File size: 16,439 Bytes
0480c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: classifier-llama3-python-500k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classifier-llama3-python-500k

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4216
- Precision: 0.5822
- Recall: 0.4400
- F1 Macro: 0.4652
- Accuracy: 0.5749
- F1 Binary Minimum3: 0.8018
- F1 Binary Minimum2: 0.9438

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | F1 Binary Minimum2 |
|:-------------:|:-------:|:------:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|:------------------:|
| No log        | 0       | 0      | 7.4938          | 0.0265    | 0.2    | 0.0468   | 0.1326   | 0                  | 0                  |
| 0.4898        | 0.2880  | 1000   | 0.4759          | 0.5180    | 0.3927 | 0.4073   | 0.5474   | 0.7902             | 0.9395             |
| 0.4733        | 0.5760  | 2000   | 0.4696          | 0.5338    | 0.3984 | 0.4131   | 0.5493   | 0.7767             | 0.9400             |
| 0.4761        | 0.8641  | 3000   | 0.4571          | 0.5266    | 0.4080 | 0.4235   | 0.5573   | 0.7893             | 0.9410             |
| 0.4473        | 1.1521  | 4000   | 0.4589          | 0.5171    | 0.4061 | 0.4202   | 0.5522   | 0.7806             | 0.9389             |
| 0.4472        | 1.4401  | 5000   | 0.4686          | 0.5557    | 0.4135 | 0.4280   | 0.5503   | 0.7991             | 0.9416             |
| 0.4399        | 1.7281  | 6000   | 0.4508          | 0.5605    | 0.4184 | 0.4359   | 0.5599   | 0.7988             | 0.9421             |
| 0.4511        | 2.0161  | 7000   | 0.4467          | 0.5597    | 0.4183 | 0.4357   | 0.5615   | 0.7927             | 0.9402             |
| 0.445         | 2.3041  | 8000   | 0.4441          | 0.5395    | 0.4167 | 0.4326   | 0.5618   | 0.7913             | 0.9412             |
| 0.4554        | 2.5922  | 9000   | 0.4486          | 0.5640    | 0.4197 | 0.4372   | 0.5609   | 0.7999             | 0.9415             |
| 0.4499        | 2.8802  | 10000  | 0.4428          | 0.5702    | 0.4225 | 0.4405   | 0.5633   | 0.7990             | 0.9419             |
| 0.4492        | 3.1682  | 11000  | 0.4651          | 0.5714    | 0.4279 | 0.4459   | 0.5549   | 0.8015             | 0.9420             |
| 0.4459        | 3.4562  | 12000  | 0.4401          | 0.5690    | 0.4190 | 0.4368   | 0.5646   | 0.7986             | 0.9418             |
| 0.4469        | 3.7442  | 13000  | 0.4428          | 0.5753    | 0.4189 | 0.4378   | 0.5625   | 0.7976             | 0.9405             |
| 0.459         | 4.0323  | 14000  | 0.4385          | 0.5729    | 0.4229 | 0.4415   | 0.5661   | 0.7955             | 0.9421             |
| 0.4543        | 4.3203  | 15000  | 0.4418          | 0.5721    | 0.4220 | 0.4404   | 0.5629   | 0.8009             | 0.9408             |
| 0.442         | 4.6083  | 16000  | 0.4488          | 0.5803    | 0.4207 | 0.4388   | 0.5595   | 0.8028             | 0.9412             |
| 0.4525        | 4.8963  | 17000  | 0.4469          | 0.5712    | 0.4174 | 0.4338   | 0.5597   | 0.8005             | 0.9399             |
| 0.4539        | 5.1843  | 18000  | 0.4371          | 0.5867    | 0.4183 | 0.4372   | 0.5659   | 0.7996             | 0.9421             |
| 0.4527        | 5.4724  | 19000  | 0.4371          | 0.5707    | 0.4269 | 0.4450   | 0.5653   | 0.7920             | 0.9413             |
| 0.455         | 5.7604  | 20000  | 0.4364          | 0.5712    | 0.4288 | 0.4494   | 0.5664   | 0.7982             | 0.9416             |
| 0.4519        | 6.0484  | 21000  | 0.4371          | 0.5805    | 0.4274 | 0.4479   | 0.5667   | 0.8012             | 0.9421             |
| 0.4293        | 6.3364  | 22000  | 0.4351          | 0.5841    | 0.4214 | 0.4412   | 0.5669   | 0.7989             | 0.9424             |
