File size: 12,541 Bytes
1d30d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//

//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//

#include "ggml-impl.h"
#include "common.hpp"
#include "dequantize.hpp"
#include "getrows.hpp"


template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void k_get_rows(
            const void * src0, const int32_t * src1, dst_t * dst,
            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
            size_t s10, size_t s11, size_t s12,
            const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {

    const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
                     item_ct1.get_local_id(2)) *
                    2;
    const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
                    item_ct1.get_local_id(1);
    const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
                     item_ct1.get_local_id(0)) /
                    ne12;
    const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
                     item_ct1.get_local_id(0)) %
                    ne12;

    if (i00 >= ne00) {
        return;
    }

    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];

    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
    const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;

    const int ib = i00/qk; // block index
    const int iqs = (i00%qk)/qr; // quant index
    const int iybs = i00 - i00%qk; // dst block start index
    const int y_offset = qr == 1 ? 1 : qk/2;

    // dequantize
    dfloat2 v;
    dequantize_kernel(src0_row, ib, iqs, v);

    dst_row[iybs + iqs + 0] = v.x();
    dst_row[iybs + iqs + y_offset] = v.y();
}

template<int qk, int qr, dequantize_kernel_t_reorder dequantize_kernel_recorder, typename dst_t>
static void k_get_rows_reorder(
            const void * src0, const void *src0_dq, const int32_t * src1, dst_t * dst,
            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
            size_t s10, size_t s11, size_t s12,
            const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {

    const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
                     item_ct1.get_local_id(2)) *
                    2;
    const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
                    item_ct1.get_local_id(1);
    const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
                     item_ct1.get_local_id(0)) /
                    ne12;
    const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
                     item_ct1.get_local_id(0)) %
                    ne12;

    if (i00 >= ne00) {
        return;
    }
    auto ncols = ne00;
    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];

    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;

    const int src0_off = i01 * ncols + i00;
    const int ib = src0_off / QK4_0; // block index
    const int iqs = (i00%qk)/qr; // x quant index
    const int iybs = i00 - i00%qk; // dst block start index
    const int y_offset = qr == 1 ? 1 : qk/2;

    // dequantize
    dfloat2 v;
    dequantize_kernel_recorder((const void *)src0_dq, ib, (const void *)src0, src0_off/2, v);

    dst_row[iybs + iqs + 0] = v.x();
    dst_row[iybs + iqs + y_offset] = v.y();

    GGML_UNUSED(nb01);
    GGML_UNUSED(nb02);
    GGML_UNUSED(nb03);
}

template<typename src0_t, typename dst_t>
static void k_get_rows_float(
            const src0_t * src0, const int32_t * src1, dst_t * dst,
            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
            size_t s10, size_t s11, size_t s12,
            const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {

    const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
                    item_ct1.get_local_id(2);
    const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
                    item_ct1.get_local_id(1);
    const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
                     item_ct1.get_local_id(0)) /
                    ne12;
    const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
                     item_ct1.get_local_id(0)) %
                    ne12;

    if (i00 >= ne00) {
        return;
    }

    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];

    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
    const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);

    dst_row[i00] = src0_row[i00];
}

template <int qk, int qr, dequantize_kernel_t dq>
static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
                          ggml_tensor *dst, const void *src0_dd,
                          const int32_t *src1_dd, float *dst_dd,
                          queue_ptr stream) {

    GGML_TENSOR_BINARY_OP_LOCALS

    const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
    const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
    const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);

    // strides in elements
    //const size_t s0 = nb0 / ggml_element_size(dst);
    const size_t s1 = nb1 / ggml_element_size(dst);
    const size_t s2 = nb2 / ggml_element_size(dst);
    const size_t s3 = nb3 / ggml_element_size(dst);

    const size_t s10 = nb10 / ggml_element_size(src1);
    const size_t s11 = nb11 / ggml_element_size(src1);
    const size_t s12 = nb12 / ggml_element_size(src1);
    //const size_t s13 = nb13 / ggml_element_size(src1);

