File size: 37,399 Bytes
c011401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
**********************
Writing your own ufunc
**********************

| I have the Power!
| --- *He-Man*


.. _`sec:Creating-a-new`:

Creating a new universal function
=================================

.. index::
   pair: ufunc; adding new

Before reading this, it may help to familiarize yourself with the basics
of C extensions for Python by reading/skimming the tutorials in Section 1
of `Extending and Embedding the Python Interpreter
<http://docs.python.org/extending/index.html>`_ and in `How to extend
Numpy <http://docs.scipy.org/doc/numpy/user/c-info.how-to-extend.html>`_

The umath module is a computer-generated C-module that creates many
ufuncs. It provides a great many examples of how to create a universal
function. Creating your own ufunc that will make use of the ufunc
machinery is not difficult either. Suppose you have a function that
you want to operate element-by-element over its inputs. By creating a
new ufunc you will obtain a function that handles

- broadcasting

- N-dimensional looping

- automatic type-conversions with minimal memory usage

- optional output arrays

It is not difficult to create your own ufunc. All that is required is
a 1-d loop for each data-type you want to support. Each 1-d loop must
have a specific signature, and only ufuncs for fixed-size data-types
can be used. The function call used to create a new ufunc to work on
built-in data-types is given below. A different mechanism is used to
register ufuncs for user-defined data-types.

In the next several sections we give example code that can be
easily modified to create your own ufuncs. The examples are
successively more complete or complicated versions of the logit
function, a common function in statistical modeling. Logit is also
interesting because, due to the magic of IEEE standards (specifically
IEEE 754), all of the logit functions created below
automatically have the following behavior.

>>> logit(0)
-inf
>>> logit(1)
inf
>>> logit(2)
nan
>>> logit(-2)
nan

This is wonderful because the function writer doesn't have to
manually propagate infs or nans.

.. _`sec:Non-numpy-example`:

Example Non-ufunc extension
===========================

.. index::
   pair: ufunc; adding new

For comparison and general edificaiton of the reader we provide
a simple implementation of a C extension of logit that uses no
numpy.

To do this we need two files. The first is the C file which contains
the actual code, and the second is the setup.py file used to create
the module.

    .. code-block:: c

        #include <Python.h>
        #include <math.h>

        /*
         * spammodule.c
         * This is the C code for a non-numpy Python extension to
         * define the logit function, where logit(p) = log(p/(1-p)).
         * This function will not work on numpy arrays automatically.
         * numpy.vectorize must be called in python to generate
         * a numpy-friendly function.
         *
         * Details explaining the Python-C API can be found under
         * 'Extending and Embedding' and 'Python/C API' at
         * docs.python.org .
         */


        /* This declares the logit function */
        static PyObject* spam_logit(PyObject *self, PyObject *args);


        /*
         * This tells Python what methods this module has.
         * See the Python-C API for more information.
         */
        static PyMethodDef SpamMethods[] = {
            {"logit",
                spam_logit,
                METH_VARARGS, "compute logit"},
            {NULL, NULL, 0, NULL}
        };


        /*
         * This actually defines the logit function for
         * input args from Python.
         */

        static PyObject* spam_logit(PyObject *self, PyObject *args)
        {
            double p;

            /* This parses the Python argument into a double */
            if(!PyArg_ParseTuple(args, "d", &p)) {
                return NULL;
            }

            /* THE ACTUAL LOGIT FUNCTION */
            p = p/(1-p);
            p = log(p);

            /*This builds the answer back into a python object */
            return Py_BuildValue("d", p);
        }


        /* This initiates the module using the above definitions. */
        #if PY_VERSION_HEX >= 0x03000000
        static struct PyModuleDef moduledef = {
            PyModuleDef_HEAD_INIT,
            "spam",
            NULL,
            -1,
            SpamMethods,
            NULL,
            NULL,
            NULL,
            NULL
        };

        PyMODINIT_FUNC PyInit_spam(void)
        {
            PyObject *m;
            m = PyModule_Create(&moduledef);
            if (!m) {
                return NULL;
            }
            return m;
        }
        #else
        PyMODINIT_FUNC initspam(void)
        {
            PyObject *m;

            m = Py_InitModule("spam", SpamMethods);
            if (m == NULL) {
                return;
            }
        }
        #endif

To use the setup.py file, place setup.py and spammodule.c in the same
folder. Then python setup.py build will build the module to import,
or setup.py install will install the module to your site-packages
directory.

