape* are tacked on to
the end of the retrieved array.
"""))
add_newdoc('numpy.core.multiarray', 'dtype', ('type',
"""The type object used to instantiate a scalar of this data-type."""))
##############################################################################
#
# dtype methods
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder',
"""
newbyteorder(new_order='S')
Return a new dtype with a different byte order.
Changes are also made in all fields and sub-arrays of the data type.
Parameters
----------
new_order : string, optional
Byte order to force; a value from the byte order
specifications below. The default value ('S') results in
swapping the current byte order.
`new_order` codes can be any of::
* 'S' - swap dtype from current to opposite endian
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* {'|', 'I'} - ignore (no change to byte order)
The code does a case-insensitive check on the first letter of
`new_order` for these alternatives. For example, any of '>'
or 'B' or 'b' or 'brian' are valid to specify big-endian.
Returns
-------
new_dtype : dtype
New dtype object with the given change to the byte order.
Notes
-----
Changes are also made in all fields and sub-arrays of the data type.
Examples
--------
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True
"""))
##############################################################################
#
# Datetime-related Methods
#
##############################################################################
add_newdoc('numpy.core.multiarray', 'busdaycalendar',
"""
busdaycalendar(weekmask='1111100', holidays=None)
A business day calendar object that efficiently stores information
defining valid days for the busday family of functions.
The default valid days are Monday through Friday ("business days").
A busdaycalendar object can be specified with any set of weekly
valid days, plus an optional "holiday" dates that always will be invalid.
Once a busdaycalendar object is created, the weekmask and holidays
cannot be modified.
.. versionadded:: 1.7.0
Parameters
----------
weekmask : str or array_like of bool, optional
A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun
holidays : array_like of datetime64[D], optional
An array of dates to consider as invalid dates, no matter which
weekday they fall upon. Holiday dates may be specified in any
order, and NaT (not-a-time) dates are ignored. This list is
saved in a normalized form that is suited for fast calculations
of valid days.
Returns
-------
out : busdaycalendar
A business day calendar object containing the specified
weekmask and holidays values.
See Also
--------
is_busday : Returns a boolean array indicating valid days.
busday_offset : Applies an offset counted in valid days.
busday_count : Counts how many valid days are in a half-open date range.
Attributes
----------
Note: once a busdaycalendar object is created, you cannot modify the
weekmask or holidays. The attributes return copies of internal data.
weekmask : (copy) seven-element array of bool
holidays : (copy) sorted array of datetime64[D]
Examples
--------
>>> # Some important days in July
... bdd = np.busdaycalendar(
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
>>> # Default is Monday to Friday weekdays
... bdd.weekmask
array([ True, True, True, True, True, False, False], dtype='bool')
>>> # Any holidays already on the weekend are removed
... bdd.holidays
array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')
""")
add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask',
"""A copy of the seven-element boolean mask indicating valid days."""))
add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays',
"""A copy of the holiday array indicating additional invalid days."""))
add_newdoc('numpy.core.multiarray', 'is_busday',
"""
is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)
Calculates which of the given dates are valid days, and which are not.
.. versionadded:: 1.7.0
Parameters
----------
dates : array_like of datetime64[D]
The array of dates to process.
weekmask : str or array_like of bool, optional
A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun
holidays : array_like of datetime64[D], optional
An array of dates to consider as invalid dates. They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.
busdaycal : busdaycalendar, optional
A `busdaycalendar` object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.
out : array of bool, optional
If provided, this array is filled with the result.
Returns
-------
out : array of bool
An array with the same shape as ``dates``, containing True for
each valid day, and False for each invalid day.
See Also
--------
busdaycalendar: An object that specifies a custom set of valid days.
busday_offset : Applies an offset counted in valid days.
busday_count : Counts how many valid days are in a half-open date range.
Examples
--------
>>> # The weekdays are Friday, Saturday, and Monday
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
array([False, False, True], dtype='bool')
""")
add_newdoc('numpy.core.multiarray', 'busday_offset',
"""
busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)
First adjusts the date to fall on a valid day according to
the ``roll`` rule, then applies offsets to the given dates
counted in valid days.
.. versionadded:: 1.7.0
Parameters
----------
dates : array_like of datetime64[D]
The array of dates to process.
offsets : array_like of int
The array of offsets, which is broadcast with ``dates``.
roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional
How to treat dates that do not fall on a valid day. The default
is 'raise'.
* 'raise' means to raise an exception for an invalid day.
