File size: 33,654 Bytes
c011401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
From: Phil Garner ([email protected])
 Subject: In place matrix transpose
 Newsgroups: sci.math.num-analysis
 Date: 1993-08-05 06:35:06 PST


Someone was talking about matrix transposes earlier on.  It's a
curious subject.  I found that an in-place transpose is about 12 times
slower than the trivial copying method.

Here's somthing I nicked from netlib and translated into C to do the
in-place one for those that are interested: (matrix must be in one
block)


typedef float scalar; /* float -> double for double precision */

/*
 * In Place Matrix Transpose
 * From: Algorithm 380 collected algorithms from ACM.
 * Converted to C by Phil Garner
 *
 * Algorithm appeared in comm. ACM, vol. 13, no. 05,
 * p. 324.
 */
int trans(scalar *a, unsigned m, unsigned n, int *move, int iwrk)
{
  scalar b;
  int i, j, k, i1, i2, ia, ib, ncount, kmi, Max, mn;

  /*
   * a is a one-dimensional array of length mn=m*n, which
   * contains the m by n matrix to be transposed.
   * move is a one-dimensional array of length iwrk
   * used to store information to speed up the process. the
   * value iwrk=(m+n)/2 is recommended. Return val indicates the
   * success or failure of the routine.
   * normal return = 0
   * errors
   * -2, iwrk negative or zero.
   * ret > 0, (should never occur). in this case
   * we set ret equal to the final value of i when the search
   * is completed but some loops have not been moved.
   * check arguments and initialise
   */

  /* Function Body */
  if (n < 2 || m < 2)
    return 0;
  if (iwrk < 1)
    return -2;

  /* If matrix is square, exchange elements a(i,j) and a(j,i). */
  if (n == m)
    {
      for (i = 0; i < m - 1; ++i)
        for (j = i + 1; j < m; ++j)
          {
            i1 = i + j * m;
            i2 = j + i * m;
            b = a[i1];
            a[i1] = a[i2];
            a[i2] = b;
          }   return 0;
    }

  /* Non square matrix */
  ncount = 2;
  for (i = 0; i < iwrk; ++i)
    move[i] = 0;

  if (n > 2)
    /* Count number,ncount, of single points. */
    for (ia = 1; ia < n - 1; ++ia)
      {
        ib = ia * (m - 1) / (n - 1);
        if (ia * (m - 1) != ib * (n - 1))
          continue;
        ++ncount;
        i = ia * m + ib;
        if (i > iwrk)
          continue;
        move[i] = 1;
      }

  /* Set initial values for search. */
  mn = m * n;
  k = mn - 1;
  kmi = k - 1;
  Max = mn;
  i = 1;

  while (1)
    {
      /* Rearrange elements of a loop. */
      /* At least one loop must be re-arranged. */
      i1 = i;
      while (1)
        {
          b = a[i1];
          while (1)
            {
              i2 = n * i1 - k * (i1 / m);
              if (i1 <= iwrk)
                move[i1 - 1] = 2;
              ++ncount;
              if (i2 == i || i2 >= kmi)
                {
                  if (Max == kmi || i2 == i)
                    break;
                  Max = kmi;
                }
              a[i1] = a[i2];
              i1 = i2;
            }

          /* Test for symmetric pair of loops. */
          a[i1] = b;
          if (ncount >= mn)
            return 0;
          if (i2 == Max || Max == kmi)
            break;
          Max = kmi;
          i1 = Max;
        }

      /* Search for loops to be rearranged. */
      while (1)
        {
          Max = k - i;
          ++i;
          kmi = k - i;
          if (i > Max)
            return i;
          if (i <= iwrk)
            {
              if (move[i-1] < 1)
                break;
              continue;
            }
          if (i == n * i - k * (i / m))
            continue;
          i1 = i;
          while (1)
            {
              i2 = n * i1 - k * (i1 / m);
              if (i2 <= i || i2 >= Max)
                break;
              i1 = i2;
            }
          if (i2 == i)
            break;
        }
    } /* End never reached */
}

--
                       ,-----------------------------       ______
 ____                  | Phil Garner.            \___|     |/   \ \   ____
/__/ `--,   _L__L\_    | [email protected]    |    _|`---'  \_/__/ `--,
`-0---0-'  `-0--0-'    `--OO-------------------O-----'     `---0---' `-0---0-'

 From: Murray Dow ([email protected])
 Subject: Re: In place matrix transpose
 Newsgroups: sci.math.num-analysis
 Date: 1993-08-09 19:45:57 PST


In article <[email protected]>, [email protected] (Phil Garner) writes:
|> Someone was talking about matrix transposes earlier on.  It's a
|> curious subject.  I found that an in-place transpose is about 12 times
|> slower than the trivial copying method.
|>