    .. code-block:: python

        '''
            setup.py file for spammodule.c

            Calling
            $python setup.py build_ext --inplace
            will build the extension library in the current file.

            Calling
            $python setup.py build
            will build a file that looks like ./build/lib*, where
            lib* is a file that begins with lib. The library will
            be in this file and end with a C library extension,
            such as .so

            Calling
            $python setup.py install
            will install the module in your site-packages file.

            See the distutils section of
            'Extending and Embedding the Python Interpreter'
            at docs.python.org for more information.
        '''


        from distutils.core import setup, Extension

        module1 = Extension('spam', sources=['spammodule.c'],
                                include_dirs=['/usr/local/lib'])

        setup(name = 'spam',
                version='1.0',
                description='This is my spam package',
                ext_modules = [module1])


Once the spam module is imported into python, you can call logit
via spam.logit. Note that the function used above cannot be applied
as-is to numpy arrays. To do so we must call numpy.vectorize on it.
For example, if a python interpreter is opened in the file containing
the spam library or spam has been installed, one can perform the
following commands:

>>> import numpy as np
>>> import spam
>>> spam.logit(0)
-inf
>>> spam.logit(1)
inf
>>> spam.logit(0.5)
0.0
>>> x = np.linspace(0,1,10)
>>> spam.logit(x)
TypeError: only length-1 arrays can be converted to Python scalars
>>> f = np.vectorize(spam.logit)
>>> f(x)
array([       -inf, -2.07944154, -1.25276297, -0.69314718, -0.22314355,
    0.22314355,  0.69314718,  1.25276297,  2.07944154,         inf])

THE RESULTING LOGIT FUNCTION IS NOT FAST! numpy.vectorize simply
loops over spam.logit. The loop is done at the C level, but the numpy
array is constantly being parsed and build back up. This is expensive.
When the author compared numpy.vectorize(spam.logit) against the
logit ufuncs constructed below, the logit ufuncs were almost exactly
4 times faster. Larger or smaller speedups are, of course, possible
depending on the nature of the function.


.. _`sec:Numpy-one-loop`:

Example Numpy ufunc for one dtype
=================================

.. index::
   pair: ufunc; adding new

For simplicity we give a ufunc for a single dtype, the 'f8' double.
As in the previous section, we first give the .c file and then the
setup.py file used to create the module containing the ufunc.

The place in the code corresponding to the actual computations for
the ufunc are marked with /\*BEGIN main ufunc computation\*/ and
/\*END main ufunc computation\*/. The code in between those lines is
the primary thing that must be changed to create your own ufunc.

    .. code-block:: c

        #include "Python.h"
        #include "math.h"
        #include "numpy/ndarraytypes.h"
        #include "numpy/ufuncobject.h"
        #include "numpy/npy_3kcompat.h"

        /*
         * single_type_logit.c
         * This is the C code for creating your own
         * Numpy ufunc for a logit function.
         *
         * In this code we only define the ufunc for
         * a single dtype. The computations that must
         * be replaced to create a ufunc for
         * a different funciton are marked with BEGIN
         * and END.
         *
         * Details explaining the Python-C API can be found under
         * 'Extending and Embedding' and 'Python/C API' at
         * docs.python.org .
         */

        static PyMethodDef LogitMethods[] = {
                {NULL, NULL, 0, NULL}
        };