| 0.4441        | 6.6244  | 23000  | 0.4360          | 0.5707    | 0.4272 | 0.4456   | 0.5667   | 0.7933             | 0.9413             |
| 0.4376        | 6.9124  | 24000  | 0.4360          | 0.5652    | 0.4262 | 0.4450   | 0.5652   | 0.7933             | 0.9412             |
| 0.4357        | 7.2005  | 25000  | 0.4382          | 0.5716    | 0.4244 | 0.4441   | 0.5647   | 0.8009             | 0.9411             |
| 0.4513        | 7.4885  | 26000  | 0.4382          | 0.5764    | 0.4245 | 0.4425   | 0.5629   | 0.7857             | 0.9410             |
| 0.422         | 7.7765  | 27000  | 0.4344          | 0.5736    | 0.4256 | 0.4456   | 0.5670   | 0.7967             | 0.9418             |
| 0.4317        | 8.0645  | 28000  | 0.4343          | 0.5799    | 0.4209 | 0.4406   | 0.5658   | 0.7995             | 0.9413             |
| 0.4458        | 8.3525  | 29000  | 0.4339          | 0.5793    | 0.4307 | 0.4521   | 0.5686   | 0.8015             | 0.9431             |
| 0.4591        | 8.6406  | 30000  | 0.4382          | 0.5869    | 0.4260 | 0.4470   | 0.5655   | 0.8031             | 0.9420             |
| 0.4313        | 8.9286  | 31000  | 0.4364          | 0.5717    | 0.4352 | 0.4577   | 0.5681   | 0.8022             | 0.9426             |
| 0.4201        | 9.2166  | 32000  | 0.4328          | 0.5686    | 0.4326 | 0.4540   | 0.5691   | 0.7958             | 0.9420             |
| 0.4433        | 9.5046  | 33000  | 0.4378          | 0.5778    | 0.4339 | 0.4554   | 0.5674   | 0.8036             | 0.9428             |
| 0.4404        | 9.7926  | 34000  | 0.4339          | 0.5855    | 0.4292 | 0.4516   | 0.5692   | 0.8021             | 0.9434             |
| 0.4324        | 10.0806 | 35000  | 0.4318          | 0.5695    | 0.4316 | 0.4533   | 0.5685   | 0.7985             | 0.9424             |
| 0.4393        | 10.3687 | 36000  | 0.4365          | 0.5804    | 0.4307 | 0.4529   | 0.5672   | 0.8040             | 0.9425             |
| 0.4334        | 10.6567 | 37000  | 0.4304          | 0.5780    | 0.4308 | 0.4525   | 0.5700   | 0.7996             | 0.9424             |
| 0.4396        | 10.9447 | 38000  | 0.4311          | 0.5691    | 0.4329 | 0.4547   | 0.5708   | 0.8001             | 0.9427             |
| 0.4398        | 11.2327 | 39000  | 0.4362          | 0.5732    | 0.4356 | 0.4579   | 0.5681   | 0.8040             | 0.9426             |
| 0.4568        | 11.5207 | 40000  | 0.4305          | 0.5814    | 0.4299 | 0.4516   | 0.5700   | 0.7998             | 0.9424             |
| 0.4459        | 11.8088 | 41000  | 0.4307          | 0.5793    | 0.4339 | 0.4562   | 0.5705   | 0.8017             | 0.9427             |
| 0.4326        | 12.0968 | 42000  | 0.4326          | 0.5821    | 0.4331 | 0.4559   | 0.5693   | 0.8026             | 0.9431             |
| 0.4343        | 12.3848 | 43000  | 0.4320          | 0.5751    | 0.4347 | 0.4578   | 0.5702   | 0.8026             | 0.9430             |
| 0.4247        | 12.6728 | 44000  | 0.4292          | 0.5768    | 0.4360 | 0.4592   | 0.5713   | 0.8011             | 0.9429             |
| 0.4285        | 12.9608 | 45000  | 0.4414          | 0.5789    | 0.4342 | 0.4566   | 0.5652   | 0.8054             | 0.9425             |
| 0.4304        | 13.2488 | 46000  | 0.4305          | 0.5767    | 0.4354 | 0.4584   | 0.5709   | 0.8028             | 0.9432             |
| 0.4211        | 13.5369 | 47000  | 0.4279          | 0.5759    | 0.4323 | 0.4542   | 0.5712   | 0.7996             | 0.9425             |
| 0.4451        | 13.8249 | 48000  | 0.4280          | 0.5906    | 0.4282 | 0.4507   | 0.5723   | 0.8002             | 0.9437             |
| 0.4298        | 14.1129 | 49000  | 0.4295          | 0.5799    | 0.4278 | 0.4488   | 0.5680   | 0.7921             | 0.9424             |
| 0.4328        | 14.4009 | 50000  | 0.4283          | 0.5804    | 0.4349 | 0.4587   | 0.5717   | 0.8014             | 0.9431             |