Algorithm 380 from CACM is sloweer than ALG 467. Here are my times
from a VP2200 vector computer. Note that the CACM algorithms are scalar.
Times are in seconds, for a 900*904 matrix:

380   NAG   467   disc copy
1.03  1.14  .391  .177

Compare two vector algortihms, one I wrote and the second a matrix
copy:

My Alg    Matrix copy
.0095     .0097

Conclusions: dont use Alg 380 from Netlib. If you have the available memory,
do a matrix copy. If you don't have the memory, I will send you my algorithm
when I have published it.
--
Murray Dow                         GPO Box 4 Canberra ACT 2601 Australia
Supercomputer Facility             Phone: +61 6 2495028
Australian National University     Fax:   +61 6 2473425
[email protected]

=============================================================================

From: Mark Smotherman ([email protected])
 Subject: Matrix transpose benchmark [was Re: MIPS R8000 == TFP?]
 Newsgroups: comp.arch, comp.benchmarks, comp.sys.super
 Date: 1994-07-01 06:35:51 PST


[email protected] (John D. McCalpin) writes:

>
>Of course, these results are all for the naive algorithm.  I would be
>interested to see what an efficient blocked algorithm looks like.
>Anyone care to offer one?  There is clearly a lot of performance
>to be gained by the effort....

Here is a matrix transpose benchmark generator.  Enter something like

        10d10eij;

and you get a benchmark program with tiles of size 10 for the i and j
inner loops.  Please email code improvements and flames.

Enjoy!


/*---------------------------------------------------------------------------

        Matrix Transpose Generator

        Copyright 1993, Dept. of Computer Science, Clemson University

        Permission to use, copy, modify, and distribute this software and
        its documentation for any purpose and without fee is hereby granted,
        provided that the above copyright notice appears in all copies.

        Clemson University and its Dept. of Computer Science make no
        representations about the suitability of this software for any
        purpose.  It is provided "as is" without express or implied warranty.

        Original author: Mark Smotherman

  -------------------------------------------------------------------------*/


/* tpgen.c version 1.0
 *
 * generate a matrix transpose loop nest, with tiling and unrolling
 * (timing code using getrusage is included in the generated program)
 *
 * mark smotherman
 * [email protected]
 * clemson university
 * 9 july 1993
 *
 * a loop nest can be described by the order of its loop indices, so
 * this program takes as input a simple language describing these indices:
 *  <number>d  ==> generate tiling loop for index i with step size of <number>
 *  <number>e  ==> generate tiling loop for index j with step size of <number>
 *  <number>i  ==> generate loop for index i with unrolling factor of <number>
 *  <number>j  ==> generate loop for index j with unrolling factor of <number>
 *  ;          ==> input terminator (required)
 * rules are:
 *  i,j tokens must appear
 *  if d appears, it must appear before i
 *  if e appears, it must appear before j
 *  ; must appear
 * matrix size is controlled by #define N in this program.
 *
 * this code was adapted from mmgen.c v1.2 and extended to generate pre-
 * condition loops for unrolling factors that do not evenly divide the
 * matrix size (or the tiling step size for loop nests with a tiling loop).
 * note that this program only provides a preconditioning loop for the
 * innermost loop.  unrolling factors for non-innermost loops that do not
 * evenly divide the matrix size (or step size) are not supported.
 *
 * my interest in this program generator is to hook it to a sentence
 * generator and a minimum execution time finder, that is
 *   while((sentence=sgen())!=NULL){
 *     genprogram=tpgen(sentence);
 *     system("cc -O4 genprogram.c");
 *     system("a.out >> tpresults");
 *   }
 *   findmintime(tpresults);
 * this will find the optimum algorithm for the host system via an
 * exhaustive search.
 *
 * please report bugs and suggestions for enhancements to me.
 */

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#define N 500

#define ALLOC1 temp1=(struct line *)malloc(sizeof(struct line));\
temp1->indentcnt=indentcnt;

#define LINK1 temp1->next=insertbefore;\
insertafter->next=temp1;\
insertafter=temp1;

#define INSERT1 temp1->next=start;\
start=temp1;

#define ALLOC2 temp1=(struct line *)malloc(sizeof(struct line));\
temp2=(struct line *)malloc(sizeof(struct line));\
temp1->indentcnt=indentcnt;\
temp2->indentcnt=indentcnt++;