        /* The loop definition must precede the PyMODINIT_FUNC. */

        static void double_logit(char **args, npy_intp *dimensions,
                                    npy_intp* steps, void* data)
        {
            npy_intp i;
            npy_intp n = dimensions[0];
            char *in = args[0], *out = args[1];
            npy_intp in_step = steps[0], out_step = steps[1];

            double tmp;

            for (i = 0; i < n; i++) {
                /*BEGIN main ufunc computation*/
                tmp = *(double *)in;
                tmp /= 1-tmp;
                *((double *)out) = log(tmp);
                /*END main ufunc computation*/

                in += in_step;
                out += out_step;
            }
        }

        /*This a pointer to the above function*/
        PyUFuncGenericFunction funcs[1] = {&double_logit};

        /* These are the input and return dtypes of logit.*/
        static char types[2] = {NPY_DOUBLE, NPY_DOUBLE};

        static void *data[1] = {NULL};

        #if PY_VERSION_HEX >= 0x03000000
        static struct PyModuleDef moduledef = {
            PyModuleDef_HEAD_INIT,
            "npufunc",
            NULL,
            -1,
            LogitMethods,
            NULL,
            NULL,
            NULL,
            NULL
        };

        PyMODINIT_FUNC PyInit_npufunc(void)
        {
            PyObject *m, *logit, *d;
            m = PyModule_Create(&moduledef);
            if (!m) {
                return NULL;
            }

            import_array();
            import_umath();

            logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1,
                                            PyUFunc_None, "logit",
                                            "logit_docstring", 0);

            d = PyModule_GetDict(m);

            PyDict_SetItemString(d, "logit", logit);
            Py_DECREF(logit);

            return m;
        }
        #else
        PyMODINIT_FUNC initnpufunc(void)
        {
            PyObject *m, *logit, *d;


            m = Py_InitModule("npufunc", LogitMethods);
            if (m == NULL) {
                return;
            }

            import_array();
            import_umath();

            logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1,
                                            PyUFunc_None, "logit",
                                            "logit_docstring", 0);

            d = PyModule_GetDict(m);

            PyDict_SetItemString(d, "logit", logit);
            Py_DECREF(logit);
        }
        #endif

This is a setup.py file for the above code. As before, the module
can be build via calling python setup.py build at the command prompt,
or installed to site-packages via python setup.py install.

    .. code-block:: python

        '''
            setup.py file for logit.c
            Note that since this is a numpy extension
            we use numpy.distutils instead of
            distutils from the python standard library.

            Calling
            $python setup.py build_ext --inplace
            will build the extension library in the current file.

            Calling
            $python setup.py build
            will build a file that looks like ./build/lib*, where
            lib* is a file that begins with lib. The library will
            be in this file and end with a C library extension,
            such as .so

            Calling
            $python setup.py install
            will install the module in your site-packages file.

            See the distutils section of
            'Extending and Embedding the Python Interpreter'
            at docs.python.org  and the documentation
            on numpy.distutils for more information.
        '''


        def configuration(parent_package='', top_path=None):
            import numpy
            from numpy.distutils.misc_util import Configuration

            config = Configuration('npufunc_directory',
                                   parent_package,
                                   top_path)
            config.add_extension('npufunc', ['single_type_logit.c'])

            return config

        if __name__ == "__main__":
            from numpy.distutils.core import setup
            setup(configuration=configuration)

After the above has been installed, it can be imported and used as follows.

>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([       -inf, -1.09861229,  0.        ,  1.09861229,         inf])



.. _`sec:Numpy-many-loop`:

Example Numpy ufunc with multiple dtypes
========================================

.. index::
   pair: ufunc; adding new

We finally give an example of a full ufunc, with inner loops for
half-floats, floats, doubles, and long doubles. As in the previous
sections we first give the .c file and then the corresponding
setup.py file.

The places in the code corresponding to the actual computations for
the ufunc are marked with /\*BEGIN main ufunc computation\*/ and
/\*END main ufunc computation\*/. The code in between those lines is
the primary thing that must be changed to create your own ufunc.


