|
|
|
"""PyTorch OpenAI GPT-2 model, code copied from Huggingface""" |
|
|
|
import math |
|
import os |
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import Callable, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel, SequenceSummary |
|
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
from transformers.models.gpt2.configuration_gpt2 import GPT2Config |
|
from src.models.modeling_gpt2 import GPT2PreTrainedModel, GPT2Block |
|
from transformers.models.gpt2.configuration_gpt2 import GPT2Config |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
import torch |
|
|
|
def create_attention_mask_matrix(tn): |
|
|
|
tn = tn + 1 |
|
matrix = torch.zeros(tn, tn) |
|
|
|
|
|
odd_cols = torch.arange(tn) % 2 == 1 |
|
|
|
|
|
odd_rows = torch.tensor([x for x in range(1, tn) if x%2==1]) |
|
even_rows = torch.tensor([x for x in range(1, tn) if x%2==0]) |
|
|
|
|
|
|
|
tril_matrix = torch.tril(torch.ones(tn, tn)) |
|
matrix[odd_rows, :] = tril_matrix[odd_rows, :] * odd_cols |
|
|
|
|
|
|
|
tril_minus2 = torch.tril(torch.ones(tn, tn), diagonal=-2) |
|
matrix[even_rows, :] = tril_minus2[even_rows, :] * odd_cols |
|
|
|
matrix[even_rows, even_rows] = 1 |
|
matrix[even_rows, even_rows + 1] = 1 |
|
|
|
return matrix[1:, 1:].bool() |
|
|
|
|
|
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, |
|
is_causal=False, scale=None, enable_gqa=False) -> torch.Tensor: |
|
L, S = query.size(-2), key.size(-2) |
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale |
|
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device) |
|
if is_causal: |
|
assert attn_mask is None |
|
temp_mask = torch.ones(L, S, dtype=torch.bool, device=query.device).tril(diagonal=0) |
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) |
|
attn_bias.to(query.dtype) |
|
|
|
if attn_mask is not None: |
|
if attn_mask.dtype == torch.bool: |
|
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) |
|
else: |
|
attn_bias = attn_mask + attn_bias |
|
|
|
if enable_gqa: |
|
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3) |
|
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3) |
|
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor |
|
attn_weight += attn_bias |
|
attn_weight = torch.softmax(attn_weight, dim=-1) |
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) |
|
return attn_weight @ value |
|
|
|
def sdpa_attention_forward( |
|
module: torch.nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
dropout: float = 0.0, |
|
scaling: Optional[float] = None, |
|
is_causal: Optional[bool] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, None]: |
|
if hasattr(module, "num_key_value_groups"): |
|
key = repeat_kv(key, module.num_key_value_groups) |
|
value = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
|
|
|
|
query = query.contiguous() |
|
key = key.contiguous() |
|
value = value.contiguous() |
|
|
|
|
|
|
|
|
|
if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor): |
|
is_causal = is_causal.item() |
|
|
|
attn_output = scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
attn_mask=create_attention_mask_matrix(query.shape[-2]).to(query.device) if query.shape[1]>module.config.max_position_embeddings else None, |
|
dropout_p=dropout, |
|
scale=scaling, |
|
is_causal=False if query.shape[1]>module.config.max_position_embeddings else True, |
|
) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, None |
|
|
|
|
|
class DuoPredictGPT2Config(GPT2Config): |
|
model_type = "duo-predict-gpt2" |
|
architectures = ["DuoPredictGPT2LMHeadModel"] |
|
|
|
|
|
class DuoPredictGPT2Attention(nn.Module): |
|
def __init__(self, config, is_cross_attention=False, layer_idx=None): |
|
super().__init__() |
|
self.config = config |
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"bias", |
|
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( |
|
1, 1, max_positions, max_positions |
|
), |
|
persistent=False, |
|
) |
|
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
self.split_size = self.embed_dim |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
self.scale_attn_weights = config.scale_attn_weights |
|
self.is_cross_attention = is_cross_attention |
|
|
|
|
|
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx |
|
self.layer_idx = layer_idx |
|
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn |
|
|
|
if self.is_cross_attention: |
|
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) |
|
self.q_attn = Conv1D(self.embed_dim, self.embed_dim) |
|
else: |
|
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) |
|
self.c_proj = Conv1D(self.embed_dim, self.embed_dim) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
self.is_causal = True |
|
|
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) |
|
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) |
|
|
|
|
|
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) |
|
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) |
|
|
|
|
|
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) |
|
self.num_heads = self.num_heads - len(heads) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
|
|
bsz, num_heads, q_seq_len, dk = query.size() |
|
_, _, k_seq_len, _ = key.size() |
|
|
|
|
|
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) |
|
|
|
|
|
scale_factor = 1.0 |
|
if self.scale_attn_weights: |
|
scale_factor /= float(value.size(-1)) ** 0.5 |
|
|
|
if self.scale_attn_by_inverse_layer_idx: |
|
scale_factor /= float(self.layer_idx + 1) |
|
|
|
|
|
with torch.amp.autocast(query.device.type, enabled=False): |