| 0.4366        | 14.6889 | 51000  | 0.4276          | 0.5777    | 0.4367 | 0.4606   | 0.5718   | 0.8007             | 0.9433             |
| 0.4225        | 14.9770 | 52000  | 0.4333          | 0.5690    | 0.4382 | 0.4614   | 0.5693   | 0.8039             | 0.9421             |
| 0.4411        | 15.2650 | 53000  | 0.4280          | 0.5738    | 0.4327 | 0.4559   | 0.5711   | 0.8013             | 0.9428             |
| 0.4279        | 15.5530 | 54000  | 0.4273          | 0.5787    | 0.4349 | 0.4589   | 0.5720   | 0.8016             | 0.9433             |
| 0.418         | 15.8410 | 55000  | 0.4283          | 0.5747    | 0.4328 | 0.4542   | 0.5694   | 0.7920             | 0.9423             |
| 0.4472        | 16.1290 | 56000  | 0.4276          | 0.5761    | 0.4350 | 0.4560   | 0.5712   | 0.7953             | 0.9426             |
| 0.426         | 16.4171 | 57000  | 0.4260          | 0.5910    | 0.4283 | 0.4514   | 0.5725   | 0.7983             | 0.9438             |
| 0.437         | 16.7051 | 58000  | 0.4298          | 0.5777    | 0.4354 | 0.4589   | 0.5708   | 0.8040             | 0.9430             |
| 0.4289        | 16.9931 | 59000  | 0.4272          | 0.5741    | 0.4382 | 0.4619   | 0.5725   | 0.8019             | 0.9435             |
| 0.4454        | 17.2811 | 60000  | 0.4254          | 0.5921    | 0.4311 | 0.4542   | 0.5734   | 0.8013             | 0.9433             |
| 0.4367        | 17.5691 | 61000  | 0.4273          | 0.5792    | 0.4377 | 0.4625   | 0.5726   | 0.8021             | 0.9432             |
| 0.4555        | 17.8571 | 62000  | 0.4259          | 0.5746    | 0.4379 | 0.4616   | 0.5725   | 0.7998             | 0.9430             |
| 0.4351        | 18.1452 | 63000  | 0.4257          | 0.5776    | 0.4334 | 0.4566   | 0.5719   | 0.7972             | 0.9431             |
| 0.4334        | 18.4332 | 64000  | 0.4247          | 0.5813    | 0.4378 | 0.4622   | 0.5739   | 0.7988             | 0.9437             |
| 0.423         | 18.7212 | 65000  | 0.4261          | 0.5783    | 0.4343 | 0.4573   | 0.5713   | 0.7934             | 0.9426             |
| 0.4433        | 19.0092 | 66000  | 0.4248          | 0.5756    | 0.4352 | 0.4591   | 0.5730   | 0.7996             | 0.9433             |
| 0.4355        | 19.2972 | 67000  | 0.4241          | 0.5822    | 0.4378 | 0.4623   | 0.5738   | 0.8012             | 0.9436             |
| 0.4268        | 19.5853 | 68000  | 0.4308          | 0.5814    | 0.4356 | 0.4589   | 0.5706   | 0.8044             | 0.9426             |
| 0.4291        | 19.8733 | 69000  | 0.4297          | 0.5802    | 0.4351 | 0.4587   | 0.5696   | 0.8044             | 0.9427             |
| 0.4291        | 20.1613 | 70000  | 0.4247          | 0.5799    | 0.4361 | 0.4598   | 0.5738   | 0.8020             | 0.9433             |
| 0.419         | 20.4493 | 71000  | 0.4241          | 0.5820    | 0.4363 | 0.4606   | 0.5739   | 0.8012             | 0.9434             |
| 0.4264        | 20.7373 | 72000  | 0.4282          | 0.5817    | 0.4369 | 0.4613   | 0.5714   | 0.8042             | 0.9430             |
| 0.4259        | 21.0253 | 73000  | 0.4239          | 0.5794    | 0.4353 | 0.4588   | 0.5729   | 0.7969             | 0.9431             |
| 0.422         | 21.3134 | 74000  | 0.4230          | 0.5843    | 0.4376 | 0.4622   | 0.5744   | 0.7990             | 0.9437             |
| 0.4312        | 21.6014 | 75000  | 0.4247          | 0.5835    | 0.4340 | 0.4585   | 0.5725   | 0.8012             | 0.9430             |
| 0.4103        | 21.8894 | 76000  | 0.4245          | 0.5804    | 0.4409 | 0.4664   | 0.5732   | 0.8026             | 0.9436             |
| 0.4473        | 22.1774 | 77000  | 0.4235          | 0.5831    | 0.4360 | 0.4603   | 0.5738   | 0.8008             | 0.9434             |
