File size: 22,978 Bytes
e278512 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-bnb-4bit using unsloth
RESEARCH TRAINING PHASE ONLY - No output generation
WORKS WITH PRE-TOKENIZED DATASET - No re-tokenization
"""
import os
import json
import logging
import argparse
import numpy as np
from dotenv import load_dotenv
import torch
from datasets import load_dataset
import transformers
from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelForCausalLM, AutoConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig
from unsloth import FastLanguageModel
# Disable flash attention globally
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
# Check if tensorboard is available
try:
import tensorboard
TENSORBOARD_AVAILABLE = True
except ImportError:
TENSORBOARD_AVAILABLE = False
print("Tensorboard not available. Will skip tensorboard logging.")
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler("training.log")
]
)
logger = logging.getLogger(__name__)
# Default dataset path - use the correct path with username
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
def load_config(config_path):
"""Load the transformers config from JSON file"""
logger.info(f"Loading config from {config_path}")
with open(config_path, 'r') as f:
config = json.load(f)
return config
def load_and_prepare_dataset(dataset_name, config):
"""
Load and prepare the dataset for fine-tuning.
Sort entries by prompt_number as required.
NO TOKENIZATION - DATASET IS ALREADY TOKENIZED
"""
# Use the default dataset path if no specific path is provided
if dataset_name == "phi4-cognitive-dataset":
dataset_name = DEFAULT_DATASET
logger.info(f"Loading dataset: {dataset_name}")
try:
# Load dataset
dataset = load_dataset(dataset_name)
# Extract the split we want to use (usually 'train')
if 'train' in dataset:
dataset = dataset['train']
# Get the dataset config
dataset_config = config.get("dataset_config", {})
sort_field = dataset_config.get("sort_by_field", "prompt_number")
sort_direction = dataset_config.get("sort_direction", "ascending")
# Sort the dataset by prompt_number
logger.info(f"Sorting dataset by {sort_field} in {sort_direction} order")
if sort_direction == "ascending":
dataset = dataset.sort(sort_field)
else:
dataset = dataset.sort(sort_field, reverse=True)
# Add shuffle with fixed seed if specified
if "shuffle_seed" in dataset_config:
shuffle_seed = dataset_config.get("shuffle_seed")
logger.info(f"Shuffling dataset with seed {shuffle_seed}")
dataset = dataset.shuffle(seed=shuffle_seed)
# Print dataset structure for debugging
logger.info(f"Dataset loaded with {len(dataset)} entries")
logger.info(f"Dataset columns: {dataset.column_names}")
# Print a sample entry to understand structure
if len(dataset) > 0:
sample = dataset[0]
logger.info(f"Sample entry structure: {list(sample.keys())}")
if 'conversations' in sample:
logger.info(f"Sample conversations structure: {sample['conversations'][:1]}")
return dataset
except Exception as e:
logger.error(f"Error loading dataset: {str(e)}")
logger.info("Available datasets in the Hub:")
# Print a more helpful error message
print(f"Failed to load dataset: {dataset_name}")
print(f"Make sure the dataset exists and is accessible.")
print(f"If it's a private dataset, ensure your HF_TOKEN has access to it.")
raise
def tokenize_string(text, tokenizer):
"""Tokenize a string using the provided tokenizer"""
if not text:
return []
# Tokenize the text
tokens = tokenizer.encode(text, add_special_tokens=False)
return tokens
# Data collator for pre-tokenized dataset
class PreTokenizedCollator(DataCollatorMixin):
"""
Data collator for pre-tokenized datasets.
Expects input_ids and labels already tokenized.
