Add pipeline tag, library name, paper link and Github link (#1)
Browse files- Add pipeline tag, library name, paper link and Github link (307c3d88840ba9ca65f1856a6d009a68c52a4162)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,122 +1,142 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
import
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
from
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
import
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: video-text-to-text
|
4 |
+
library_name: transformers
|
5 |
+
---
|
6 |
+
|
7 |
+
# M4-Audio-LongVA-7B-Qwen2
|
8 |
+
|
9 |
+
Enhancing Omni Interactive Capabilities in MLLM
|
10 |
+
|
11 |
+
This repository contains the model described in [OmniMMI: A Comprehensive Multi-modal Interaction Benchmark in Streaming Video Contexts](https://huggingface.co/papers/2503.22952).
|
12 |
+
The code can be found at https://github.com/patrick-tssn/M4.
|
13 |
+
|
14 |
+

|
15 |
+
|
16 |
+
M4-Audio-7B is an extension of [LongVA-7B](https://github.com/EvolvingLMMs-Lab/LongVA), further trained using the [M4-IT](https://huggingface.co/datasets/ColorfulAI/M4-IT) dataset, which comprises 9,963 visual-audio instruction tuning instances. This training was conducted without any special modifications to the existing training pipeline.
|
17 |
+
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
|
22 |
+
*Please refer to [M4](https://github.com/patrick-tssn/M4) to install relvevant packages*
|
23 |
+
|
24 |
+
```python
|
25 |
+
import os
|
26 |
+
from PIL import Image
|
27 |
+
import numpy as np
|
28 |
+
import torchaudio
|
29 |
+
import torch
|
30 |
+
from decord import VideoReader, cpu
|
31 |
+
import whisper
|
32 |
+
# fix seed
|
33 |
+
torch.manual_seed(0)
|
34 |
+
|
35 |
+
from intersuit.model.builder import load_pretrained_model
|
36 |
+
from intersuit.mm_utils import tokenizer_image_speech_tokens, process_images
|
37 |
+
from intersuit.constants import IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX
|
38 |
+
|
39 |
+
import ChatTTS
|
40 |
+
chat = ChatTTS.Chat()
|
41 |
+
chat.load(source='local', compile=True)
|
42 |
+
|
43 |
+
import warnings
|
44 |
+
warnings.filterwarnings("ignore")
|
45 |
+
|
46 |
+
model_path = "checkpoints/M4-Audio-LongVA-7B-Qwen2"
|
47 |
+
video_path = "local_demo/assets/water.mp4"
|
48 |
+
audio_path = "local_demo/wav/infer.wav"
|
49 |
+
new_audio_path = "local_demo/wav/new_infer.wav"
|
50 |
+
max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :)
|
51 |
+
gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024}
|
52 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0", attn_implementation="eager")
|
53 |
+
|
54 |
+
# original query
|
55 |
+
query = "Give a detailed caption of the video as if I am blind."
|
56 |
+
query = None # comment this to use ChatTTS to convert the query to audio
|
57 |
+
prompt = "<|im_start|>system
|
58 |
+
You are a helpful assistant.<|im_end|>
|
59 |
+
<|im_start|>user
|
60 |
+
<image><|im_end|>
|
61 |
+
<|im_start|>user
|
62 |
+
<speech>
|
63 |
+
<|im_end|>
|
64 |
+
<|im_start|>assistant
|
65 |
+
"
|
66 |
+
input_ids = tokenizer_image_speech_tokens(prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
67 |
+
pad_token_ids = (tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id)
|
68 |
+
attention_masks = input_ids.ne(pad_token_ids).to(input_ids.device)
|
69 |
+
# audio input
|
70 |
+
if query is not None:
|
71 |
+
audio_path = "./local_demo/wav/" + "infer.wav"
|
72 |
+
if os.path.exists(audio_path): os.remove(audio_path) # refresh
|
73 |
+
if not os.path.exists(audio_path):
|
74 |
+
wav = chat.infer(query)
|
75 |
+
try:
|
76 |
+
torchaudio.save(audio_path, torch.from_numpy(wav).unsqueeze(0), 24000)
|
77 |
+
except:
|
78 |
+
torchaudio.save(audio_path, torch.from_numpy(wav), 24000)
|
79 |
+
speech = whisper.load_audio(audio_path)
|
80 |
+
speech = whisper.pad_or_trim(speech)
|
81 |
+
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16)
|
82 |
+
speech_length = torch.LongTensor([speech.shape[0]]).to(model.device)
|
83 |
+
|
84 |
+
# new query
|
85 |
+
new_query = "How many people in the video?"
