|
import torch |
|
from einops import rearrange |
|
from torch import nn, Tensor |
|
from torch.nn import LayerNorm, Linear, ModuleList |
|
|
|
from .modules import Block, no_grad_trunc_normal_ |
|
from .positional_embedding import SinCosPositionalEmbedding |
|
|
|
|
|
class MarlinDecoder(nn.Module): |
|
|
|
def __init__(self, img_size=224, patch_size=16, n_frames=16, embed_dim=384, depth=8, |
|
num_heads=6, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
norm_layer="LayerNorm", init_values=1., tubelet_size=2 |
|
): |
|
super().__init__() |
|
output_dim = 3 * tubelet_size * patch_size * patch_size |
|
self.patch_size = patch_size |
|
self.tubelet_size = tubelet_size |
|
self.n_patch_h = img_size // patch_size |
|
self.n_patch_w = img_size // patch_size |
|
self.embed_dim = embed_dim |
|
if norm_layer == "LayerNorm": |
|
self.norm_layer = LayerNorm |
|
self.norm = self.norm_layer(embed_dim) |
|
else: |
|
raise NotImplementedError("Only LayerNorm is supported") |
|
|
|
|
|
self.pos_embedding = SinCosPositionalEmbedding( |
|
(self.n_patch_h * self.n_patch_w * (n_frames // tubelet_size), embed_dim), dropout_rate=0.) |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
|
|
self.blocks = ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=self.norm_layer, |
|
init_values=init_values |
|
) for _ in range(depth)]) |
|
|
|
self.head = Linear(embed_dim, output_dim) |
|
self.apply(self._init_weights) |
|
no_grad_trunc_normal_(self.mask_token, mean=0., std=0.02, a=-0.02, b=0.02) |
|
|
|
@staticmethod |
|
def _init_weights(m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def unpatch_to_img(self, x: Tensor) -> Tensor: |
|
|
|
x = rearrange(x, "b n (c p) -> b n p c", c=3) |
|
|
|
x = rearrange(x, "b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)", p0=self.tubelet_size, |
|
p1=self.patch_size, p2=self.patch_size, h=self.n_patch_h, w=self.n_patch_w) |
|
|
|
return x |
|
|
|
def forward_features(self, x, return_token_num=0): |
|
for block in self.blocks: |
|
x = block(x) |
|
|
|
if return_token_num > 0: |
|
x = x[:, -return_token_num:] |
|
|
|
x = self.norm(x) |
|
x = self.head(x) |
|
|
|
return x |
|
|
|
def forward(self, x, mask): |
|
|
|
b, n, c = x.shape |
|
expand_pos_embed = self.pos_embedding.emb.data.expand(b, -1, -1) |
|
pos_emb_vis = expand_pos_embed[mask].view(b, -1, c) |
|
pos_emb_mask = expand_pos_embed[~mask].view(b, -1, c) |
|
x = torch.cat([x + pos_emb_vis, self.mask_token + pos_emb_mask], dim=1) |
|
|
|
mask_num = pos_emb_mask.shape[1] |
|
|
|
x = self.forward_features(x, return_token_num=mask_num) |
|
return x |
|
|