|
import math |
|
import warnings |
|
from typing import Union, Optional, Callable, Tuple, List, Sequence |
|
|
|
import torch |
|
from einops.layers.torch import Rearrange |
|
from torch import Tensor, nn, Size |
|
from torch.nn import Conv3d, ModuleList |
|
from torch.nn import functional as F |
|
|
|
Shape = Union[Size, List[int], Tuple[int, ...]] |
|
ModuleFactory = Union[Callable[[], nn.Module], Callable[[int], nn.Module]] |
|
|
|
|
|
class PatchEmbedding3d(nn.Module): |
|
|
|
def __init__(self, input_size: Shape, patch_size: Union[int, Shape], embedding: int, |
|
strides: Optional[Union[int, Shape]] = None, |
|
build_normalization: Optional[ModuleFactory] = None |
|
): |
|
super().__init__() |
|
|
|
c, t, h, w = input_size |
|
|
|
pt, ph, pw = (patch_size, patch_size, patch_size) if type(patch_size) is int else patch_size |
|
|
|
|
|
if strides is None: |
|
|
|
strides = (pt, ph, pw) |
|
elif type(strides) is int: |
|
|
|
strides = (strides, strides, strides) |
|
|
|
self.projection = Conv3d(c, embedding, kernel_size=(pt, ph, pw), stride=strides) |
|
self.has_norm = build_normalization is not None |
|
if self.has_norm: |
|
self.normalization = build_normalization() |
|
self.rearrange = Rearrange("b d nt nh nw -> b (nt nh nw) d") |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.projection(x) |
|
x = self.rearrange(x) |
|
if self.has_norm: |
|
x = self.normalization(x) |
|
return x |
|
|
|
|
|
class Linear(nn.Module): |
|
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, |
|
build_activation: Optional[ModuleFactory] = None, |
|
build_normalization: Optional[ModuleFactory] = None, |
|
normalization_after_activation: bool = False, |
|
dropout_rate: float = 0. |
|
): |
|
super().__init__() |
|
self.linear = nn.Linear(in_features, out_features, bias) |
|
|
|
self.has_act = build_activation is not None |
|
if self.has_act: |
|
self.activation = build_activation() |
|
else: |
|
self.activation = None |
|
|
|
self.has_norm = build_normalization is not None |
|
if self.has_norm: |
|
self.normalization = build_normalization() |
|
self.norm_after_act = normalization_after_activation |
|
else: |
|
self.normalization = None |
|
|
|
self.has_dropout = dropout_rate > 0 |
|
if self.has_dropout: |
|
self.dropout = nn.Dropout(dropout_rate) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = self.linear(x) |
|
if self.has_act and self.has_norm: |
|
if self.norm_after_act: |
|
x = self.activation(x) |
|
x = self.normalization(x) |
|
else: |
|
x = self.normalization(x) |
|
x = self.activation(x) |
|
elif self.has_act and not self.has_norm: |
|
x = self.activation(x) |
|
elif not self.has_act and self.has_norm: |
|
x = self.normalization(x) |
|
|
|
if self.has_dropout: |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class MLP(nn.Module): |
|
|
|
def __init__(self, neurons: Sequence[int], |
|
build_activation: Optional[ModuleFactory] = None, dropout_rate: float = 0. |
|
): |
|
super().__init__() |
|
n_features = neurons[1:] |
|
self.layers: ModuleList[Linear] = ModuleList( |
|
[Linear(neurons[i], neurons[i + 1], True, build_activation, None, |
|
False, dropout_rate |
|
) for i in range(len(n_features) - 1) |
|
] + [ |
|
Linear(neurons[-2], neurons[-1], True) |
|
] |
|
) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
for layer in self.layers: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
|
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., attn_head_dim=None |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
attn_head_dim=None |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim) |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = MLP( |
|
neurons=[dim, mlp_hidden_dim, dim], |
|
build_activation=act_layer, |
|
dropout_rate=drop |
|
) |
|
|
|
if init_values > 0: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x): |
|
if self.gamma_1 is None: |
|
x = x + self.attn(self.norm1(x)) |
|
x = x + self.mlp(self.norm2(x)) |
|
else: |
|
x = x + (self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + (self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
def no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|