    .. code-block:: c

        #include "Python.h"
        #include "math.h"
        #include "numpy/ndarraytypes.h"
        #include "numpy/ufuncobject.h"
        #include "numpy/halffloat.h"

        /*
         * multi_type_logit.c
         * This is the C code for creating your own
         * Numpy ufunc for a logit function.
         *
         * Each function of the form type_logit defines the
         * logit function for a different numpy dtype. Each
         * of these functions must be modified when you
         * create your own ufunc. The computations that must
         * be replaced to create a ufunc for
         * a different funciton are marked with BEGIN
         * and END.
         *
         * Details explaining the Python-C API can be found under
         * 'Extending and Embedding' and 'Python/C API' at
         * docs.python.org .
         *
         */


        static PyMethodDef LogitMethods[] = {
                {NULL, NULL, 0, NULL}
        };

        /* The loop definitions must precede the PyMODINIT_FUNC. */

        static void long_double_logit(char **args, npy_intp *dimensions,
                                      npy_intp* steps, void* data)
        {
            npy_intp i;
            npy_intp n = dimensions[0];
            char *in = args[0], *out=args[1];
            npy_intp in_step = steps[0], out_step = steps[1];

            long double tmp;

            for (i = 0; i < n; i++) {
                /*BEGIN main ufunc computation*/
                tmp = *(long double *)in;
                tmp /= 1-tmp;
                *((long double *)out) = logl(tmp);
                /*END main ufunc computation*/

                in += in_step;
                out += out_step;
            }
        }

        static void double_logit(char **args, npy_intp *dimensions,
                                 npy_intp* steps, void* data)
        {
            npy_intp i;
            npy_intp n = dimensions[0];
            char *in = args[0], *out = args[1];
            npy_intp in_step = steps[0], out_step = steps[1];

            double tmp;

            for (i = 0; i < n; i++) {
                /*BEGIN main ufunc computation*/
                tmp = *(double *)in;
                tmp /= 1-tmp;
                *((double *)out) = log(tmp);
                /*END main ufunc computation*/

                in += in_step;
                out += out_step;
            }
        }

        static void float_logit(char **args, npy_intp *dimensions,
                                npy_intp* steps, void* data)
        {
            npy_intp i;
            npy_intp n = dimensions[0];
            char *in=args[0], *out = args[1];
            npy_intp in_step = steps[0], out_step = steps[1];

            float tmp;

            for (i = 0; i < n; i++) {
                /*BEGIN main ufunc computation*/
                tmp = *(float *)in;
                tmp /= 1-tmp;
                *((float *)out) = logf(tmp);
                /*END main ufunc computation*/

                in += in_step;
                out += out_step;
            }
        }


        static void half_float_logit(char **args, npy_intp *dimensions,
                                     npy_intp* steps, void* data)
        {
            npy_intp i;
            npy_intp n = dimensions[0];
            char *in = args[0], *out = args[1];
            npy_intp in_step = steps[0], out_step = steps[1];

            float tmp;

            for (i = 0; i < n; i++) {

                /*BEGIN main ufunc computation*/
                tmp = *(npy_half *)in;
                tmp = npy_half_to_float(tmp);
                tmp /= 1-tmp;
                tmp = logf(tmp);
                *((npy_half *)out) = npy_float_to_half(tmp);
                /*END main ufunc computation*/

                in += in_step;
                out += out_step;
            }
        }


        /*This gives pointers to the above functions*/
        PyUFuncGenericFunction funcs[4] = {&half_float_logit,
                                           &float_logit,
                                           &double_logit,
                                           &long_double_logit};

        static char types[8] = {NPY_HALF, NPY_HALF,
                        NPY_FLOAT, NPY_FLOAT,
                        NPY_DOUBLE,NPY_DOUBLE,
                        NPY_LONGDOUBLE, NPY_LONGDOUBLE};
        static void *data[4] = {NULL, NULL, NULL, NULL};

        #if PY_VERSION_HEX >= 0x03000000
        static struct PyModuleDef moduledef = {
            PyModuleDef_HEAD_INIT,
            "npufunc",
            NULL,
            -1,
            LogitMethods,
            NULL,
            NULL,
            NULL,
            NULL
        };