#define LINK2 temp1->next=temp2;\
temp2->next=insertbefore;\
insertafter->next=temp1;\
insertafter=temp1;\
insertbefore=temp2;

struct line{ int indentcnt; char line[256]; struct line *next; };

int indentcnt;
int iflag,jflag;
int ijflag,jiflag;
int dflag,eflag;
int counter;
int iistep,jjstep;
int iunroll,junroll;
int precond;

char c;
int i,ttp,nt;
char *p0;
char tptype[80];
char number[10];

struct line *start,*head,*insertafter,*insertbefore,*temp1,*temp2;

void processloop();
void processstmt();

main(){

  indentcnt=0;
  iflag=jflag=0;
  ijflag=jiflag=0;
  dflag=eflag=0;
  iunroll=junroll=0;
  counter=1;
  precond=0;
  ttp=0;

  start=NULL;
  ALLOC2
  sprintf(temp1->line,"/* begin */\nt_start=second();\n");
  sprintf(temp2->line,"/* end */\nt_end = second();\n");
  head=temp1; temp1->next=temp2; temp2->next=NULL;
  insertafter=temp1; insertbefore=temp2;

  while((c=getchar())!=';'){
    tptype[ttp++]=c;
    if(isdigit(c)){
      nt=0;
      while(isdigit(c)){
        number[nt++]=c;
        c=getchar();
        if(c==';'){ fprintf(stderr,"unexpected ;!\n"); exit(1); }
        tptype[ttp++]=c;
      }
      number[nt]='\0';
      sscanf(number,"%d",&counter);
    }
    switch(c){
      case 'd':
        if(iflag){ fprintf(stderr,"d cannot appear after i!\n"); exit(1); }
        dflag++;
        ALLOC1
        sprintf(temp1->line,"#define IISTEP %d\n",counter);
        INSERT1
        iistep=counter;
        counter=1;
        ALLOC2
        sprintf(temp1->line,"for(ii=0;ii<%d;ii+=IISTEP){\n",N);
        sprintf(temp2->line,"}\n",N);
        LINK2
        ALLOC1
        sprintf(temp1->line,"it=min(ii+IISTEP,%d);\n",N);
        LINK1
        break;
      case 'e':
        if(jflag){ fprintf(stderr,"e cannot appear after j!\n"); exit(1); }
        eflag++;
        ALLOC1
        sprintf(temp1->line,"#define JJSTEP %d\n",counter);
        INSERT1
        jjstep=counter;
        counter=1;
        ALLOC2
        sprintf(temp1->line,"for(jj=0;jj<%d;jj+=JJSTEP){\n",N);
        sprintf(temp2->line,"}\n",N);
        LINK2
        ALLOC1
        sprintf(temp1->line,"jt=min(jj+JJSTEP,%d);\n",N);
        LINK1
        break;
      case 'i':
        iunroll=counter;
        counter=1;
        iflag++; if(jflag) jiflag++;
        if(dflag) precond=iistep%iunroll; else precond=N%iunroll;
        if(precond&&(jiflag==0)){
          fprintf(stderr,"unrolling factor for outer loop i\n");
          fprintf(stderr,"  does not evenly divide matrix/step size!\n");
          exit(1);
        }
        if(dflag&&(iunroll>1)&&(N%iistep)){
          fprintf(stderr,"with unrolling of i, step size for tiled loop ii\n");
          fprintf(stderr,"  does not evenly divide matrix size!\n");
          exit(1);
        }
        processloop('i',dflag,iunroll,precond,junroll);
        break;
      case 'j':
        junroll=counter;
        counter=1;
        jflag++; if(iflag) ijflag++;
        if(eflag) precond=jjstep%junroll; else precond=N%junroll;
        if(precond&&(ijflag==0)){
          fprintf(stderr,"unrolling factor for outer loop j\n");
          fprintf(stderr,"  does not evenly divide matrix/step size!\n");
          exit(1);
        }
        if(eflag&&(junroll>1)&&(N%jjstep)){
          fprintf(stderr,"with unrolling of j, step size for tiled loop jj\n");
          fprintf(stderr,"  does not evenly divide matrix size!\n");
          exit(1);
        }
        processloop('j',eflag,junroll,precond,iunroll);
        break;
      default: break;
    }
  }
  processstmt();

  tptype[ttp++]=c;

  if((iflag==0)||(jflag==0)){
    fprintf(stderr,
      "one of the loops (i,j) was not specified!\n");
    exit(1);
  }

