File size: 13,227 Bytes
e1c1753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from dreamcoder.dreamcoder import *
from dreamcoder.domains.tower.towerPrimitives import primitives, new_primitives, animateTower
from dreamcoder.domains.tower.makeTowerTasks import *
from dreamcoder.domains.tower.tower_common import renderPlan, towerLength, centerTower
from dreamcoder.utilities import *
import os
import datetime
try: #pypy will fail
from dreamcoder.recognition import variable
import torch.nn as nn
import torch.nn.functional as F
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class TowerCNN(nn.Module):
special = 'tower'
def __init__(self, tasks, testingTasks=[], cuda=False, H=64):
super(TowerCNN, self).__init__()
self.CUDA = cuda
self.recomputeTasks = True
self.outputDimensionality = H
def conv_block(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.inputImageDimension = 256
self.resizedDimension = 64
assert self.inputImageDimension % self.resizedDimension == 0
# channels for hidden
hid_dim = 64
z_dim = 64
self.encoder = nn.Sequential(
conv_block(6, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, z_dim),
Flatten()
)
self.outputDimensionality = 1024
if cuda:
self.CUDA=True
self.cuda() # I think this should work?
def forward(self, v, v2=None):
"""v: tower to build. v2: image of tower we have built so far"""
# insert batch if it is not already there
if len(v.shape) == 3:
v = np.expand_dims(v, 0)
inserted_batch = True
if v2 is not None:
assert len(v2.shape) == 3
v2 = np.expand_dims(v2, 0)
elif len(v.shape) == 4:
inserted_batch = False
pass
else:
assert False, "v has the shape %s"%(str(v.shape))
if v2 is None: v2 = np.zeros(v.shape)
v = np.concatenate((v,v2), axis=3)
v = np.transpose(v,(0,3,1,2))
assert v.shape == (v.shape[0], 6,self.inputImageDimension,self.inputImageDimension)
v = variable(v, cuda=self.CUDA).float()
window = int(self.inputImageDimension/self.resizedDimension)
v = F.avg_pool2d(v, (window,window))
#showArrayAsImage(np.transpose(v.data.numpy()[0,:3,:,:],[1,2,0]))
v = self.encoder(v)
if inserted_batch:
return v.view(-1)
else:
return v
def featuresOfTask(self, t, t2=None): # Take a task and returns [features]
return self(t.getImage(),
None if t2 is None else t2.getImage(drawHand=True))
def featuresOfTasks(self, ts, t2=None): # Take a task and returns [features]
"""Takes the goal first; optionally also takes the current state second"""
if t2 is None:
pass
elif isinstance(t2, Task):
assert False
#t2 = np.array([t2.getImage(drawHand=True)]*len(ts))
elif isinstance(t2, list):
t2 = np.array([t.getImage(drawHand=True) if t else np.zeros((self.inputImageDimension,
self.inputImageDimension,
3))
for t in t2])
else:
assert False
return self(np.array([t.getImage() for t in ts]),
t2)
def taskOfProgram(self, p, t,
lenient=False):
try:
pl = executeTower(p,0.05)
if pl is None or (not lenient and len(pl) == 0): return None
if len(pl) > 100 or towerLength(pl) > 360: return None
t = SupervisedTower("tower dream", p)
return t
except Exception as e:
return None
except: pass
def tower_options(parser):
parser.add_argument("--tasks",
choices=["old","new"],
default="old")
parser.add_argument("--visualize",
default=None, type=str)
parser.add_argument("--solutions",
default=None, type=str)
parser.add_argument("--split",
default=1., type=float)
parser.add_argument("--dream",
default=None, type=str)
parser.add_argument("--primitives",
default="old", type=str,
choices=["new", "old"])
def dreamOfTowers(grammar, prefix, N=250, make_montage=True):
request = arrow(ttower,ttower)
randomTowers = [tuple(centerTower(t))
for _ in range(N)
for program in [grammar.sample(request,
maximumDepth=12,
maxAttempts=100)]
if program is not None
for t in [executeTower(program, timeout=0.5) or []]
if len(t) >= 1 and len(t) < 100 and towerLength(t) <= 360.]
matrix = [renderPlan(p,Lego=True,pretty=True)
for p in randomTowers]
# Only visualize if it has something to visualize.
if len(matrix) > 0:
import scipy.misc
if make_montage:
matrix = montage(matrix)
scipy.misc.imsave('%s.png'%prefix, matrix)
else:
for n,i in enumerate(matrix):
scipy.misc.imsave(f'{prefix}/{n}.png', i)
else:
eprint("Tried to visualize dreams, but none to visualize.")
def visualizePrimitives(primitives, fn=None):
from itertools import product
#from pylab import imshow,show
from dreamcoder.domains.tower.towerPrimitives import _left,_right,_loop,_embed,_empty_tower,TowerState
_13 = Program.parse("1x3").value
_31 = Program.parse("3x1").value
r = lambda n,k: _right(2*n)(k)
l = lambda n,k: _left(2*n)(k)
_e = _embed
_lp = lambda n,b,k: _loop(n)(b)(k)
_arch = lambda k: l(1,_13(r(2,_13(l(1,_31(k))))))
_tallArch = lambda h,z,k: _lp(h, lambda _: _13(r(2,_13(l(2,z)))),
r(1,_31(k)))
matrix = []
for p in primitives:
if not p.isInvented: continue
eprint(p,":",p.tp)
t = p.tp
if t.returns() != ttower: continue
def argumentChoices(t):
if t == ttower:
return [_empty_tower]
elif t == tint:
return list(range(5))
elif t == arrow(ttower,ttower):
return [_arch,_13,_31]
else:
return []
ts = []
for arguments in product(*[argumentChoices(t) for t in t.functionArguments() ]):
t = p.evaluate([])
for a in arguments: t = t(a)
t = t(TowerState())[1]
ts.append(t)
if ts == []: continue
matrix.append([renderPlan(p,pretty=True)
for p in ts])
# Only visualize if it has something to visualize.
if len(matrix) > 0:
matrix = montageMatrix(matrix)
# imshow(matrix)
import scipy.misc
scipy.misc.imsave(fn, matrix)
# show()
else:
eprint("Tried to visualize primitives, but none to visualize.")