        PyMODINIT_FUNC PyInit_npufunc(void)
        {
            PyObject *m, *logit, *d;
            m = PyModule_Create(&moduledef);
            if (!m) {
                return NULL;
            }

            import_array();
            import_umath();

            logit = PyUFunc_FromFuncAndData(funcs, data, types, 4, 1, 1,
                                            PyUFunc_None, "logit",
                                            "logit_docstring", 0);

            d = PyModule_GetDict(m);

            PyDict_SetItemString(d, "logit", logit);
            Py_DECREF(logit);

            return m;
        }
        #else
        PyMODINIT_FUNC initnpufunc(void)
        {
            PyObject *m, *logit, *d;


            m = Py_InitModule("npufunc", LogitMethods);
            if (m == NULL) {
                return;
            }

            import_array();
            import_umath();

            logit = PyUFunc_FromFuncAndData(funcs, data, types, 4, 1, 1,
                                            PyUFunc_None, "logit",
                                            "logit_docstring", 0);

            d = PyModule_GetDict(m);

            PyDict_SetItemString(d, "logit", logit);
            Py_DECREF(logit);
        }
        #endif

This is a setup.py file for the above code. As before, the module
can be build via calling python setup.py build at the command prompt,
or installed to site-packages via python setup.py install.

    .. code-block:: python

        '''
            setup.py file for logit.c
            Note that since this is a numpy extension
            we use numpy.distutils instead of
            distutils from the python standard library.

            Calling
            $python setup.py build_ext --inplace
            will build the extension library in the current file.

            Calling
            $python setup.py build
            will build a file that looks like ./build/lib*, where
            lib* is a file that begins with lib. The library will
            be in this file and end with a C library extension,
            such as .so

            Calling
            $python setup.py install
            will install the module in your site-packages file.

            See the distutils section of
            'Extending and Embedding the Python Interpreter'
            at docs.python.org  and the documentation
            on numpy.distutils for more information.
        '''


        def configuration(parent_package='', top_path=None):
            import numpy
            from numpy.distutils.misc_util import Configuration
            from numpy.distutils.misc_util import get_info

            #Necessary for the half-float d-type.
            info = get_info('npymath')

            config = Configuration('npufunc_directory',
                                    parent_package,
                                    top_path)
            config.add_extension('npufunc',
                                    ['multi_type_logit.c'],
                                    extra_info=info)

            return config

        if __name__ == "__main__":
            from numpy.distutils.core import setup
            setup(configuration=configuration)

After the above has been installed, it can be imported and used as follows.

>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([       -inf, -1.09861229,  0.        ,  1.09861229,         inf])



.. _`sec:Numpy-many-arg`:

Example Numpy ufunc with multiple arguments/return values
=========================================================

Our final example is a ufunc with multiple arguments. It is a modification
of the code for a logit ufunc for data with a single dtype. We
compute (A*B, logit(A*B)).

We only give the C code as the setup.py file is exactly the same as
the setup.py file in `Example Numpy ufunc for one dtype`_, except that
the line

    .. code-block:: python

        config.add_extension('npufunc', ['single_type_logit.c'])

is replaced with

    .. code-block:: python

        config.add_extension('npufunc', ['multi_arg_logit.c'])

The C file is given below. The ufunc generated takes two arguments A
and B. It returns a tuple whose first element is A*B and whose second
element is logit(A*B). Note that it automatically supports broadcasting,
as well as all other properties of a ufunc.

    .. code-block:: c

        #include "Python.h"
        #include "math.h"
        #include "numpy/ndarraytypes.h"
        #include "numpy/ufuncobject.h"
        #include "numpy/halffloat.h"

        /*
         * multi_arg_logit.c
         * This is the C code for creating your own
         * Numpy ufunc for a multiple argument, multiple
         * return value ufunc. The places where the
         * ufunc computation is carried out are marked
         * with comments.
         *
         * Details explaining the Python-C API can be found under
         * 'Extending and Embedding' and 'Python/C API' at
         * docs.python.org .
         *
         */


        static PyMethodDef LogitMethods[] = {
                {NULL, NULL, 0, NULL}
        };

