import torch from torch import Tensor, nn from .modules import Shape class PositionalEmbedding(nn.Module): def __init__(self, input_shape: Shape, dropout_rate: float = 0.5, trainable: bool = True): super().__init__() self.input_shape = input_shape self.emb = nn.Parameter(torch.zeros(1, *input_shape), requires_grad=trainable) self.use_dropout = dropout_rate is not None and dropout_rate != 0. if self.use_dropout: self.dropout = nn.Dropout(dropout_rate) def forward(self, x: Tensor) -> Tensor: x = x + self.emb if self.use_dropout: x = self.dropout(x) return x @property def trainable(self): return self.emb.requires_grad @trainable.setter def trainable(self, value: bool): self.emb.requires_grad = value class SinCosPositionalEmbedding(PositionalEmbedding): def __init__(self, input_shape: Shape, dropout_rate: float = 0.5): super().__init__(input_shape, dropout_rate, trainable=False) self.emb.data = self.make_embedding().unsqueeze(0) def make_embedding(self) -> Tensor: n_position, d_hid = self.input_shape def get_position_angle_vec(position): return position / torch.tensor(10000).pow( 2 * torch.div(torch.arange(d_hid), 2, rounding_mode='trunc') / d_hid) sinusoid_table = torch.stack([get_position_angle_vec(pos_i) for pos_i in range(n_position)], 0) sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return sinusoid_table.float()