Upload 2 files
Browse files- .gitattributes +1 -0
- Image_classify.keras +3 -0
- app.py +84 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Image_classify.keras filter=lfs diff=lfs merge=lfs -text
|
Image_classify.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dc762a4e7e6c040f55e2d0c34b74ae05b30d73b046469c2d5a58e403d1f0b12
|
3 |
+
size 11614324
|
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.lite.python.interpreter import Interpreter
|
5 |
+
import os
|
6 |
+
import google.generativeai as genai
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
|
10 |
+
# Load the TensorFlow Lite model
|
11 |
+
interpreter = Interpreter(model_path="model.tflite")
|
12 |
+
interpreter.allocate_tensors()
|
13 |
+
|
14 |
+
# Get input and output details
|
15 |
+
input_details = interpreter.get_input_details()
|
16 |
+
output_details = interpreter.get_output_details()
|
17 |
+
|
18 |
+
# Define categories
|
19 |
+
data_cat = ['disposable cups', 'paper', 'plastic bottle']
|
20 |
+
img_height, img_width = 224, 224
|
21 |
+
|
22 |
+
# Configure Gemini API
|
23 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', 'AIzaSyBx0A7BA-nKVZOiVn39JXzdGKgeGQqwAFg')
|
24 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
25 |
+
|
26 |
+
# Initialize Gemini model
|
27 |
+
gemini_model = genai.GenerativeModel('gemini-pro')
|
28 |
+
|
29 |
+
@app.route('/predict', methods=['POST'])
|
30 |
+
def predict():
|
31 |
+
if 'image' not in request.files:
|
32 |
+
return jsonify({"error": "No image uploaded"}), 400
|
33 |
+
|
34 |
+
file = request.files['image']
|
35 |
+
try:
|
36 |
+
# Preprocess the image
|
37 |
+
img = tf.image.decode_image(file.read(), channels=3)
|
38 |
+
img = tf.image.resize(img, [img_height, img_width])
|
39 |
+
img_bat = np.expand_dims(img, 0).astype(np.float32)
|
40 |
+
|
41 |
+
# Set input tensor
|
42 |
+
interpreter.set_tensor(input_details[0]['index'], img_bat)
|
43 |
+
|
44 |
+
# Run inference
|
45 |
+
interpreter.invoke()
|
46 |
+
|
47 |
+
# Get the result
|
48 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
49 |
+
predicted_class = data_cat[np.argmax(output_data)]
|
50 |
+
confidence = np.max(output_data) * 100
|
51 |
+
|
52 |
+
# Generate sustainability insights with Gemini API
|
53 |
+
prompt = f"""
|
54 |
+
You are a sustainability-focused AI. Analyze the {predicted_class} (solid dry waste)
|
55 |
+
and generate the top three innovative, eco-friendly recommendations for repurposing it.
|
56 |
+
Each recommendation should:
|
57 |
+
- Provide a title
|
58 |
+
- Be practical and easy to implement
|
59 |
+
- Be environmentally beneficial
|
60 |
+
- Include a one or two-sentence explanation
|
61 |
+
Format each recommendation with a clear title followed by the explanation on a new line.
|
62 |
+
"""
|
63 |
+
|
64 |
+
try:
|
65 |
+
# Generate response using the correct method
|
66 |
+
response = gemini_model.generate_content(prompt)
|
67 |
+
insights = response.text.strip() # Assuming generate_content returns a string or a response with 'text'
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
insights = f"Error generating insights: {str(e)}"
|
71 |
+
print(f"Gemini API error: {str(e)}") # For debugging
|
72 |
+
|
73 |
+
# Prepare the response
|
74 |
+
return jsonify({
|
75 |
+
"class": predicted_class,
|
76 |
+
"confidence": confidence,
|
77 |
+
"insights": insights
|
78 |
+
})
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return jsonify({"error": str(e)}), 500
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
app.run(debug=True)
|