* 'nat' means to return a NaT (not-a-time) for an invalid day.
* 'forward' and 'following' mean to take the first valid day
later in time.
* 'backward' and 'preceding' mean to take the first valid day
earlier in time.
* 'modifiedfollowing' means to take the first valid day
later in time unless it is across a Month boundary, in which
case to take the first valid day earlier in time.
* 'modifiedpreceding' means to take the first valid day
earlier in time unless it is across a Month boundary, in which
case to take the first valid day later in time.
weekmask : str or array_like of bool, optional
A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun
holidays : array_like of datetime64[D], optional
An array of dates to consider as invalid dates. They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.
busdaycal : busdaycalendar, optional
A `busdaycalendar` object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.
out : array of datetime64[D], optional
If provided, this array is filled with the result.
Returns
-------
out : array of datetime64[D]
An array with a shape from broadcasting ``dates`` and ``offsets``
together, containing the dates with offsets applied.
See Also
--------
busdaycalendar: An object that specifies a custom set of valid days.
is_busday : Returns a boolean array indicating valid days.
busday_count : Counts how many valid days are in a half-open date range.
Examples
--------
>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
numpy.datetime64('2011-10-03','D')
>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
numpy.datetime64('2012-02-29','D')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
numpy.datetime64('2011-01-19','D')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
numpy.datetime64('2012-05-13','D')
>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
numpy.datetime64('2011-03-22','D')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')
""")
add_newdoc('numpy.core.multiarray', 'busday_count',
"""
busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)
Counts the number of valid days between `begindates` and
`enddates`, not including the day of `enddates`.
If ``enddates`` specifies a date value that is earlier than the
corresponding ``begindates`` date value, the count will be negative.
.. versionadded:: 1.7.0
Parameters
----------
begindates : array_like of datetime64[D]
The array of the first dates for counting.
enddates : array_like of datetime64[D]
The array of the end dates for counting, which are excluded
from the count themselves.
weekmask : str or array_like of bool, optional
A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun
holidays : array_like of datetime64[D], optional
An array of dates to consider as invalid dates. They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.
busdaycal : busdaycalendar, optional
A `busdaycalendar` object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.
out : array of int, optional
If provided, this array is filled with the result.
Returns
-------
out : array of int
An array with a shape from broadcasting ``begindates`` and ``enddates``
together, containing the number of valid days between
the begin and end dates.
See Also
--------
busdaycalendar: An object that specifies a custom set of valid days.
is_busday : Returns a boolean array indicating valid days.
busday_offset : Applies an offset counted in valid days.
Examples
--------
>>> # Number of weekdays in January 2011
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
... np.busday_count('2011', '2012')
260
>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
53
""")
##############################################################################
#
# nd_grid instances
#
##############################################################################
add_newdoc('numpy.lib.index_tricks', 'mgrid',
"""
`nd_grid` instance which returns a dense multi-dimensional "meshgrid".
An instance of `numpy.lib.index_tricks.nd_grid` which returns an dense
(or fleshed out) mesh-grid when indexed, so that each returned argument
has the same shape. The dimensions and number of the output arrays are
equal to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
Returns
----------
mesh-grid `ndarrays` all of the same dimensions
See Also
--------
numpy.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects
ogrid : like mgrid but returns open (not fleshed out) mesh grids
r_ : array concatenator
Examples
--------
>>> np.mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
>>> np.mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
""")
add_newdoc('numpy.lib.index_tricks', 'ogrid',
"""
`nd_grid` instance which returns an open multi-dimensional "meshgrid".
An instance of `numpy.lib.index_tricks.nd_grid` which returns an open
(i.e. not fleshed out) mesh-grid when indexed, so that only one dimension
of each returned array is greater than 1. The dimension and number of the
output arrays are equal to the number of indexing dimensions. If the step
length is not a complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
Returns
----------
mesh-grid `ndarrays` with only one dimension :math:`\\neq 1`
See Also
--------
np.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects
mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids
r_ : array concatenator
Examples
--------
>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> ogrid[0:5,0:5]
[array([[0],
[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]])]
""")
##############################################################################
#
# Documentation for `generic` attributes and methods
#
##############################################################################
add_newdoc('numpy.core.numerictypes', 'generic',
"""
Base class for numpy scalar types.
Class from which most (all?) numpy scalar types are derived. For
consistency, exposes the same API as `ndarray`, despite many
consequent attributes being either "get-only," or completely irrelevant.