  temp1=start;
  while(temp1!=NULL){
    printf("%s",temp1->line);
    temp1=temp1->next;
  }
  printf("#include <stdio.h>\n");
  printf("#include <sys/time.h>\n");
  printf("#include <sys/resource.h>\n");
  if(dflag|eflag) printf("#define min(a,b) ((a)<=(b)?(a):(b))\n");
  printf("double second();\n");
  printf("double t_start,t_end,t_total;\n");
  printf("int times;\n");
  printf("\ndouble b[%d][%d],dummy[10000],bt[%d][%d];\n\nmain(){\n"
    ,N,N,N,N);
  if(precond) printf("  int i,j,n;\n"); else printf("  int i,j;\n");
  if(dflag) printf("  int ii,it;\n");
  if(eflag) printf("  int jj,jt;\n");
  printf("/* set coefficients so that result matrix should have \n");
  printf(" * column entries equal to column index\n");
  printf(" */\n");
  printf("  for (i=0;i<%d;i++){\n",N);
  printf("    for (j=0;j<%d;j++){\n",N);
  printf("      b[i][j] = (double) i;\n");
  printf("    }\n");
  printf("  }\n");
  printf("\n  t_total=0.0;\n  for(times=0;times<10;times++){\n\n",N);
  printf("/* try to flush cache */\n");
  printf("  for(i=0;i<10000;i++){\n",N);
  printf("    dummy[i] = 0.0;\n");
  printf("  }\n");
  printf("%s",head->line);
  temp1=head->next;
  while(temp1!=NULL){
    for(i=0;i<temp1->indentcnt;i++) printf("  ");
    while((p0=strstr(temp1->line,"+0"))!=NULL){
      *p0++=' '; *p0=' ';
    }
    printf("%s",temp1->line);
    temp1=temp1->next;
  }
  printf("\n  t_total+=t_end-t_start;\n  }\n");
  printf("/* check result */\n");
  printf("  for (j=0;j<%d;j++){\n",N);
  printf("    for (i=0;i<%d;i++){\n",N);
  printf("      if (bt[i][j]!=((double)j)){\n");
  printf("        fprintf(stderr,\"error in bt[%cd][%cd]",'%','%');
  printf("\\n\",i,j);\n");
  printf("        fprintf(stderr,\" for %s\\n\");\n",tptype);
  printf("        exit(1);\n");
  printf("      }\n");
  printf("    }\n");
  printf("  }\n");
  tptype[ttp]='\0';
  printf("  printf(\"%c10.2f secs\",t_total);\n",'%');
  printf("  printf(\" for 10 runs of %s\\n\");\n",tptype);
  printf("}\n");
  printf("double second(){\n");
  printf("  void getrusage();\n");
  printf("  struct rusage ru;\n");
  printf("  double t;\n");
  printf("  getrusage(RUSAGE_SELF,&ru);\n");
  printf("  t = ((double)ru.ru_utime.tv_sec) +\n");
  printf("    ((double)ru.ru_utime.tv_usec)/1.0e6;\n");
  printf("  return t;\n");
  printf("}\n");

}

void processloop(index,flag,unroll,precond,unroll2)
char index;
int flag,unroll,precond,unroll2;
{
  char build[80],temp[40];
  int n;
  if(precond){
    ALLOC1
    sprintf(temp1->line,"/* preconditioning loop for unrolling factor */\n");
    LINK1
    if(unroll2==1){
      build[0]='\0';
      if(flag){
        if(index='i')
          sprintf(temp,"n=IISTEP%c%d; ",'%',unroll);
        else
          sprintf(temp,"n=JJSTEP%c%d; ",'%',unroll);
        strcat(build,temp);
        sprintf(temp,"for(%c=%c%c;%c<%c%c+n;%c++) ",index,index,index,
          index,index,index,index);
        strcat(build,temp);
      }else{
        sprintf(temp,"n=%d%c%d; ",N,'%',unroll);
        strcat(build,temp);
        sprintf(temp,"for(%c=0;%c<n;%c++) ",index,index,index);
        strcat(build,temp);
      }
      sprintf(temp,"bt[i][j]=b[j][i];\n");
      strcat(build,temp);
      ALLOC1
      sprintf(temp1->line,"%s\n",build);
      LINK1
    }else{
      if(flag){
        ALLOC1
        if(index=='i')
          sprintf(temp1->line,"n=IISTEP%c%d;\n",'%',unroll);
        else
          sprintf(temp1->line,"n=JJSTEP%c%d;\n",'%',unroll);
        LINK1
        ALLOC1
        sprintf(temp1->line,"for(%c=%c%c;%c<%c%c+n;%c++){\n",index,index,index,
          index,index,index,index);
        LINK1
      }else{
        ALLOC1
        sprintf(temp1->line,"n=%d%c%d;\n",N,'%',unroll);
        LINK1
        ALLOC1
        sprintf(temp1->line,"for(%c=0;%c<n;%c++){\n",index,index,index);
        LINK1
      }
      if(index=='i'){
        for(n=0;n<unroll2;n++){
          ALLOC1
          sprintf(temp1->line,"  bt[i][j+%d]=b[j+%d][i];\n",n,n);
          LINK1
        }
      }else{
        for(n=0;n<unroll2;n++){
          ALLOC1
          sprintf(temp1->line,"  bt[i+%d][j]=b[j][i+%d];\n",n,n);
          LINK1
        }
      }
      ALLOC1
      sprintf(temp1->line,"}\n");
      LINK1
    }
    ALLOC2
    if(flag){
      sprintf(temp1->line,"for(%c=%c%c+n;%c<%ct;%c+=%d){\n",index,index,index,
        index,index,index,unroll);
    }else{
      sprintf(temp1->line,"for(%c=n;%c<%d;%c+=%d){\n",index,index,N,index,
        unroll);
    }
    sprintf(temp2->line,"}\n",N);
    LINK2
  }else{
    ALLOC2
    if(unroll==1){
      if(flag){
        sprintf(temp1->line,"for(%c=%c%c;%c<%ct;%c++){\n",index,index,index,
          index,index,index);
      }else{
        sprintf(temp1->line,"for(%c=0;%c<%d;%c++){\n",index,index,N,index);
      }
    }else{
      if(flag){
        sprintf(temp1->line,"for(%c=%c%c;%c<%ct;%c+=%d){\n",index,index,index,
          index,index,index,unroll);
      }else{
        sprintf(temp1->line,"for(%c=0;%c<%d;%c+=%d){\n",index,index,N,index,
          unroll);
      }
    }
    sprintf(temp2->line,"}\n",N);
    LINK2
  }
}

