File size: 17,600 Bytes
c011401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
.. _arrays.ndarray:
******************************************
The N-dimensional array (:class:`ndarray`)
******************************************
.. currentmodule:: numpy
An :class:`ndarray` is a (usually fixed-size) multidimensional
container of items of the same type and size. The number of dimensions
and items in an array is defined by its :attr:`shape <ndarray.shape>`,
which is a :class:`tuple` of *N* positive integers that specify the
sizes of each dimension. The type of items in the array is specified by
a separate :ref:`data-type object (dtype) <arrays.dtypes>`, one of which
is associated with each ndarray.
As with other container objects in Python, the contents of an
:class:`ndarray` can be accessed and modified by :ref:`indexing or
slicing <arrays.indexing>` the array (using, for example, *N* integers),
and via the methods and attributes of the :class:`ndarray`.
.. index:: view, base
Different :class:`ndarrays <ndarray>` can share the same data, so that
changes made in one :class:`ndarray` may be visible in another. That
is, an ndarray can be a *"view"* to another ndarray, and the data it
is referring to is taken care of by the *"base"* ndarray. ndarrays can
also be views to memory owned by Python :class:`strings <str>` or
objects implementing the :class:`buffer` or :ref:`array
<arrays.interface>` interfaces.
.. admonition:: Example
A 2-dimensional array of size 2 x 3, composed of 4-byte integer
elements:
>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type(x)
<type 'numpy.ndarray'>
>>> x.shape
(2, 3)
>>> x.dtype
dtype('int32')
The array can be indexed using Python container-like syntax:
>>> x[1,2] # i.e., the element of x in the *second* row, *third*
column, namely, 6.
For example :ref:`slicing <arrays.indexing>` can produce views of
the array:
>>> y = x[:,1]
>>> y
array([2, 5])
>>> y[0] = 9 # this also changes the corresponding element in x
>>> y
array([9, 5])
>>> x
array([[1, 9, 3],
[4, 5, 6]])
Constructing arrays
===================
New arrays can be constructed using the routines detailed in
:ref:`routines.array-creation`, and also by using the low-level
:class:`ndarray` constructor:
.. autosummary::
:toctree: generated/
ndarray
.. _arrays.ndarray.indexing:
Indexing arrays
===============
Arrays can be indexed using an extended Python slicing syntax,
``array[selection]``. Similar syntax is also used for accessing
fields in a :ref:`record array <arrays.dtypes>`.
.. seealso:: :ref:`Array Indexing <arrays.indexing>`.
Internal memory layout of an ndarray
====================================
An instance of class :class:`ndarray` consists of a contiguous
one-dimensional segment of computer memory (owned by the array, or by
some other object), combined with an indexing scheme that maps *N*
integers into the location of an item in the block. The ranges in
which the indices can vary is specified by the :obj:`shape
<ndarray.shape>` of the array. How many bytes each item takes and how
the bytes are interpreted is defined by the :ref:`data-type object
<arrays.dtypes>` associated with the array.
.. index:: C-order, Fortran-order, row-major, column-major, stride,
offset
A segment of memory is inherently 1-dimensional, and there are many
different schemes for arranging the items of an *N*-dimensional array
in a 1-dimensional block. Numpy is flexible, and :class:`ndarray`
objects can accommodate any *strided indexing scheme*. In a strided
scheme, the N-dimensional index :math:`(n_0, n_1, ..., n_{N-1})`
corresponds to the offset (in bytes):
.. math:: n_{\mathrm{offset}} = \sum_{k=0}^{N-1} s_k n_k
from the beginning of the memory block associated with the
array. Here, :math:`s_k` are integers which specify the :obj:`strides
<ndarray.strides>` of the array. The :term:`column-major` order (used,
for example, in the Fortran language and in *Matlab*) and
:term:`row-major` order (used in C) schemes are just specific kinds of
strided scheme, and correspond to memory that can be *addressed* by the strides:
.. math::
s_k^{\mathrm{column}} = \prod_{j=0}^{k-1} d_j ,
\quad s_k^{\mathrm{row}} = \prod_{j=k+1}^{N-1} d_j .
.. index:: single-segment, contiguous, non-contiguous
where :math:`d_j` `= self.itemsize * self.shape[j]`.