"""
def __init__(self, pad_token_id=0, tokenizer=None):
self.pad_token_id = pad_token_id
self.tokenizer = tokenizer # Keep a reference to the tokenizer for string conversion
def __call__(self, features):
# Print a sample feature to understand structure
if len(features) > 0:
logger.info(f"Sample feature keys: {list(features[0].keys())}")
# Extract input_ids from conversations if needed
processed_features = []
for feature in features:
# If input_ids is not directly available, try to extract from conversations
if 'input_ids' not in feature and 'conversations' in feature:
# Extract from conversations based on your dataset structure
conversations = feature['conversations']
# Debug the conversations structure
logger.info(f"Conversations type: {type(conversations)}")
if isinstance(conversations, list) and len(conversations) > 0:
logger.info(f"First conversation type: {type(conversations[0])}")
logger.info(f"First conversation: {conversations[0]}")
# Try different approaches to extract input_ids
if isinstance(conversations, list) and len(conversations) > 0:
# Case 1: If conversations is a list of dicts with 'content' field
if isinstance(conversations[0], dict) and 'content' in conversations[0]:
content = conversations[0]['content']
logger.info(f"Found content field: {type(content)}")
# If content is a string, tokenize it
if isinstance(content, str) and self.tokenizer:
logger.info(f"Tokenizing string content: {content[:50]}...")
feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
# If content is already a list of integers, use it directly
elif isinstance(content, list) and all(isinstance(x, int) for x in content):
feature['input_ids'] = content
# If content is already tokenized in some other format
else:
logger.warning(f"Unexpected content format: {type(content)}")
# Case 2: If conversations is a list of dicts with 'input_ids' field
elif isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
feature['input_ids'] = conversations[0]['input_ids']
# Case 3: If conversations itself contains the input_ids
elif all(isinstance(x, int) for x in conversations):
feature['input_ids'] = conversations
# Case 4: If conversations is a list of strings
elif all(isinstance(x, str) for x in conversations) and self.tokenizer:
# Join all strings and tokenize
full_text = " ".join(conversations)
feature['input_ids'] = self.tokenizer.encode(full_text, add_special_tokens=False)
# Ensure input_ids is a list of integers
if 'input_ids' in feature:
# If input_ids is a string, tokenize it
if isinstance(feature['input_ids'], str) and self.tokenizer:
logger.info(f"Converting string input_ids to tokens: {feature['input_ids'][:50]}...")
feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
# If input_ids is not a list, convert it
elif not isinstance(feature['input_ids'], list):
try:
feature['input_ids'] = list(feature['input_ids'])
except:
logger.error(f"Could not convert input_ids to list: {type(feature['input_ids'])}")
processed_features.append(feature)
# If we still don't have input_ids, log an error
if len(processed_features) > 0 and 'input_ids' not in processed_features[0]:
logger.error(f"Could not find input_ids in features. Available keys: {list(processed_features[0].keys())}")
if 'conversations' in processed_features[0]:
logger.error(f"Conversations structure: {processed_features[0]['conversations'][:1]}")
raise ValueError("Could not find input_ids in dataset. Please check dataset structure.")
# Determine max length in this batch
batch_max_len = max(len(x["input_ids"]) for x in processed_features)
# Initialize batch tensors
batch = {
"input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
"attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
"labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100 # -100 is ignored in loss
}
# Fill batch tensors
for i, feature in enumerate(processed_features):
input_ids = feature["input_ids"]
seq_len = len(input_ids)
# Convert to tensor if it's a list
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids, dtype=torch.long)
# Copy data to batch tensors
batch["input_ids"][i, :seq_len] = input_ids
batch["attention_mask"][i, :seq_len] = 1
# If there are labels, use them, otherwise use input_ids
if "labels" in feature:
labels = feature["labels"]
if isinstance(labels, list):
labels = torch.tensor(labels, dtype=torch.long)
batch["labels"][i, :len(labels)] = labels
else:
batch["labels"][i, :seq_len] = input_ids
return batch
def create_training_marker(output_dir):
"""Create a marker file to indicate training is active"""
# Create in current directory for app.py to find
with open("TRAINING_ACTIVE", "w") as f:
f.write(f"Training active in {output_dir}")
# Also create in output directory
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
f.write("This model is for research training only. No interactive outputs.")
def remove_training_marker():
"""Remove the training marker file"""
if os.path.exists("TRAINING_ACTIVE"):
os.remove("TRAINING_ACTIVE")
logger.info("Removed training active marker")
def load_model_safely(model_name, max_seq_length, dtype=None):
"""
Load the model in a safe way that works with Qwen models
by trying different loading strategies.