void processstmt()
{
  int i,j;
  for(i=0;i<iunroll;i++){
    for(j=0;j<junroll;j++){
      ALLOC1
      sprintf(temp1->line,"bt[i+%d][j+%d]=b[j+%d][i+%d];\n",i,j,j,i);
      LINK1
    }
  }
}
--
Mark Smotherman, Computer Science Dept., Clemson University, Clemson, SC

=======================================================================
From: has ([email protected])
 Subject: transpose of a nxm matrix stored in a vector !!!
 Newsgroups: sci.math.num-analysis
 Date: 2000/07/25


If I have a matrix nrows x ncols, I can store it in a vector.
so A(i,j) is really a[i*ncols+j]. So really TRANS of A
(say B) is really is also a vector B where

0<=i b[j*nrows+i] <nrows, 0<=j<ncols
b[j*nrows+i] = a[i*ncols+j].

Fine but I want to use only one array a to do this transformation.

i.e a[j*nrows+i] = a[i*ncols+j]. this will itself
erase some elements so each time a swap is necessary in a loop.

temp = a[j*nrows+i]
a[j*nrows+i] = a[i*ncols+j]
a[i*ncols+j] = temp

but still this will lose some info as it is, so indexing
should have more intelligence in it ???? anybody
can give me a lead here, thanks.

Has

 From: wei-choon ng ([email protected])
 Subject: Re: transpose of a nxm matrix stored in a vector !!!
 Newsgroups: sci.math.num-analysis
 Date: 2000/07/25


has <[email protected]> wrote:
> If I have a matrix nrows x ncols, I can store it in a vector.
> so A(i,j) is really a[i*ncols+j]. So really TRANS of A
> (say B) is really is also a vector B where

[snip]

Hey, if you just want to do a transpose-matrix vector multiply, there is
no need to explicitly store the transpose matrix in another array and
doubling the storage!

W.C.
--

 From: Robin Becker ([email protected])
 Subject: Re: transpose of a nxm matrix stored in a vector !!!
 Newsgroups: sci.math.num-analysis
 Date: 2000/07/25


In article <[email protected]>, has <[email protected]>
writes
>If I have a matrix nrows x ncols, I can store it in a vector.
>so A(i,j) is really a[i*ncols+j]. So really TRANS of A
>(say B) is really is also a vector B where
>
>0<=i b[j*nrows+i] <nrows, 0<=j<ncols
>b[j*nrows+i] = a[i*ncols+j].
>
>Fine but I want to use only one array a to do this transformation.
>
>i.e a[j*nrows+i] = a[i*ncols+j]. this will itself
>erase some elements so each time a swap is necessary in a loop.
>
>temp = a[j*nrows+i]
>a[j*nrows+i] = a[i*ncols+j]
>a[i*ncols+j] = temp
>
>but still this will lose some info as it is, so indexing
>should have more intelligence in it ???? anybody
>can give me a lead here, thanks.
>
>Has
>
>
>

void dmx_transpose(unsigned n, unsigned m, double* a, double* b)
{
        unsigned        size = m*n;
        if(b!=a){
                real    *bmn, *aij, *anm;
                bmn = b + size; /*b+n*m*/
                anm = a + size;
                while(b<bmn) for(aij=a++;aij<anm; aij+=n ) *b++ = *aij;
                }
        else if(size>3){
                unsigned i,row,column,current;
                for(i=1, size -= 2;i<size;i++){
                        current = i;
                        do      {
                                /*current = row+n*column*/
                                column = current/m;
                                row = current%m;
                                current = n*row +  column;
                                } while(current < i);