Both the C and Fortran orders are :term:`contiguous`, *i.e.,*
:term:`single-segment`, memory layouts, in which every part of the
memory block can be accessed by some combination of the indices.
While a C-style and Fortran-style contiguous array, which has the corresponding
flags set, can be addressed with the above strides, the actual strides may be
different. This can happen in two cases:
1. If ``self.shape[k] == 1`` then for any legal index ``index[k] == 0``.
This means that in the formula for the offset
:math:`n_k = 0` and thus :math:`s_k n_k = 0` and the value of
:math:`s_k` `= self.strides[k]` is arbitrary.
2. If an array has no elements (``self.size == 0``) there is no legal index
and the strides are never used. Any array with no elements may be
considered C-style and Fortran-style contiguous.
Point 1. means that ``self``and ``self.squeeze()`` always have the same
contiguity and :term:`aligned` flags value. This also means that even a high
dimensional array could be C-style and Fortran-style contiguous at the same
time.
.. index:: aligned
An array is considered aligned if the memory offsets for all elements and the
base offset itself is a multiple of `self.itemsize`.
.. note::
Points (1) and (2) are not yet applied by default. Beginning with
Numpy 1.8.0, they are applied consistently only if the environment
variable ``NPY_RELAXED_STRIDES_CHECKING=1`` was defined when NumPy
was built. Eventually this will become the default.
You can check whether this option was enabled when your NumPy was
built by looking at the value of ``np.ones((10,1),
order='C').flags.f_contiguous``. If this is ``True``, then your
NumPy has relaxed strides checking enabled.
.. warning::
It does *not* generally hold that ``self.strides[-1] == self.itemsize``
for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
Fortran-style contiguous arrays is true.
Data in new :class:`ndarrays <ndarray>` is in the :term:`row-major`
(C) order, unless otherwise specified, but, for example, :ref:`basic
array slicing <arrays.indexing>` often produces :term:`views <view>`
in a different scheme.
.. seealso: :ref:`Indexing <arrays.ndarray.indexing>`_
.. note::
Several algorithms in NumPy work on arbitrarily strided arrays.
However, some algorithms require single-segment arrays. When an
irregularly strided array is passed in to such algorithms, a copy
is automatically made.
.. _arrays.ndarray.attributes:
Array attributes
================
Array attributes reflect information that is intrinsic to the array
itself. Generally, accessing an array through its attributes allows
you to get and sometimes set intrinsic properties of the array without
creating a new array. The exposed attributes are the core parts of an
array and only some of them can be reset meaningfully without creating
a new array. Information on each attribute is given below.
Memory layout
-------------
The following attributes contain information about the memory layout
of the array:
.. autosummary::
:toctree: generated/
ndarray.flags
ndarray.shape
ndarray.strides
ndarray.ndim
ndarray.data
ndarray.size
ndarray.itemsize
ndarray.nbytes
ndarray.base
Data type
---------
.. seealso:: :ref:`Data type objects <arrays.dtypes>`
The data type object associated with the array can be found in the
:attr:`dtype <ndarray.dtype>` attribute:
.. autosummary::
:toctree: generated/
ndarray.dtype
Other attributes
----------------
.. autosummary::
:toctree: generated/
ndarray.T
ndarray.real
ndarray.imag
ndarray.flat
ndarray.ctypes
__array_priority__
.. _arrays.ndarray.array-interface:
Array interface
---------------
.. seealso:: :ref:`arrays.interface`.
========================== ===================================
:obj:`__array_interface__` Python-side of the array interface
:obj:`__array_struct__` C-side of the array interface
========================== ===================================
:mod:`ctypes` foreign function interface
----------------------------------------
.. autosummary::
:toctree: generated/
ndarray.ctypes
.. _array.ndarray.methods:
Array methods
=============
An :class:`ndarray` object has many methods which operate on or with
the array in some fashion, typically returning an array result. These
methods are briefly explained below. (Each method's docstring has a
more complete description.)