This is the class from which it is strongly suggested users should derive
custom scalar types.
""")
# Attributes
add_newdoc('numpy.core.numerictypes', 'generic', ('T',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('base',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('data',
"""Pointer to start of data."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('dtype',
"""Get array data-descriptor."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('flags',
"""The integer value of flags."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('flat',
"""A 1-D view of the scalar."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('imag',
"""The imaginary part of the scalar."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize',
"""The length of one element in bytes."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes',
"""The length of the scalar in bytes."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('ndim',
"""The number of array dimensions."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('real',
"""The real part of the scalar."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('shape',
"""Tuple of array dimensions."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('size',
"""The number of elements in the gentype."""))
add_newdoc('numpy.core.numerictypes', 'generic', ('strides',
"""Tuple of bytes steps in each dimension."""))
# Methods
add_newdoc('numpy.core.numerictypes', 'generic', ('all',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('any',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('argmax',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('argmin',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('argsort',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('astype',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('byteswap',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('choose',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('clip',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('compress',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('conjugate',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('copy',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('cumprod',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('cumsum',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('diagonal',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('dump',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('dumps',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('fill',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('flatten',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('getfield',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('item',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('itemset',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('max',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('mean',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('min',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder',
"""
newbyteorder(new_order='S')
Return a new `dtype` with a different byte order.
Changes are also made in all fields and sub-arrays of the data type.
The `new_order` code can be any from the following:
* {'<', 'L'} - little endian
* {'>', 'B'} - big endian
* {'=', 'N'} - native order
* 'S' - swap dtype from current to opposite endian
* {'|', 'I'} - ignore (no change to byte order)
Parameters
----------
new_order : str, optional
Byte order to force; a value from the byte order specifications
above. The default value ('S') results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of `new_order` for the alternatives above. For example,
any of 'B' or 'b' or 'biggish' are valid to specify big-endian.
Returns
-------
new_dtype : dtype
New `dtype` object with the given change to the byte order.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('nonzero',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('prod',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('ptp',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('put',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('ravel',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('repeat',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('reshape',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('resize',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('round',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('searchsorted',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('setfield',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('setflags',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class so as to
provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('sort',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('squeeze',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('std',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('sum',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('swapaxes',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('take',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('tofile',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('tolist',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('tostring',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('trace',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('transpose',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('var',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
add_newdoc('numpy.core.numerictypes', 'generic', ('view',
"""
Not implemented (virtual attribute)
Class generic exists solely to derive numpy scalars from, and possesses,
albeit unimplemented, all the attributes of the ndarray class
so as to provide a uniform API.
See Also
--------
The corresponding attribute of the derived class of interest.
"""))
##############################################################################
#
# Documentation for other scalar classes
#
##############################################################################
add_newdoc('numpy.core.numerictypes', 'bool_',
"""Numpy's Boolean type. Character code: ``?``. Alias: bool8""")
add_newdoc('numpy.core.numerictypes', 'complex64',
"""
Complex number type composed of two 32 bit floats. Character code: 'F'.
""")
add_newdoc('numpy.core.numerictypes', 'complex128',
"""
Complex number type composed of two 64 bit floats. Character code: 'D'.
Python complex compatible.
""")
add_newdoc('numpy.core.numerictypes', 'complex256',
"""
Complex number type composed of two 128-bit floats. Character code: 'G'.
""")
add_newdoc('numpy.core.numerictypes', 'float32',
"""
32-bit floating-point number. Character code 'f'. C float compatible.
""")
add_newdoc('numpy.core.numerictypes', 'float64',
"""
64-bit floating-point number. Character code 'd'. Python float compatible.
""")
add_newdoc('numpy.core.numerictypes', 'float96',
"""
""")
add_newdoc('numpy.core.numerictypes', 'float128',
"""
128-bit floating-point number. Character code: 'g'. C long float
compatible.
""")
add_newdoc('numpy.core.numerictypes', 'int8',
"""8-bit integer. Character code ``b``. C char compatible.""")
add_newdoc('numpy.core.numerictypes', 'int16',
"""16-bit integer. Character code ``h``. C short compatible.""")
add_newdoc('numpy.core.numerictypes', 'int32',
"""32-bit integer. Character code 'i'. C int compatible.""")
add_newdoc('numpy.core.numerictypes', 'int64',
"""64-bit integer. Character code 'l'. Python int compatible.""")
add_newdoc('numpy.core.numerictypes', 'object_',
"""Any Python object. Character code: 'O'.""")
|