                        if (current >i) {
                                real temp = a[i];
                                a[i] = a[current];
                                a[current] = temp;
                                }
                        }
                }
}
--
Robin Becker

 From: E. Robert Tisdale ([email protected])
 Subject: Re: transpose of a nxm matrix stored in a vector !!!
 Newsgroups: sci.math.num-analysis
 Date: 2000/07/25


Take a look at
The C++ Scalar, Vector, Matrix and Tensor class library

    http://www.netwood.net/~edwin/svmt/

<Type><System>SubVector&
        <Type><System>SubVector::transpose(Extent p, Extent q) {
  <Type><System>SubVector&
                v = *this;
  if (1 < p && 1 < q) {
    // A vector v of extent n = qp is viewed as a q by p matrix U and
    // a p by q matrix V where U_{ij} = v_{p*i+j} and V_{ij} = v_{q*i+j}.
    // The vector v is modified in-place so that V is the transpose of U.
    // The algorithm searches for every sequence k_s of S indices
    // such that a circular shift of elements v_{k_s} <-- v_{k_{s+1}}
    // and v_{k_{S-1}} <-- v_{k_0} effects an in-place transpose.
    Extent      n = q*p;
    Extent      m = 0;                  // count up to n-2
    Offset      l = 0;                  // 1 <= l <= n-2
    while (++l < n-1 && m < n-2) {
      Offset    k = l;
      Offset    j = k;
      while (l < (k = (j%p)*q + j/p)) { // Search backward for k < l.
        j = k;
        }
      // If a sequence of indices beginning with l has any index k < l,
      // it has already been transposed.  The sequence length S = 1
      // and diagonal element v_k is its own transpose if k = j.
      // Skip every index sequence that has already been transposed.
      if (k == l) {                     // a new sequence
        if (k < j) {                    // with 1 < S
          TYPE  x = v[k];               // save v_{k_0}
          do {
            v[k] = v[j];                // v_{k_{s}} <-- v_{k_{s+1}}
            k = j;
            ++m;
            } while (l < (j = (k%q)*p + k/q));
          v[k] = x;                     // v_{k_{S-1}} <-- v_{k_0}
          }
        ++m;
        }
      }
    } return v;
  }



<Type><System>SubVector&

Read the rest of this message... (50 more lines)

 From: Victor Eijkhout ([email protected])
 Subject: Re: transpose of a nxm matrix stored in a vector !!!
 Newsgroups: sci.math.num-analysis
 Date: 2000/07/25


"Alan Miller" <amiller @ vic.bigpond.net.au> writes:

> The attached routine does an in situ transpose.
> begin 666 Dtip.f90
> M4U5"4D]55$E.12!D=&EP("AA+"!N,2P@;C(L(&YD:6TI#0HA("TM+2TM+2TM

Hm. F90? You're not silently allocating a temporary I hope?

(Why did you have to encode this? Now I have to save, this decode, ...
and all for plain ascii?)

--
Victor Eijkhout
"When I was coming up, [..] we knew exactly who the they were. It was us
versus them, and it was clear who the them was were. Today, we are not
so sure who the they are, but we know they're there." [G.W. Bush]

 From: Alan Miller (amiller_@_vic.bigpond.net.au)
 Subject: Re: transpose of a nxm matrix stored in a vector !!!
 Newsgroups: sci.math.num-analysis
 Date: 2000/07/25


Victor Eijkhout wrote in message ...
>"Alan Miller" <amiller @ vic.bigpond.net.au> writes:
>
>> The attached routine does an in situ transpose.
>> begin 666 Dtip.f90
>> M4U5"4D]55$E.12!D=&EP("AA+"!N,2P@;C(L(&YD:6TI#0HA("TM+2TM+2TM
>
>Hm. F90? You're not silently allocating a temporary I hope?
>
>(Why did you have to encode this? Now I have to save, this decode, ...
>and all for plain ascii?)
>

I know the problem.
I sometimes use a Unix system, and have to use decode64 to read
attachments.   On the other hand, Windows wraps lines around,
formats then and generally makes the code unreadable.

The straight code for dtip (double transpose in place) is attached
this time.

>--
>Victor Eijkhout


--
Alan Miller, Retired Scientist (Statistician)
CSIRO Mathematical & Information Sciences
Alan.Miller -at- vic.cmis.csiro.au
http://www.ozemail.com.au/~milleraj
http://users.bigpond.net.au/amiller/


=================================================================

From: Darran Edmundson ([email protected])
 Subject: array reordering algorithm?
 Newsgroups: sci.math.num-analysis
 Date: 1995/04/30


A code I've written refers to a complex array as two separate real arrays.
However, I have a canned subroutine which expects a single array where the
real and imaginary values alternate.  Essentially I have a case of mismatched
data structures, yet for reasons that I'd rather not go into, I'm stuck with them.

