--- license: mit pipeline_tag: video-text-to-text library_name: transformers --- # M4-Audio-LongVA-7B-Qwen2 Enhancing Omni Interactive Capabilities in MLLM This repository contains the model described in [OmniMMI: A Comprehensive Multi-modal Interaction Benchmark in Streaming Video Contexts](https://huggingface.co/papers/2503.22952). The code can be found at https://github.com/patrick-tssn/M4. ![images](./assets/framework.png) M4-Audio-7B is an extension of [LongVA-7B](https://github.com/EvolvingLMMs-Lab/LongVA), further trained using the [M4-IT](https://huggingface.co/datasets/ColorfulAI/M4-IT) dataset, which comprises 9,963 visual-audio instruction tuning instances. This training was conducted without any special modifications to the existing training pipeline. ## Usage *Please refer to [M4](https://github.com/patrick-tssn/M4) to install relvevant packages* ```python import os from PIL import Image import numpy as np import torchaudio import torch from decord import VideoReader, cpu import whisper # fix seed torch.manual_seed(0) from intersuit.model.builder import load_pretrained_model from intersuit.mm_utils import tokenizer_image_speech_tokens, process_images from intersuit.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX import ChatTTS chat = ChatTTS.Chat() chat.load(source='local', compile=True) import warnings warnings.filterwarnings("ignore") model_path = "checkpoints/M4-Audio-LongVA-7B-Qwen2" video_path = "local_demo/assets/water.mp4" audio_path = "local_demo/wav/infer.wav" new_audio_path = "local_demo/wav/new_infer.wav" max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :) gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024} tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0", attn_implementation="eager") # original query query = "Give a detailed caption of the video as if I am blind." query = None # comment this to use ChatTTS to convert the query to audio prompt = "<|im_start|>system You are a helpful assistant.<|im_end|> <|im_start|>user <|im_end|> <|im_start|>user <|im_end|> <|im_start|>assistant " input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) pad_token_ids = (tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id) attention_masks = input_ids.ne(pad_token_ids).to(input_ids.device) # audio input if query is not None: audio_path = "./local_demo/wav/" + "infer.wav" if os.path.exists(audio_path): os.remove(audio_path) # refresh if not os.path.exists(audio_path): wav = chat.infer(query) try: torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000) except: torchaudio.save(audio_path, torch.from_numpy(wav), 24000) speech = whisper.load_audio(audio_path) speech = whisper.pad_or_trim(speech) speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16) speech_length = torch.LongTensor([speech.shape[0]]).to(model.device) # new query new_query = "How many people in the video?" new_query = "Okay, I see." new_query = "Sorry to interrupt." new_query_pos = 10 # which token encounter the new query new_query = None # comment this to use ChatTTS to convert the query to audio new_prompt = "<|im_start|>system You are a helpful assistant.<|im_end|> <|im_start|>user <|im_end|> <|im_start|>assistant " new_input_ids = tokenizer_image_speech_tokens(new_prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) # audio input if new_query is not None: new_audio_path = "./local_demo/wav/" + "new_infer.wav" if os.path.exists(new_audio_path): os.remove(new_audio_path) # refresh if not os.path.exists(new_audio_path): wav = chat.infer(new_query) try: torchaudio.save(new_audio_path, torch.from_numpy(wav).unsqueeze(0), 24000) except: torchaudio.save(new_audio_path, torch.from_numpy(wav), 24000) new_speech = whisper.load_audio(new_audio_path) new_speech = whisper.pad_or_trim(new_speech) new_speech = whisper.log_mel_spectrogram(new_speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16) new_speech_length = torch.LongTensor([new_speech.shape[0]]).to(model.device) #video input vr = VideoReader(video_path, ctx=cpu(0)) total_frame_num = len(vr) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() frames = vr.get_batch(frame_idx).asnumpy() video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.bfloat16) with torch.inference_mode(): output_ids = model.generate_parallel(input_ids, attention_mask=attention_masks, images=[video_tensor], modalities=["video"], speeches=speech.unsqueeze(0), speech_lengths=speech_length, new_query=new_input_ids, new_query_pos=new_query_pos, new_speeches=new_speech.unsqueeze(0), new_speech_lengths=new_speech_length, query_str=query, new_query_str=new_query, tokenizer=tokenizer, **gen_kwargs) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() ``` For more information about the interaction inference pipeline, please visit the [M4 GitHub repository](https://github.com/patrick-tssn/M4).