"""
try:
logger.info(f"Attempting to load model with unsloth optimizations: {model_name}")
# First try the standard unsloth loading
try:
# Try loading with unsloth but without the problematic parameter
logger.info("Loading model with flash attention DISABLED")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=True, # This should work for already quantized models
use_flash_attention=False # Explicitly disable flash attention
)
logger.info("Model loaded successfully with unsloth with 4-bit quantization and flash attention disabled")
return model, tokenizer
except TypeError as e:
# If we get a TypeError about unexpected keyword arguments
if "unexpected keyword argument" in str(e):
logger.warning(f"Unsloth loading error with 4-bit: {e}")
logger.info("Trying alternative loading method for Qwen model...")
# Try loading with different parameters for Qwen model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=dtype,
use_flash_attention=False, # Explicitly disable flash attention
)
logger.info("Model loaded successfully with unsloth using alternative method")
return model, tokenizer
else:
# Re-raise if it's a different type error
raise
except Exception as e:
# Fallback to standard loading if unsloth methods fail
logger.warning(f"Unsloth loading failed: {e}")
logger.info("Falling back to standard Hugging Face loading...")
# Disable flash attention in transformers config
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
if hasattr(config, "use_flash_attention"):
config.use_flash_attention = False
logger.info("Disabled flash attention in model config")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
config=config,
device_map="auto",
torch_dtype=dtype or torch.float16,
load_in_4bit=True
)
logger.info("Model loaded successfully with standard HF loading and flash attention disabled")
return model, tokenizer
def train(config_path, dataset_name, output_dir):
"""Main training function - RESEARCH TRAINING PHASE ONLY"""
# Load environment variables
load_dotenv()
config = load_config(config_path)
# Extract configs
model_config = config.get("model_config", {})
training_config = config.get("training_config", {})
hardware_config = config.get("hardware_config", {})
lora_config = config.get("lora_config", {})
dataset_config = config.get("dataset_config", {})
# Override flash attention setting to disable it
hardware_config["use_flash_attention"] = False
logger.info("Flash attention has been DISABLED due to GPU compatibility issues")
# Verify this is training phase only
training_phase_only = dataset_config.get("training_phase_only", True)
if not training_phase_only:
logger.warning("This script is meant for research training phase only")
logger.warning("Setting training_phase_only=True")
# Verify dataset is pre-tokenized
logger.info("IMPORTANT: Using pre-tokenized dataset - No tokenization will be performed")
# Set the output directory
output_dir = output_dir or training_config.get("output_dir", "fine_tuned_model")
os.makedirs(output_dir, exist_ok=True)
# Create training marker
create_training_marker(output_dir)
try:
# Print configuration summary
logger.info("RESEARCH TRAINING PHASE ACTIVE - No output generation")
logger.info("Configuration Summary:")
model_name = model_config.get("model_name_or_path")
logger.info(f"Model: {model_name}")
logger.info(f"Dataset: {dataset_name if dataset_name != 'phi4-cognitive-dataset' else DEFAULT_DATASET}")
logger.info(f"Output directory: {output_dir}")
logger.info("IMPORTANT: Using already 4-bit quantized model - not re-quantizing")
# Load and prepare the dataset
dataset = load_and_prepare_dataset(dataset_name, config)
# Initialize tokenizer (just for model initialization, not for tokenizing data)
logger.info("Loading tokenizer (for model initialization only, not for tokenizing data)")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
# Initialize model with unsloth
logger.info("Initializing model with unsloth (preserving 4-bit quantization)")
max_seq_length = training_config.get("max_seq_length", 2048)
# Create LoRA config directly
logger.info("Creating LoRA configuration")
lora_config_obj = LoraConfig(
r=lora_config.get("r", 16),
lora_alpha=lora_config.get("lora_alpha", 32),
lora_dropout=lora_config.get("lora_dropout", 0.05),
bias=lora_config.get("bias", "none"),
target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
)