Assuming that the two real arrays A and B are sequential in memory, and
that the single array of alternating real/imaginary values C shares the same
space, what I need is a porting subroutine that remaps the data from one format
to the other - using as little space as possible.

I think of the problem as follows.  Imagine an array of dimension 10 containing
the values 1,3,5,7,9,2,4,6,8,10 in this order.

 A(1) /  1   \  C(1)
 A(2) |  3   |  C(2)
 A(3) |  5   |  C(3)
 A(4) |  7   |  C(4)
 A(5) \  9   |  C(5)
             |
 B(1) /  2   |  C(6)
 B(2) |  4   |  C(7)
 B(3) |  6   |  C(8)
 B(4) |  8   |  C(9)
 B(5) \ 10   /  C(10)

Given that I know this initial pattern, I want to sort the array C in-place *without
making comparisons*.  That is, the algorithm can only depend on the initial
knowledge of the pattern.  Do you see what a sort is going to do?  It will
make the A and B arrays alternate, i.e. C(1)=A(1), C(2)=B(1), C(3)=A(2),
C(4)=B(2), etc.  It's not a real sort though because I can't actually refer to the
values above (i.e. no comparisons) because A and B will be holding real data,
not this contrived pattern.  The pattern above exists though - it's the
natural ordering in memory of A and B.

Either pair swapping only or a small amount of workspace can be used.  The
in-place is important - imagine scaling this problem up to an
array of 32 or 64 million double precision values and you can easily see how
duplicating the array is not a feasible solution.

Any ideas?  I've been stumped on this for a day and a half now.

Darran Edmundson
[email protected]

 From: Roger Critchlow ([email protected])
 Subject: Re: array reordering algorithm?
 Newsgroups: sci.math.num-analysis
 Date: 1995/04/30


   Any ideas?  I've been stumped on this for a day and a half now.

Here's some code for in situ permutations of arrays that I wrote
a few years ago.  It all started from the in situ transposition
algorithms in the Collected Algorithms of the ACM, the references
for which always get lost during the decryption from fortran.

This is the minimum space algorithm.  All you need to supply is
a function which computes the new order array index from the old
order array index.

If you can spare n*m bits to record the indexes of elements which
have been permuted, then you can speed things up.

-- rec --

------------------------------------------------------------------------
/*
** Arbitrary in situ permutations of an m by n array of base type TYPE.
** Copyright 1995 by Roger E Critchlow Jr, [email protected], San Francisco, CA.
** Fair use permitted, caveat emptor.
*/
typedef int TYPE;

int transposition(int ij, int m, int n)         /* transposition about diagonal from upper left to lower right */
{ return ((ij%m)*n+ (ij/m)); }

int countertrans(int ij, int m, int n)          /* transposition about diagonal from upper right to lower left */
{ return ((m-1-(ij%m))*n+ (n-1-(ij/m))); }

int rotate90cw(int ij, int m, int n)            /* 90 degree clockwise rotation */
{ return ((m-1-(ij%m))*n+ (ij/m)); }

int rotate90ccw(int ij, int m, int n)           /* 90 degree counter clockwise rotation */
{ return ((ij%m)*n+ (n-1-(ij/m))); }

int rotate180(int ij, int m, int n)             /* 180 degree rotation */
{ return ((m-1-(ij/n))*n+ (n-1-(ij%n))); }

int reflecth(int ij, int m, int n)              /* reflection across horizontal plane */
{ return ((m-1-(ij/n))*n+ (ij%n)); }

int reflectv(int ij, int m, int n)              /* reflection across vertical plane */
{ return ((ij/n)*n+ (n-1-(ij%n))); }

int in_situ_permutation(TYPE a[], int m, int n, int (*origination)(int ij, int m, int n))
{
  int ij, oij, dij, n_to_do;
  TYPE b;
  n_to_do = m*n;
  for (ij = 0; ij < m*n && n_to_do > 0; ij += 1) {
    /* Test for previously permuted */
    for (oij = origination(ij,m,n); oij > ij; oij = origination(oij,m,n))
      ;
    if (oij < ij)
      continue;
    /* Chase the cycle */
    dij = ij;
    b = a[ij];
    for (oij = origination(dij,m,n); oij != ij; oij = origination(dij,m,n)) {
      a[dij] = a[oij];
      dij = oij;
      n_to_do -= 1;
    }
    a[dij] = b;
    n_to_do -= 1;
  } return 0;
}