    GGML_ASSERT(ne00 % 2 == 0);

    stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
                         [=](sycl::nd_item<3> item_ct1) {
                             k_get_rows<qk, qr, dq>(
                                 src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
                                 s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
                         });

    GGML_UNUSED(dst);
    GGML_UNUSED(ctx);
}

template <int qk, int qr, dequantize_kernel_t_reorder dq_reorder>
static void get_rows_sycl_reorder(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
                          ggml_tensor *dst, const void *src0_dd,
                          const int32_t *src1_dd, float *dst_dd,
                          queue_ptr stream) {

    GGML_TENSOR_BINARY_OP_LOCALS

    const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
    const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
    const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);

    // strides in elements
    //const size_t s0 = nb0 / ggml_element_size(dst);
    const size_t s1 = nb1 / ggml_element_size(dst);
    const size_t s2 = nb2 / ggml_element_size(dst);
    const size_t s3 = nb3 / ggml_element_size(dst);

    const size_t s10 = nb10 / ggml_element_size(src1);
    const size_t s11 = nb11 / ggml_element_size(src1);
    const size_t s12 = nb12 / ggml_element_size(src1);
    //const size_t s13 = nb13 / ggml_element_size(src1);

    GGML_ASSERT(ne00 % 2 == 0);

    const uint8_t* src0_q = (const uint8_t*)src0_dd;
    const size_t ncols = ne00;
    const size_t nrows = ne01;
    const sycl::half* src0_dq = (const sycl::half*)(src0_q + nrows * ncols / 2);
    stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
                         [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]]{
                             k_get_rows_reorder<qk, qr, dq_reorder>(
                                 src0_dd, src0_dq, src1_dd, dst_dd, ne00, ne12, s1, s2,
                                 s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
                         });

    GGML_UNUSED(dst);
    GGML_UNUSED(ctx);
}


template <typename src0_t>
static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
                                const ggml_tensor *src1, ggml_tensor *dst,
                                const src0_t *src0_dd, const int32_t *src1_dd,
                                float *dst_dd, queue_ptr stream) {

    GGML_TENSOR_BINARY_OP_LOCALS

    const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
    const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
    const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);

    // strides in elements
    //const size_t s0 = nb0 / ggml_element_size(dst);
    const size_t s1 = nb1 / ggml_element_size(dst);
    const size_t s2 = nb2 / ggml_element_size(dst);
    const size_t s3 = nb3 / ggml_element_size(dst);

    const size_t s10 = nb10 / ggml_element_size(src1);
    const size_t s11 = nb11 / ggml_element_size(src1);
    const size_t s12 = nb12 / ggml_element_size(src1);
    //const size_t s13 = nb13 / ggml_element_size(src1);

    {
        dpct::has_capability_or_fail(stream->get_device(),
                                     {sycl::aspect::fp16});

        stream->parallel_for(
            sycl::nd_range<3>(block_nums * block_dims, block_dims),
            [=](sycl::nd_item<3> item_ct1) {
                k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
                                 s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
            });
    }

    GGML_UNUSED(dst);
    GGML_UNUSED(ctx);
}

void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
                                  const ggml_tensor *src1, ggml_tensor *dst,
                                  const float *src0_d, const float *src1_d,
                                  float *dst_d, const queue_ptr &stream) {

    GGML_ASSERT(src1->type == GGML_TYPE_I32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);

    GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
    GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
    GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));

    const int32_t * src1_i32 = (const int32_t *) src1_d;

    switch (src0->type) {
        case GGML_TYPE_F16:
            get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
                                src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_F32:
            get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q4_0:
            if (ctx.opt_feature.reorder && dst->op == GGML_OP_MUL_MAT) {
                get_rows_sycl_reorder<QK4_0, QR4_0, dequantize_q4_0_reorder>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            } else {
                get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            }
            break;
        case GGML_TYPE_Q4_1:
            get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q5_0:
            get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q5_1:
            get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q8_0:
            get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        default:
            // TODO: k-quants
            GGML_LOG_ERROR("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
            GGML_ABORT("fatal error");
            break;
    }
}