        /* The loop definition must precede the PyMODINIT_FUNC. */

        static void double_logitprod(char **args, npy_intp *dimensions,
                                    npy_intp* steps, void* data)
        {
            npy_intp i;
            npy_intp n = dimensions[0];
            char *in1 = args[0], *in2 = args[1];
            char *out1 = args[2], *out2 = args[3];
            npy_intp in1_step = steps[0], in2_step = steps[1];
            npy_intp out1_step = steps[2], out2_step = steps[3];

            double tmp;

            for (i = 0; i < n; i++) {
                /*BEGIN main ufunc computation*/
                tmp = *(double *)in1;
                tmp *= *(double *)in2;
                *((double *)out1) = tmp;
                *((double *)out2) = log(tmp/(1-tmp));
                /*END main ufunc computation*/

                in1 += in1_step;
                in2 += in2_step;
                out1 += out1_step;
                out2 += out2_step;
            }
        }


        /*This a pointer to the above function*/
        PyUFuncGenericFunction funcs[1] = {&double_logitprod};

        /* These are the input and return dtypes of logit.*/

        static char types[4] = {NPY_DOUBLE, NPY_DOUBLE,
                                NPY_DOUBLE, NPY_DOUBLE};


        static void *data[1] = {NULL};

        #if PY_VERSION_HEX >= 0x03000000
        static struct PyModuleDef moduledef = {
            PyModuleDef_HEAD_INIT,
            "npufunc",
            NULL,
            -1,
            LogitMethods,
            NULL,
            NULL,
            NULL,
            NULL
        };

        PyMODINIT_FUNC PyInit_npufunc(void)
        {
            PyObject *m, *logit, *d;
            m = PyModule_Create(&moduledef);
            if (!m) {
                return NULL;
            }

            import_array();
            import_umath();

            logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2,
                                            PyUFunc_None, "logit",
                                            "logit_docstring", 0);

            d = PyModule_GetDict(m);

            PyDict_SetItemString(d, "logit", logit);
            Py_DECREF(logit);

            return m;
        }
        #else
        PyMODINIT_FUNC initnpufunc(void)
        {
            PyObject *m, *logit, *d;


            m = Py_InitModule("npufunc", LogitMethods);
            if (m == NULL) {
                return;
            }

            import_array();
            import_umath();

            logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2,
                                            PyUFunc_None, "logit",
                                            "logit_docstring", 0);

            d = PyModule_GetDict(m);

            PyDict_SetItemString(d, "logit", logit);
            Py_DECREF(logit);
        }
        #endif


.. _`sec:Numpy-struct-dtype`:

Example Numpy ufunc with structured array dtype arguments
=========================================================

This example shows how to create a ufunc for a structured array dtype.
For the example we show a trivial ufunc for adding two arrays with dtype
'u8,u8,u8'. The process is a bit different from the other examples since
a call to PyUFunc_FromFuncAndData doesn't fully register ufuncs for
custom dtypes and structured array dtypes. We need to also call
PyUFunc_RegisterLoopForDescr to finish setting up the ufunc.

We only give the C code as the setup.py file is exactly the same as
the setup.py file in `Example Numpy ufunc for one dtype`_, except that
the line

    .. code-block:: python

        config.add_extension('npufunc', ['single_type_logit.c'])

is replaced with

    .. code-block:: python

        config.add_extension('npufunc', ['add_triplet.c'])

The C file is given below.

    .. code-block:: c

        #include "Python.h"
        #include "math.h"
        #include "numpy/ndarraytypes.h"
        #include "numpy/ufuncobject.h"
        #include "numpy/npy_3kcompat.h"


        /*
         * add_triplet.c
         * This is the C code for creating your own
         * Numpy ufunc for a structured array dtype.
         *
         * Details explaining the Python-C API can be found under
         * 'Extending and Embedding' and 'Python/C API' at
         * docs.python.org .
         */

        static PyMethodDef StructUfuncTestMethods[] = {
            {NULL, NULL, 0, NULL}
        };