def animateSolutions(checkpoint):
with open(checkpoint,"rb") as handle: result = dill.load(handle)
for n,f in enumerate(result.taskSolutions.values()):
animateTower(f"/tmp/tower_animation_{n}",f.bestPosterior.program)
def visualizeSolutions(solutions, export, tasks=None):
if tasks is None:
tasks = list(solutions.keys())
tasks.sort(key=lambda t: len(t.plan))
matrix = []
for t in tasks:
i = renderPlan(centerTower(t.plan),pretty=True,Lego=True)
if solutions[t].empty: i = i/3.
matrix.append(i)
# Only visualize if it has something to visualize.
if len(matrix) > 0:
matrix = montage(matrix)
import scipy.misc
scipy.misc.imsave(export, matrix)
else:
eprint("Tried to visualize solutions, but none to visualize.")
def main(arguments):
"""
Takes the return value of the `commandlineArguments()` function as input and
trains/tests the model on a set of tower-building tasks.
"""
# The below global statement is required since primitives is modified within main().
# TODO(lcary): use a function call to retrieve and declare primitives instead.
global primitives
import scipy.misc
g0 = Grammar.uniform({"new": new_primitives,
"old": primitives}[arguments.pop("primitives")],
continuationType=ttower)
checkpoint = arguments.pop("visualize")
if checkpoint is not None:
with open(checkpoint,'rb') as handle:
primitives = pickle.load(handle).grammars[-1].primitives
visualizePrimitives(primitives)
sys.exit(0)
checkpoint = arguments.pop("solutions")
if checkpoint is not None:
with open(checkpoint,'rb') as handle:
solutions = pickle.load(handle).taskSolutions
visualizeSolutions(solutions,
checkpoint + ".solutions.png")
animateSolutions(checkpoint)
sys.exit(0)
checkpoint = arguments.pop("dream")
if checkpoint is not None:
with open(checkpoint,'rb') as handle:
g = pickle.load(handle).grammars[-1]
os.system("mkdir -p data/tower_dreams")
dreamOfTowers(g, "data/tower_dreams", make_montage=False)
sys.exit(0)
tasks = arguments.pop("tasks")
if tasks == "new":
tasks = makeSupervisedTasks()
elif tasks == "old":
tasks = makeOldSupervisedTasks()
else: assert False
test, train = testTrainSplit(tasks, arguments.pop("split"))
eprint("Split %d/%d test/train" % (len(test), len(train)))
# Make a montage for the paper
shuffledTrain = list(train)
shuffledTest = list(test)
random.shuffle(shuffledTrain)
shuffledTrain = shuffledTrain + [None]*(60 - len(shuffledTrain))
random.shuffle(shuffledTest)
shuffledTest = shuffledTest + [None]*(60 - len(shuffledTest))
try:
SupervisedTower.exportMany("/tmp/every_tower.png",shuffledTrain + shuffledTest, shuffle=False, columns=10)
for j,task in enumerate(tasks):
task.exportImage(f"/tmp/tower_task_{j}.png")
for k,v in dSLDemo().items():
scipy.misc.imsave(f"/tmp/tower_dsl_{k}.png", v)
os.system(f"convert /tmp/tower_dsl_{k}.png -channel RGB -negate /tmp/tower_dsl_{k}.png")
except:
eprint("WARNING: can't export images. scipy needs to be an older version")
timestamp = datetime.datetime.now().isoformat()
outputDirectory = "experimentOutputs/towers/%s"%timestamp
os.system("mkdir -p %s"%outputDirectory)
os.system("mkdir -p data/tower_dreams_initial")
try:
dreamOfTowers(g0, "data/tower_dreams_initial", make_montage=False)
dreamOfTowers(g0, "%s/random_0"%outputDirectory)
except:
eprint("WARNING: can't export images. scipy needs to be an older version")
evaluationTimeout = 0.005
generator = ecIterator(g0, train,
testingTasks=test,
outputPrefix="%s/tower"%outputDirectory,
evaluationTimeout=evaluationTimeout,
**arguments)
for result in generator:
continue
iteration = len(result.learningCurve)
newTowers = [tuple(centerTower(executeTower(frontier.sample().program)))
for frontier in result.taskSolutions.values() if not frontier.empty]
try:
fn = '%s/solutions_%d.png'%(outputDirectory,iteration)
visualizeSolutions(result.taskSolutions, fn,
train)
eprint("Exported solutions to %s\n"%fn)
dreamOfTowers(result.grammars[-1],
'%s/random_%d'%(outputDirectory,iteration))
except ImportError:
eprint("Could not import required libraries for exporting towers.")
primitiveFilename = '%s/primitives_%d.png'%(outputDirectory, iteration)
visualizePrimitives(result.grammars[-1].primitives,
primitiveFilename)
eprint("Exported primitives to",primitiveFilename)
|