For the following methods there are also corresponding functions in
:mod:`numpy`: :func:`all`, :func:`any`, :func:`argmax`,
:func:`argmin`, :func:`argpartition`, :func:`argsort`, :func:`choose`,
:func:`clip`, :func:`compress`, :func:`copy`, :func:`cumprod`,
:func:`cumsum`, :func:`diagonal`, :func:`imag`, :func:`max <amax>`,
:func:`mean`, :func:`min <amin>`, :func:`nonzero`, :func:`partition`,
:func:`prod`, :func:`ptp`, :func:`put`, :func:`ravel`, :func:`real`,
:func:`repeat`, :func:`reshape`, :func:`round <around>`,
:func:`searchsorted`, :func:`sort`, :func:`squeeze`, :func:`std`,
:func:`sum`, :func:`swapaxes`, :func:`take`, :func:`trace`,
:func:`transpose`, :func:`var`.
Array conversion
----------------
.. autosummary::
:toctree: generated/
ndarray.item
ndarray.tolist
ndarray.itemset
ndarray.setasflat
ndarray.tostring
ndarray.tobytes
ndarray.tofile
ndarray.dump
ndarray.dumps
ndarray.astype
ndarray.byteswap
ndarray.copy
ndarray.view
ndarray.getfield
ndarray.setflags
ndarray.fill
Shape manipulation
------------------
For reshape, resize, and transpose, the single tuple argument may be
replaced with ``n`` integers which will be interpreted as an n-tuple.
.. autosummary::
:toctree: generated/
ndarray.reshape
ndarray.resize
ndarray.transpose
ndarray.swapaxes
ndarray.flatten
ndarray.ravel
ndarray.squeeze
Item selection and manipulation
-------------------------------
For array methods that take an *axis* keyword, it defaults to
:const:`None`. If axis is *None*, then the array is treated as a 1-D
array. Any other value for *axis* represents the dimension along which
the operation should proceed.
.. autosummary::
:toctree: generated/
ndarray.take
ndarray.put
ndarray.repeat
ndarray.choose
ndarray.sort
ndarray.argsort
ndarray.partition
ndarray.argpartition
ndarray.searchsorted
ndarray.nonzero
ndarray.compress
ndarray.diagonal
Calculation
-----------
.. index:: axis
Many of these methods take an argument named *axis*. In such cases,
- If *axis* is *None* (the default), the array is treated as a 1-D
array and the operation is performed over the entire array. This
behavior is also the default if self is a 0-dimensional array or
array scalar. (An array scalar is an instance of the types/classes
float32, float64, etc., whereas a 0-dimensional array is an ndarray
instance containing precisely one array scalar.)
- If *axis* is an integer, then the operation is done over the given
axis (for each 1-D subarray that can be created along the given axis).
.. admonition:: Example of the *axis* argument
A 3-dimensional array of size 3 x 3 x 3, summed over each of its
three axes
>>> x
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])
>>> x.sum(axis=0)
array([[27, 30, 33],
[36, 39, 42],
[45, 48, 51]])
>>> # for sum, axis is the first keyword, so we may omit it,
>>> # specifying only its value
>>> x.sum(0), x.sum(1), x.sum(2)
(array([[27, 30, 33],
[36, 39, 42],
[45, 48, 51]]),
array([[ 9, 12, 15],
[36, 39, 42],
[63, 66, 69]]),
array([[ 3, 12, 21],
[30, 39, 48],
[57, 66, 75]]))
The parameter *dtype* specifies the data type over which a reduction
operation (like summing) should take place. The default reduce data
type is the same as the data type of *self*. To avoid overflow, it can
be useful to perform the reduction using a larger data type.
For several methods, an optional *out* argument can also be provided
and the result will be placed into the output array given. The *out*
argument must be an :class:`ndarray` and have the same number of
elements. It can have a different data type in which case casting will
be performed.
.. autosummary::
:toctree: generated/
ndarray.argmax
ndarray.min
ndarray.argmin
ndarray.ptp
ndarray.clip
ndarray.conj
ndarray.round
ndarray.trace
ndarray.sum
ndarray.cumsum
ndarray.mean
ndarray.var
ndarray.std
ndarray.prod
ndarray.cumprod
ndarray.all
ndarray.any
Arithmetic and comparison operations
====================================
.. index:: comparison, arithmetic, operation, operator
Arithmetic and comparison operations on :class:`ndarrays <ndarray>`
are defined as element-wise operations, and generally yield
:class:`ndarray` objects as results.