        /* The loop definition must precede the PyMODINIT_FUNC. */

        static void add_uint64_triplet(char **args, npy_intp *dimensions,
                                    npy_intp* steps, void* data)
        {
            npy_intp i;
            npy_intp is1=steps[0];
            npy_intp is2=steps[1];
            npy_intp os=steps[2];
            npy_intp n=dimensions[0];
            uint64_t *x, *y, *z;

            char *i1=args[0];
            char *i2=args[1];
            char *op=args[2];

            for (i = 0; i < n; i++) {

                x = (uint64_t*)i1;
                y = (uint64_t*)i2;
                z = (uint64_t*)op;

                z[0] = x[0] + y[0];
                z[1] = x[1] + y[1];
                z[2] = x[2] + y[2];

                i1 += is1;
                i2 += is2;
                op += os;
            }
        }

        /* This a pointer to the above function */
        PyUFuncGenericFunction funcs[1] = {&add_uint64_triplet};

        /* These are the input and return dtypes of add_uint64_triplet. */
        static char types[3] = {NPY_UINT64, NPY_UINT64, NPY_UINT64};

        static void *data[1] = {NULL};

        #if defined(NPY_PY3K)
        static struct PyModuleDef moduledef = {
            PyModuleDef_HEAD_INIT,
            "struct_ufunc_test",
            NULL,
            -1,
            StructUfuncTestMethods,
            NULL,
            NULL,
            NULL,
            NULL
        };
        #endif

        #if defined(NPY_PY3K)
        PyMODINIT_FUNC PyInit_struct_ufunc_test(void)
        #else
        PyMODINIT_FUNC initstruct_ufunc_test(void)
        #endif
        {
            PyObject *m, *add_triplet, *d;
            PyObject *dtype_dict;
            PyArray_Descr *dtype;
            PyArray_Descr *dtypes[3];

        #if defined(NPY_PY3K)
            m = PyModule_Create(&moduledef);
        #else
            m = Py_InitModule("struct_ufunc_test", StructUfuncTestMethods);
        #endif

            if (m == NULL) {
        #if defined(NPY_PY3K)
                return NULL;
        #else
                return;
        #endif
            }

            import_array();
            import_umath();

            /* Create a new ufunc object */
            add_triplet = PyUFunc_FromFuncAndData(NULL, NULL, NULL, 0, 2, 1,
                                            PyUFunc_None, "add_triplet",
                                            "add_triplet_docstring", 0);

            dtype_dict = Py_BuildValue("[(s, s), (s, s), (s, s)]",
                "f0", "u8", "f1", "u8", "f2", "u8");
            PyArray_DescrConverter(dtype_dict, &dtype);
            Py_DECREF(dtype_dict);

            dtypes[0] = dtype;
            dtypes[1] = dtype;
            dtypes[2] = dtype;

            /* Register ufunc for structured dtype */
            PyUFunc_RegisterLoopForDescr(add_triplet,
                                        dtype,
                                        &add_uint64_triplet,
                                        dtypes,
                                        NULL);

            d = PyModule_GetDict(m);

            PyDict_SetItemString(d, "add_triplet", add_triplet);
            Py_DECREF(add_triplet);
        #if defined(NPY_PY3K)
            return m;
        #endif
        }


.. _`sec:PyUFunc-spec`:

PyUFunc_FromFuncAndData Specification
=====================================

What follows is the full specification of PyUFunc_FromFuncAndData, which
automatically generates a ufunc from a C function with the correct signature.


.. cfunction:: PyObject *PyUFunc_FromFuncAndData( PyUFuncGenericFunction* func,
   void** data, char* types, int ntypes, int nin, int nout, int identity,
   char* name, char* doc, int check_return)

    *func*

        A pointer to an array of 1-d functions to use. This array must be at
        least ntypes long. Each entry in the array must be a
        ``PyUFuncGenericFunction`` function. This function has the following
        signature. An example of a valid 1d loop function is also given.

        .. cfunction:: void loop1d(char** args, npy_intp* dimensions,
           npy_intp* steps, void* data)

        *args*

            An array of pointers to the actual data for the input and output
            arrays. The input arguments are given first followed by the output
            arguments.