#define TESTING 1
#if TESTING

/* fill a matrix with sequential numbers, row major ordering */
void fill_matrix_rows(a, m, n) TYPE *a; int m, n;
{
  int i, j;
  for (i = 0; i < m; i += 1)
    for (j = 0; j < n; j += 1)
      a[i*n+j] = i*n+j;
}

/* fill a matrix with sequential numbers, column major ordering */
void fill_matrix_cols(a, m, n) TYPE *a; int m, n;
{
  int i, j;
  for (i = 0; i < m; i += 1)
    for (j = 0; j < n; j += 1)
      a[i*n+j] = j*m+i;
}

/* test a matrix for sequential numbers, row major ordering */
int test_matrix_rows(a, m, n) TYPE *a; int m, n;
{
  int i, j, o;
  for (o = i = 0; i < m; i += 1)
    for (j = 0; j < n; j += 1)
      o += a[i*n+j] != i*n+j;
  return o;
}

/* test a matrix for sequential numbers, column major ordering */
int test_matrix_cols(a, m, n) TYPE *a; int m, n;
{
  int i, j, o;
  for (o = i = 0; i < m; i += 1)
    for (j = 0; j < n; j += 1)
      o += a[i*n+j] != j*m+i;
  return o;
}

/* print a matrix */
void print_matrix(a, m, n) TYPE *a; int m, n;
{
  char *format;
  int i, j;
  if (m*n < 10) format = "%2d";
  if (m*n < 100) format = "%3d";
  if (m*n < 1000) format = "%4d";
  if (m*n < 10000) format = "%5d";
  for (i = 0; i < m; i += 1) {
    for (j = 0; j < n; j += 1)
      printf(format, a[i*n+j]);
    printf("\n");
  }
}

#if TEST_TRANSPOSE
#define MAXSIZE 1000

main()
{
  int i, j, m, n, o;
  TYPE a[MAXSIZE];
  for (m = 1; m < sizeof(a)/sizeof(a[0]); m += 1)
    for (n = 1; m*n < sizeof(a)/sizeof(a[0]); n += 1) {
      fill_matrix_rows(a, m, n);                                /* {0 1} {2 3} */
      if (o = transpose(a, m, n))
        printf(">> transpose returned %d for a[%d][%d], row major\n", o, m, n);
      if ((o = test_matrix_cols(a, n, m)) != 0)                 /* {0 2} {1 3} */
        printf(">> transpose made %d mistakes for a[%d][%d], row major\n", o, m, n);
      /* column major */
      fill_matrix_rows(a, m, n);
      if (o = transpose(a, m, n))
        printf(">> transpose returned %d for a[%d][%d], column major\n", o, m, n);
      if ((o = test_matrix_cols(a, n, m)) != 0)
        printf(">> transpose made %d mistakes for a[%d][%d], column major\n", o, m, n);
    } return 0;
}
#endif                                                          /* TEST_TRANSPOSE */


#define TEST_DISPLAY 1
#if TEST_DISPLAY
main(argc, argv) int argc; char *argv[];
{
  TYPE *a;
  int m = 5, n = 5;
  extern void *malloc();
  if (argc > 1) {
    m = atoi(argv[1]);
    if (argc > 2)
      n = atoi(argv[2]);
  }
  a = malloc(m*n*sizeof(TYPE));

  printf("matrix\n");
  fill_matrix_rows(a, m, n);
  print_matrix(a, m, n);
  printf("transposition\n");
  in_situ_permutation(a, m, n, transposition);
  print_matrix(a, n, m);

  printf("counter transposition\n");
  fill_matrix_rows(a, m, n);
  in_situ_permutation(a, m, n, countertrans);
  print_matrix(a, n, m);

  printf("rotate 90 degrees clockwise\n");
  fill_matrix_rows(a, m, n);
  in_situ_permutation(a, m, n, rotate90cw);
  print_matrix(a, n, m);

  printf("rotate 90 degrees counterclockwise\n");
  fill_matrix_rows(a, m, n);
  in_situ_permutation(a, m, n, rotate90ccw);
  print_matrix(a, n, m);

  printf("rotate 180 degrees\n");
  fill_matrix_rows(a, m, n);
  in_situ_permutation(a, m, n, rotate180);
  print_matrix(a, m, n);

  printf("reflect across horizontal\n");
  fill_matrix_rows(a, m, n);
  in_situ_permutation(a, m, n, reflecth);
  print_matrix(a, m, n);

  printf("reflect across vertical\n");
  fill_matrix_rows(a, m, n);
  in_situ_permutation(a, m, n, reflectv);
  print_matrix(a, m, n);

  return 0;
}

#endif
#endif