Each of the arithmetic operations (``+``, ``-``, ``*``, ``/``, ``//``,
``%``, ``divmod()``, ``**`` or ``pow()``, ``<<``, ``>>``, ``&``,
``^``, ``|``, ``~``) and the comparisons (``==``, ``<``, ``>``,
``<=``, ``>=``, ``!=``) is equivalent to the corresponding
:term:`universal function` (or :term:`ufunc` for short) in Numpy. For
more information, see the section on :ref:`Universal Functions
<ufuncs>`.
Comparison operators:
.. autosummary::
:toctree: generated/
ndarray.__lt__
ndarray.__le__
ndarray.__gt__
ndarray.__ge__
ndarray.__eq__
ndarray.__ne__
Truth value of an array (:func:`bool()`):
.. autosummary::
:toctree: generated/
ndarray.__nonzero__
.. note::
Truth-value testing of an array invokes
:meth:`ndarray.__nonzero__`, which raises an error if the number of
elements in the the array is larger than 1, because the truth value
of such arrays is ambiguous. Use :meth:`.any() <ndarray.any>` and
:meth:`.all() <ndarray.all>` instead to be clear about what is meant
in such cases. (If the number of elements is 0, the array evaluates
to ``False``.)
Unary operations:
.. autosummary::
:toctree: generated/
ndarray.__neg__
ndarray.__pos__
ndarray.__abs__
ndarray.__invert__
Arithmetic:
.. autosummary::
:toctree: generated/
ndarray.__add__
ndarray.__sub__
ndarray.__mul__
ndarray.__div__
ndarray.__truediv__
ndarray.__floordiv__
ndarray.__mod__
ndarray.__divmod__
ndarray.__pow__
ndarray.__lshift__
ndarray.__rshift__
ndarray.__and__
ndarray.__or__
ndarray.__xor__
.. note::
- Any third argument to :func:`pow()` is silently ignored,
as the underlying :func:`ufunc <power>` takes only two arguments.
- The three division operators are all defined; :obj:`div` is active
by default, :obj:`truediv` is active when
:obj:`__future__` division is in effect.
- Because :class:`ndarray` is a built-in type (written in C), the
``__r{op}__`` special methods are not directly defined.
- The functions called to implement many arithmetic special methods
for arrays can be modified using :func:`set_numeric_ops`.
Arithmetic, in-place:
.. autosummary::
:toctree: generated/
ndarray.__iadd__
ndarray.__isub__
ndarray.__imul__
ndarray.__idiv__
ndarray.__itruediv__
ndarray.__ifloordiv__
ndarray.__imod__
ndarray.__ipow__
ndarray.__ilshift__
ndarray.__irshift__
ndarray.__iand__
ndarray.__ior__
ndarray.__ixor__
.. warning::
In place operations will perform the calculation using the
precision decided by the data type of the two operands, but will
silently downcast the result (if necessary) so it can fit back into
the array. Therefore, for mixed precision calculations, ``A {op}=
B`` can be different than ``A = A {op} B``. For example, suppose
``a = ones((3,3))``. Then, ``a += 3j`` is different than ``a = a +
3j``: while they both perform the same computation, ``a += 3``
casts the result to fit back in ``a``, whereas ``a = a + 3j``
re-binds the name ``a`` to the result.
Special methods
===============
For standard library functions:
.. autosummary::
:toctree: generated/
ndarray.__copy__
ndarray.__deepcopy__
ndarray.__reduce__
ndarray.__setstate__
Basic customization:
.. autosummary::
:toctree: generated/
ndarray.__new__
ndarray.__array__
ndarray.__array_wrap__
Container customization: (see :ref:`Indexing <arrays.indexing>`)
.. autosummary::
:toctree: generated/
ndarray.__len__
ndarray.__getitem__
ndarray.__setitem__
ndarray.__getslice__
ndarray.__setslice__
ndarray.__contains__
Conversion; the operations :func:`complex()`, :func:`int()`,
:func:`long()`, :func:`float()`, :func:`oct()`, and
:func:`hex()`. They work only on arrays that have one element in them
and return the appropriate scalar.
.. autosummary::
:toctree: generated/
ndarray.__int__
ndarray.__long__
ndarray.__float__
ndarray.__oct__
ndarray.__hex__
String representations:
.. autosummary::
:toctree: generated/
ndarray.__str__
ndarray.__repr__
|