BooBooWu commited on
Commit
860e69f
·
verified ·
1 Parent(s): 3fcefd4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -1
README.md CHANGED
@@ -1,4 +1,96 @@
1
  ---
2
  license: mit
3
  pipeline_tag: image-to-image
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  pipeline_tag: image-to-image
4
+ ---
5
+
6
+ # Vec2Face Model Card
7
+
8
+ <div align="center">
9
+
10
+ [**Project Page**](https://haiyuwu.github.io/vec2face.github.io/) **|** [**Paper**](https://arxiv.org/abs/2409.02979) **|** [**Code**](https://github.com/HaiyuWu/vec2face) **|** [🤗 **Gradio demo**](https://huggingface.co/spaces/BooBooWu/Vec2Face)
11
+
12
+ </div>
13
+
14
+ ## Introduction
15
+
16
+ Vec2Face is the first model that achieves the generated synthetic face recognition dataset (HSFace10K) first being higher than the same-scale real dataset (CASIA-WebFace).
17
+
18
+ <div align="center">
19
+ <img src='asset/perturbation.png'>
20
+ </div>
21
+
22
+ <div align="center">
23
+ <img src='asset/random-id.png'>
24
+ </div>
25
+
26
+ ## Usage
27
+
28
+ You can directly download the model in this repository.
29
+ You also can download the model in python script:
30
+
31
+ ```python
32
+ from huggingface_hub import hf_hub_download
33
+ hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/6DRepNet_300W_LP_AFLW2000.pth", local_dir="./")
34
+ hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/arcface-r100-glint360k.pth", local_dir="./")
35
+ hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/magface-r100-glint360k.pth", local_dir="./")
36
+ hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/vec2face_generator.pth", local_dir="./")
37
+ ```
38
+
39
+ For the image generation and training code, please go to [Vec2Face](https://github.com/HaiyuWu/vec2face) github repository.
40
+
41
+ ## Performance
42
+
43
+ ### Datasets in 0.5M scale
44
+
45
+ This table compares the existing synthetic dataset generation methods on five standard face recognition test sets. The model trained with HSFace10K has better performance on CALFW than that trained with real dataset.
46
+
47
+ | Training sets | # images | LFW | CFP-FP | CPLFW | AgeDB | CALFW | Avg. |
48
+ | -------------------- | :------: | :-------: | :----: | :-------: | :-------: | :-------: | :-------: |
49
+ | IDiff-Face | 0.5M | 98.00 | 85.47 | 80.45 | 86.43 | 90.65 | 88.20 |
50
+ | DCFace | 0.5M | 98.55 | 85.33 | 82.62 | 89.70 | 91.60 | 89.56 |
51
+ | Arc2Face | 0.5M | 98.81 | 91.87 | 85.16 | 90.18 | 92.63 | 91.73 |
52
+ | DigiFace | 1M | 95.40 | 87.40 | 78.87 | 76.97 | 78.62 | 83.45 |
53
+ | SynFace | 0.5M | 91.93 | 75.03 | 70.43 | 61.63 | 74.73 | 74.75 |
54
+ | SFace | 0.6M | 91.87 | 73.86 | 73.20 | 71.68 | 77.93 | 77.71 |
55
+ | IDnet | 0.5M | 92.58 | 75.40 | 74.25 | 63.88 | 79.90 | 79.13 |
56
+ | ExFaceGAN | 0.5M | 93.50 | 73.84 | 71.60 | 78.92 | 82.98 | 80.17 |
57
+ | SFace2 | 0.6M | 95.60 | 77.11 | 74.60 | 77.37 | 83.40 | 81.62 |
58
+ | Langevin-Disco | 0.6M | 96.60 | 73.89 | 74.77 | 80.70 | 87.77 | 82.75 |
59
+ | **HSFace10K(Ours)** | 0.5M | **98.87** | 88.97 | **85.47** | **93.12** | **93.57** | **92.00** |
60
+ | CASIA-WebFace (Real) | 0.49M | 99.38 | 96.91 | 89.78 | 94.50 | 93.35 | 94.79 |
61
+
62
+ ###Dataset Scaling up to 300K identities and 15M images
63
+
64
+ This is the uniqueness of the proposed Vec2Face, which can easily scale the dataset size up.
65
+
66
+ | Datasets | # images | LFW | CFP-FP | CPLFW | AgeDB | CALFW | Avg. |
67
+ | -------------------- | :------: | :---: | :----: | :---: | :---: | :-------: | :---: |
68
+ | HSFace10K | 0.5M | 98.87 | 88.97 | 85.47 | 93.12 | **93.57** | 92.00 |
69
+ | HSFace20K | 1M | 98.87 | 89.87 | 86.13 | 93.85 | **93.65** | 92.47 |
70
+ | HSFace100K | 5M | 99.25 | 90.36 | 86.75 | 94.38 | **94.12** | 92.97 |
71
+ | HSFace200K | 10M | 99.23 | 90.81 | 87.30 | 94.22 | **94.52** | 93.22 |
72
+ | HSFace300K | 15M | 99.30 | 91.54 | 87.70 | 94.45 | **94.58** | 93.52 |
73
+ | CASIA-WebFace (Real) | 0.49M | 99.38 | 96.91 | 89.78 | 94.50 | 93.35 | 94.79 |
74
+
75
+ ### Other challenging test sets
76
+
77
+ We test the model performance on other four datasets, Hadrian (facial hair), Eclipse (face exposure), SLLFW (similar-looking), and DoppelVer (doppelganger).
78
+
79
+ | Datasets | Hadrian | Eclipse | SLLFW | DoppelVer |
80
+ | -------------------- | :-------: | :-------: | :-------: | :-------: |
81
+ | HSFace10K | 69.47 | 64.55 | 92.87 | 86.91 |
82
+ | HSFace20K | 75.22 | 67.55 | 94.37 | 88.91 |
83
+ | HSFace100K | **80.00** | **70.35** | 95.58 | 90.39 |
84
+ | HSFace200K | **79.85** | **71.12** | 95.70 | 89.86 |
85
+ | HSFace300K | **81.55** | **71.35** | 95.95 | 90.49 |
86
+ | CASIA-WebFace (Real) | 77.82 | 68.52 | **96.95** | **95.11** |
87
+
88
+ ## Citation
89
+ ```bibtex
90
+ @article{wu2024vec2face,
91
+ title={Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors},
92
+ author={Wu, Haiyu and Singh, Jaskirat and Tian, Sicong and Zheng, Liang and Bowyer, Kevin W},
93
+ journal={arXiv preprint arXiv:2409.02979},
94
+ year={2024}
95
+ }
96
+ ```