|
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) |
|
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) |
|
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) |
|
|
|
if not self.is_cross_attention: |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) |
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
|
|
if attn_weights.dtype != torch.float32: |
|
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") |
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
return attn_output, attn_weights |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: |
|
if encoder_hidden_states is not None: |
|
if not hasattr(self, "q_attn"): |
|
raise ValueError( |
|
"If class is used as cross attention, the weights `q_attn` have to be defined. " |
|
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." |
|
) |
|
|
|
query_states = self.q_attn(hidden_states) |
|
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) |
|
attention_mask = encoder_attention_mask |
|
else: |
|
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2) |
|
|
|
shape_q = (*query_states.shape[:-1], -1, self.head_dim) |
|
shape_kv = (*key_states.shape[:-1], -1, self.head_dim) |
|
|
|
query_states = query_states.view(shape_q).transpose(1, 2) |
|
key_states = key_states.view(shape_kv).transpose(1, 2) |
|
value_states = value_states.view(shape_kv).transpose(1, 2) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
key_states = torch.cat((past_key, key_states), dim=-2) |
|
value_states = torch.cat((past_value, value_states), dim=-2) |
|
|
|
if use_cache is True: |
|
present = (key_states, value_states) |
|
else: |
|
present = None |
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
is_causal = False |
|
|
|
using_eager = self.config._attn_implementation == "eager" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_interface = sdpa_attention_forward |
|
|
|
if using_eager and self.reorder_and_upcast_attn: |
|
attn_output, attn_weights = self._upcast_and_reordered_attn( |
|
query_states, key_states, value_states, attention_mask, head_mask |
|
) |
|
else: |
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
head_mask=head_mask, |
|
dropout=self.attn_dropout.p if self.training else 0.0, |
|
is_causal=is_causal, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous() |
|
attn_output = self.c_proj(attn_output) |
|
attn_output = self.resid_dropout(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class DuoPredictGPT2MLP(nn.Module): |
|
def __init__(self, intermediate_size, config): |
|
super().__init__() |
|
embed_dim = config.hidden_size |
|
self.c_fc = Conv1D(intermediate_size, embed_dim) |
|
self.c_proj = Conv1D(embed_dim, intermediate_size) |
|
self.act = ACT2FN[config.activation_function] |
|
self.dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: |
|
hidden_states = self.c_fc(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.c_proj(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class DuoPredictGPT2Block(nn.Module): |
|
def __init__(self, config, layer_idx=None): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size |
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.attn = DuoPredictGPT2Attention(config=config, layer_idx=layer_idx) |
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
if config.add_cross_attention: |
|
self.crossattention = DuoPredictGPT2Attention(config=config, is_cross_attention=True, layer_idx=layer_idx) |
|
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.mlp = DuoPredictGPT2MLP(inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: |
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
attn_outputs = self.attn( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
outputs = attn_outputs[1:] |
|
|
|
hidden_states = attn_output + residual |
|
|
|
if encoder_hidden_states is not None: |
|
|
|
if not hasattr(self, "crossattention"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " |
|
"cross-attention layers by setting `config.add_cross_attention=True`" |
|
) |
|
residual = hidden_states |
|
hidden_states = self.ln_cross_attn(hidden_states) |
|
cross_attn_outputs = self.crossattention( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = cross_attn_outputs[0] |
|
|
|
hidden_states = residual + attn_output |
|
outputs = outputs + cross_attn_outputs[2:] |
|
|
|
residual = hidden_states |
|
hidden_states = self.ln_2(hidden_states) |
|
feed_forward_hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + feed_forward_hidden_states |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class DuoPredictGPT2PretrainedModel(GPT2PreTrainedModel): |
|
config_class = DuoPredictGPT2Config |
|
|
|
|
|
class DuoPredictGPT2Model(DuoPredictGPT2PretrainedModel): |
|
_supports_param_buffer_assignment = False |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.hidden_size |
|
|
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) |
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) |
|
|
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList([DuoPredictGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]) |
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
self._attn_implementation = config._attn_implementation |
|
|
|
|
|
self.post_init() |
|
|
|
def parallelize(self, device_map=None): |
|
|
|
warnings.warn( |
|
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" |
|
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," |
|
" ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.h)) |
|