# Initialize model with our safe loading function
logger.info("Loading pre-quantized model safely")
dtype = torch.float16 if hardware_config.get("fp16", True) else None
model, tokenizer = load_model_safely(model_name, max_seq_length, dtype)
# Try different approaches to apply LoRA
logger.info("Applying LoRA to model")
# Skip unsloth's method and go directly to PEFT
logger.info("Using standard PEFT method to apply LoRA")
from peft import get_peft_model
model = get_peft_model(model, lora_config_obj)
logger.info("Successfully applied LoRA with standard PEFT")
# No need to format the dataset - it's already pre-tokenized
logger.info("Using pre-tokenized dataset - skipping tokenization step")
training_dataset = dataset
# Configure reporting backends with fallbacks
reports = []
if TENSORBOARD_AVAILABLE:
reports.append("tensorboard")
logger.info("Tensorboard available and enabled for reporting")
else:
logger.warning("Tensorboard not available - metrics won't be logged to tensorboard")
if os.getenv("WANDB_API_KEY"):
reports.append("wandb")
logger.info("Wandb API key found, enabling wandb reporting")
# Default to "none" if no reporting backends are available
if not reports:
reports = ["none"]
logger.warning("No reporting backends available - training metrics won't be logged")
# Set up training arguments with flash attention disabled
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=training_config.get("num_train_epochs", 3),
per_device_train_batch_size=training_config.get("per_device_train_batch_size", 2),
gradient_accumulation_steps=training_config.get("gradient_accumulation_steps", 4),
learning_rate=training_config.get("learning_rate", 2e-5),
lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
warmup_ratio=training_config.get("warmup_ratio", 0.03),
weight_decay=training_config.get("weight_decay", 0.01),
optim=training_config.get("optim", "adamw_torch"),
logging_steps=training_config.get("logging_steps", 10),
save_steps=training_config.get("save_steps", 200),
save_total_limit=training_config.get("save_total_limit", 3),
fp16=hardware_config.get("fp16", True),
bf16=hardware_config.get("bf16", False),
max_grad_norm=training_config.get("max_grad_norm", 0.3),
report_to=reports,
logging_first_step=training_config.get("logging_first_step", True),
disable_tqdm=training_config.get("disable_tqdm", False),
# Important: Don't remove columns that don't match model's forward method
remove_unused_columns=False
)
# Create trainer with pre-tokenized collator
trainer = Trainer(
model=model,
args=training_args,
train_dataset=training_dataset,
data_collator=PreTokenizedCollator(pad_token_id=tokenizer.pad_token_id, tokenizer=tokenizer),
)
# Start training
logger.info("Starting training - RESEARCH PHASE ONLY")
trainer.train()
# Save the model
logger.info(f"Saving model to {output_dir}")
trainer.save_model(output_dir)
# Save LoRA adapter separately for easier deployment
lora_output_dir = os.path.join(output_dir, "lora_adapter")
model.save_pretrained(lora_output_dir)
logger.info(f"Saved LoRA adapter to {lora_output_dir}")
# Save tokenizer for completeness
tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
tokenizer.save_pretrained(tokenizer_output_dir)
logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
# Copy config file for reference
with open(os.path.join(output_dir, "training_config.json"), "w") as f:
json.dump(config, f, indent=2)
logger.info("Training complete - RESEARCH PHASE ONLY")
return output_dir
finally:
# Always remove the training marker when done
remove_training_marker()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tune Unsloth/DeepSeek-R1-Distill-Qwen-14B-4bit model (RESEARCH ONLY)")
parser.add_argument("--config", type=str, default="transformers_config.json",
help="Path to the transformers config JSON file")
parser.add_argument("--dataset", type=str, default="phi4-cognitive-dataset",
help="Dataset name or path")
parser.add_argument("--output_dir", type=str, default=None,
help="Output directory for the fine-tuned model")
args = parser.parse_args()
# Run training - Research phase only
try:
output_path = train(args.config, args.dataset, args.output_dir)
print(f"Research training completed. Model saved to: {output_path}")
except Exception as e:
logger.error(f"Training failed: {str(e)}")
remove_training_marker() # Clean up marker if training fails
raise |