|
86 |
+
new_query = "Okay, I see."
|
87 |
+
new_query = "Sorry to interrupt."
|
88 |
+
new_query_pos = 10 # which token encounter the new query
|
89 |
+
new_query = None # comment this to use ChatTTS to convert the query to audio
|
90 |
+
new_prompt = "<|im_start|>system
|
91 |
+
You are a helpful assistant.<|im_end|>
|
92 |
+
<|im_start|>user
|
93 |
+
<speech>
|
94 |
+
<|im_end|>
|
95 |
+
<|im_start|>assistant
|
96 |
+
"
|
97 |
+
new_input_ids = tokenizer_image_speech_tokens(new_prompt, tokenizer, IMAGE_TOKEN_INDEX, SPEECH_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
98 |
+
# audio input
|
99 |
+
if new_query is not None:
|
100 |
+
new_audio_path = "./local_demo/wav/" + "new_infer.wav"
|
101 |
+
if os.path.exists(new_audio_path): os.remove(new_audio_path) # refresh
|
102 |
+
if not os.path.exists(new_audio_path):
|
103 |
+
wav = chat.infer(new_query)
|
104 |
+
try:
|
105 |
+
torchaudio.save(new_audio_path, torch.from_numpy(wav).unsqueeze(0), 24000)
|
106 |
+
except:
|
107 |
+
torchaudio.save(new_audio_path, torch.from_numpy(wav), 24000)
|
108 |
+
new_speech = whisper.load_audio(new_audio_path)
|
109 |
+
new_speech = whisper.pad_or_trim(new_speech)
|
110 |
+
new_speech = whisper.log_mel_spectrogram(new_speech, n_mels=128).permute(1, 0).to(device=model.device, dtype=torch.float16)
|
111 |
+
new_speech_length = torch.LongTensor([new_speech.shape[0]]).to(model.device)
|
112 |
+
|
113 |
+
#video input
|
114 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
115 |
+
total_frame_num = len(vr)
|
116 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
|
117 |
+
frame_idx = uniform_sampled_frames.tolist()
|
118 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
119 |
+
video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.bfloat16)
|
120 |
+
|
121 |
+
|
122 |
+
with torch.inference_mode():
|
123 |
+
output_ids = model.generate_parallel(input_ids,
|
124 |
+
attention_mask=attention_masks,
|
125 |
+
images=[video_tensor],
|
126 |
+
modalities=["video"],
|
127 |
+
speeches=speech.unsqueeze(0),
|
128 |
+
speech_lengths=speech_length,
|
129 |
+
new_query=new_input_ids,
|
130 |
+
new_query_pos=new_query_pos,
|
131 |
+
new_speeches=new_speech.unsqueeze(0),
|
132 |
+
new_speech_lengths=new_speech_length,
|
133 |
+
query_str=query,
|
134 |
+
new_query_str=new_query,
|
135 |
+
tokenizer=tokenizer,
|
136 |
+
**gen_kwargs)
|
137 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
138 |
+
|
139 |
+
```
|
140 |
+
|
141 |
+
|
142 |
+
For more information about the interaction inference pipeline, please visit the [M4 GitHub repository](https://github.com/patrick-tssn/M4).
|