self.model_parallel = True |
|
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) |
|
self.last_device = "cuda:" + str(max(self.device_map.keys())) |
|
self.wte = self.wte.to(self.first_device) |
|
self.wpe = self.wpe.to(self.first_device) |
|
|
|
for k, v in self.device_map.items(): |
|
for block in v: |
|
cuda_device = "cuda:" + str(k) |
|
self.h[block] = self.h[block].to(cuda_device) |
|
|
|
self.ln_f = self.ln_f.to(self.last_device) |
|
|
|
|
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.model_parallel = False |
|
self.device_map = None |
|
self.first_device = "cpu" |
|
self.last_device = "cpu" |
|
self.wte = self.wte.to("cpu") |
|
self.wpe = self.wpe.to("cpu") |
|
for index in range(len(self.h)): |
|
self.h[index] = self.h[index].to("cpu") |
|
self.ln_f = self.ln_f.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.h[layer].attn.prune_heads(heads) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
if position_ids is None: |
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0) |
|
position_ids = position_ids[:, :self.config.max_position_embeddings] |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
position_embeds = self.wpe(position_ids) |
|
|
|
if inputs_embeds.shape[1] != position_embeds.shape[1]: |
|
hidden_states = torch.empty((batch_size, input_shape[-1], self.embed_dim), device=device) |
|
hidden_states[:, ::2] = inputs_embeds[:, ::2] + position_embeds.to(inputs_embeds.device) |
|
hidden_states[:, 1::2] = inputs_embeds[:, 1::2] + position_embeds[:, :self.config.max_position_embeddings-1].to(inputs_embeds.device) |
|
else: |
|
hidden_states = inputs_embeds + position_embeds |
|
|
|
|
|
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None |
|
attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None |
|
if self._attn_implementation == "flash_attention_2": |
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif _use_sdpa: |
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask=attention_mask, |
|
input_shape=(batch_size, input_shape[-1]), |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_length, |
|
) |
|
else: |
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
|
|
|
|
if self.config.add_cross_attention and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
if _use_sdpa: |
|
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( |
|
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1] |
|
) |
|
elif not self._attn_implementation == "flash_attention_2": |
|
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i in range(len(self.h)): |
|
block, layer_past = self.h[i], past_key_values[i] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if layer_past is not None: |
|
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs = self._gradient_checkpointing_func( |
|
block.__call__, |
|
hidden_states, |
|
None, |
|
attention_mask, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
hidden_states = hidden_states.view(output_shape) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class DuoPredictGPT2LMHeadModel(DuoPredictGPT2PretrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = DuoPredictGPT2Model(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def parallelize(self, device_map=None): |
|
warnings.warn( |
|
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" |
|
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" |
|
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" |
|
" 0, 'transformer.h.1': 1, ...}", |
|
FutureWarning, |
|
) |
|
self.device_map = ( |
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.transformer.h)) |
|
self.transformer.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.transformer.first_device) |
|
self.model_parallel = True |
|
|
|
def deparallelize(self): |
|
warnings.warn( |
|
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", |
|
FutureWarning, |
|
) |
|
self.transformer.deparallelize() |
|
self.transformer = self.transformer.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
torch.cuda.empty_cache() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.transformer.first_device) |
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
bs, seq = lm_logits.shape[:2] |
|
if labels is not None: |
|
if seq>labels.shape[1]: |
|
|
|
total_labels = torch.full((bs, seq-1), -100, dtype=input_ids.dtype, device=input_ids.device) |
|
total_labels[:, :-1:2] = labels[:, 1: ] |
|
total_labels[:, 1::2] = labels[:, :-1] |
|
else: |
|
total_labels = labels[:, 1:] |
|
loss = self.loss_function( |
|
lm_logits[:, :-1], |
|
total_labels, |
|
vocab_size=self.config.vocab_size, |
|
**kwargs, |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
cross_attentions=transformer_outputs.cross_attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) |
|
for layer_past in past_key_values |
|
) |
|
|
|
|
|
|
|
from transformers import AutoConfig, AutoModel |
|
AutoConfig.register("duo-predict-gpt2", DuoPredictGPT2Config) |
|
AutoModel.register(DuoPredictGPT2Config, DuoPredictGPT2LMHeadModel) |
|
|
|
|
|
__all__ = [ |
|
"DuoPredictGPT2LMHeadModel", |
|
"DuoPredictGPT2Model", |
|
"DuoPredictGPT2Config", |
|
"DuoPredictGPT2Attention", |
|
"DuoPredictGPT2MLP", |
|
"DuoPredictGPT2Block", |
|
] |
|
|
|
|
|
if __name__ == "__main__": |
|
cg = DuoPredictGPT2Config() |
|
model = DuoPredictGPT2LMHeadModel(cg) |
|
from src.utils.model_utlis import print_trainable_parameters |
|
print_trainable_parameters(model) |
|
model.eval() |
|
model(torch.randint(0, 10000, (1, 100))) |
|
print() |