| 0.4205        | 22.4654 | 78000  | 0.4244          | 0.5807    | 0.4357 | 0.4600   | 0.5733   | 0.8021             | 0.9433             |
| 0.4294        | 22.7535 | 79000  | 0.4229          | 0.5862    | 0.4342 | 0.4584   | 0.5741   | 0.8011             | 0.9434             |
| 0.4467        | 23.0415 | 80000  | 0.4232          | 0.5749    | 0.4401 | 0.4649   | 0.5740   | 0.8009             | 0.9432             |
| 0.4296        | 23.3295 | 81000  | 0.4229          | 0.5812    | 0.4381 | 0.4629   | 0.5743   | 0.8006             | 0.9433             |
| 0.4308        | 23.6175 | 82000  | 0.4235          | 0.5758    | 0.4442 | 0.4698   | 0.5746   | 0.8022             | 0.9438             |
| 0.4251        | 23.9055 | 83000  | 0.4219          | 0.5862    | 0.4358 | 0.4602   | 0.5747   | 0.8003             | 0.9436             |
| 0.4383        | 24.1935 | 84000  | 0.4229          | 0.5784    | 0.4381 | 0.4626   | 0.5743   | 0.8015             | 0.9432             |
| 0.4309        | 24.4816 | 85000  | 0.4219          | 0.5837    | 0.4372 | 0.4618   | 0.5748   | 0.8001             | 0.9434             |
| 0.4245        | 24.7696 | 86000  | 0.4222          | 0.5810    | 0.4391 | 0.4633   | 0.5748   | 0.7982             | 0.9435             |
| 0.4227        | 25.0576 | 87000  | 0.4221          | 0.5836    | 0.4362 | 0.4606   | 0.5743   | 0.7991             | 0.9435             |
| 0.4224        | 25.3456 | 88000  | 0.4220          | 0.5775    | 0.4416 | 0.4664   | 0.5744   | 0.7998             | 0.9433             |
| 0.4247        | 25.6336 | 89000  | 0.4227          | 0.5854    | 0.4382 | 0.4632   | 0.5743   | 0.8028             | 0.9434             |
| 0.416         | 25.9217 | 90000  | 0.4230          | 0.5760    | 0.4427 | 0.4675   | 0.5746   | 0.8018             | 0.9434             |
| 0.4221        | 26.2097 | 91000  | 0.4215          | 0.5820    | 0.4390 | 0.4638   | 0.5752   | 0.8012             | 0.9439             |
| 0.4126        | 26.4977 | 92000  | 0.4263          | 0.5836    | 0.4391 | 0.4641   | 0.5723   | 0.8050             | 0.9431             |
| 0.424         | 26.7857 | 93000  | 0.4215          | 0.5828    | 0.4381 | 0.4627   | 0.5750   | 0.7986             | 0.9438             |
| 0.4272        | 27.0737 | 94000  | 0.4239          | 0.5853    | 0.4403 | 0.4660   | 0.5740   | 0.8040             | 0.9438             |
| 0.4306        | 27.3618 | 95000  | 0.4235          | 0.5801    | 0.4399 | 0.4651   | 0.5736   | 0.8029             | 0.9435             |
| 0.4164        | 27.6498 | 96000  | 0.4219          | 0.5801    | 0.4405 | 0.4656   | 0.5747   | 0.8015             | 0.9437             |
| 0.431         | 27.9378 | 97000  | 0.4213          | 0.5791    | 0.4393 | 0.4637   | 0.5748   | 0.7993             | 0.9434             |
| 0.4284        | 28.2258 | 98000  | 0.4227          | 0.5826    | 0.4402 | 0.4658   | 0.5744   | 0.8033             | 0.9435             |
| 0.4289        | 28.5138 | 99000  | 0.4216          | 0.5845    | 0.4384 | 0.4634   | 0.5749   | 0.8009             | 0.9438             |
| 0.4244        | 28.8018 | 100000 | 0.4221          | 0.5813    | 0.4377 | 0.4623   | 0.5746   | 0.8020             | 0.9436             |
| 0.4314        | 29.0899 | 101000 | 0.4216          | 0.5829    | 0.4402 | 0.4654   | 0.5751   | 0.8013             | 0.9437             |
| 0.4269        | 29.3779 | 102000 | 0.4212          | 0.5852    | 0.4405 | 0.4658   | 0.5754   | 0.8006             | 0.9438             |
| 0.4367        | 29.6659 | 103000 | 0.4215          | 0.5841    | 0.4400 | 0.4653   | 0.5749   | 0.8013             | 0.9437             |
| 0.4223        | 29.9539 | 104000 | 0.4216          | 0.5822    | 0.4400 | 0.4652   | 0.5749   | 0.8018             | 0.9438             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1