        *dimensions*

            A pointer to the size of the dimension over which this function is
            looping.

        *steps*

            A pointer to the number of bytes to jump to get to the
            next element in this dimension for each of the input and
            output arguments.

        *data*

            Arbitrary data (extra arguments, function names, *etc.* )
            that can be stored with the ufunc and will be passed in
            when it is called.

        .. code-block:: c

            static void
            double_add(char *args, npy_intp *dimensions, npy_intp *steps,
               void *extra)
            {
                npy_intp i;
                npy_intp is1 = steps[0], is2 = steps[1];
                npy_intp os = steps[2], n = dimensions[0];
                char *i1 = args[0], *i2 = args[1], *op = args[2];
                for (i = 0; i < n; i++) {
                    *((double *)op) = *((double *)i1) +
                                      *((double *)i2);
                    i1 += is1;
                    i2 += is2;
                    op += os;
                 }
            }

    *data*

        An array of data. There should be ntypes entries (or NULL) --- one for
        every loop function defined for this ufunc. This data will be passed
        in to the 1-d loop. One common use of this data variable is to pass in
        an actual function to call to compute the result when a generic 1-d
        loop (e.g. :cfunc:`PyUFunc_d_d`) is being used.

    *types*

        An array of type-number signatures (type ``char`` ). This
        array should be of size (nin+nout)*ntypes and contain the
        data-types for the corresponding 1-d loop. The inputs should
        be first followed by the outputs. For example, suppose I have
        a ufunc that supports 1 integer and 1 double 1-d loop
        (length-2 func and data arrays) that takes 2 inputs and
        returns 1 output that is always a complex double, then the
        types array would be

        .. code-block:: c

            static char types[3] = {NPY_INT, NPY_DOUBLE, NPY_CDOUBLE}

        The bit-width names can also be used (e.g. :cdata:`NPY_INT32`,
        :cdata:`NPY_COMPLEX128` ) if desired.

    *ntypes*

        The number of data-types supported. This is equal to the number of 1-d
        loops provided.

    *nin*

        The number of input arguments.

    *nout*

        The number of output arguments.

    *identity*

        Either :cdata:`PyUFunc_One`, :cdata:`PyUFunc_Zero`,
        :cdata:`PyUFunc_None`. This specifies what should be returned when
        an empty array is passed to the reduce method of the ufunc.

    *name*

        A ``NULL`` -terminated string providing the name of this ufunc
        (should be the Python name it will be called).

    *doc*

        A documentation string for this ufunc (will be used in generating the
        response to ``{ufunc_name}.__doc__``). Do not include the function
        signature or the name as this is generated automatically.

    *check_return*

        Not presently used, but this integer value does get set in the
        structure-member of similar name.

.. index::
   pair: ufunc; adding new

The returned ufunc object is a callable Python object. It should be
placed in a (module) dictionary under the same name as was used in the
name argument to the ufunc-creation routine. The following example is
adapted from the umath module

    .. code-block:: c

        static PyUFuncGenericFunction atan2_functions[] = {
                              PyUFunc_ff_f, PyUFunc_dd_d,
                              PyUFunc_gg_g, PyUFunc_OO_O_method};
        static void* atan2_data[] = {
                              (void *)atan2f,(void *) atan2,
                              (void *)atan2l,(void *)"arctan2"};
        static char atan2_signatures[] = {
                      NPY_FLOAT, NPY_FLOAT, NPY_FLOAT,
                      NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE,
                      NPY_LONGDOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE
                      NPY_OBJECT, NPY_OBJECT, NPY_OBJECT};
        ...
        /* in the module initialization code */
        PyObject *f, *dict, *module;
        ...
        dict = PyModule_GetDict(module);
        ...
        f = PyUFunc_FromFuncAndData(atan2_functions,
            atan2_data, atan2_signatures, 4, 2, 1,
            PyUFunc_None, "arctan2",
            "a safe and correct arctan(x1/x2)", 0);
        PyDict_SetItemString(dict, "arctan2", f);
        Py_DECREF(f);
        ...