File size: 5,916 Bytes
6aced58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
from dataclasses import dataclass
from einops import rearrange, repeat

from flash_attn import flash_attn_func
from .liger_rope import LigerRopeFunction
from .rms_norm import LlamaRMSNorm
from .config import LlamaConfig

class CPLinear(nn.Module):
    def __init__(self, in_features, n_head, head_dim, kv_rank=2, q_rank=6):
        super().__init__()
        self.W_A_q = nn.Linear(in_features, n_head * q_rank, bias=False)
        self.W_B_q = nn.Linear(in_features, q_rank * head_dim, bias=False)
        self.W_A_k = nn.Linear(in_features, n_head * kv_rank, bias=False)
        self.W_B_k = nn.Linear(in_features, kv_rank * head_dim, bias=False)
        self.W_A_v = nn.Linear(in_features, n_head * kv_rank, bias=False)
        self.W_B_v = nn.Linear(in_features, kv_rank * head_dim, bias=False)
        
        nn.init.xavier_uniform_(self.W_A_q.weight)
        nn.init.xavier_uniform_(self.W_B_q.weight)
        nn.init.xavier_uniform_(self.W_A_k.weight)
        nn.init.xavier_uniform_(self.W_B_k.weight)
        nn.init.xavier_uniform_(self.W_A_v.weight)
        nn.init.xavier_uniform_(self.W_B_v.weight)
        
        self.n_head = n_head
        self.q_rank = q_rank
        self.head_dim = head_dim
        self.kv_rank = kv_rank
        
    def forward(self, x):
        batch_size, seq_len, _ = x.size()

        A_q = self.W_A_q(x).view(batch_size, seq_len, self.n_head, self.q_rank)
        A_k = self.W_A_k(x).view(batch_size, seq_len, self.n_head, self.kv_rank)
        A_v = self.W_A_v(x).view(batch_size, seq_len, self.n_head, self.kv_rank)

        B_q = self.W_B_q(x).view(batch_size, seq_len, self.q_rank, self.head_dim)
        B_k = self.W_B_k(x).view(batch_size, seq_len, self.kv_rank, self.head_dim)
        B_v = self.W_B_v(x).view(batch_size, seq_len, self.kv_rank, self.head_dim)

        A_q = A_q.view(batch_size * seq_len, self.n_head, self.q_rank)
        A_k = A_k.view(batch_size * seq_len, self.n_head, self.kv_rank)
        A_v = A_v.view(batch_size * seq_len, self.n_head, self.kv_rank)

        B_q = B_q.view(batch_size * seq_len, self.q_rank, self.head_dim)
        B_k = B_k.view(batch_size * seq_len, self.kv_rank, self.head_dim)
        B_v = B_v.view(batch_size * seq_len, self.kv_rank, self.head_dim)
        
        q = torch.bmm(A_q, B_q).div_(self.q_rank).view(batch_size, seq_len, self.n_head, self.head_dim)
        k = torch.bmm(A_k, B_k).div_(self.kv_rank).view(batch_size, seq_len, self.n_head, self.head_dim)
        v = torch.bmm(A_v, B_v).div_(self.kv_rank).view(batch_size, seq_len, self.n_head, self.head_dim)

        return q, k, v

class CausalTensorProductSelfAttn(nn.Module):
    def __init__(self, config, kv_rank=2, q_rank=6):
        super().__init__()
        self.n_head = config.num_attention_heads
        self.head_dim = config.hidden_size // config.num_attention_heads
        self.n_embd = config.hidden_size
        self.rank = kv_rank
        self.q_rank = q_rank
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta

        self.c_qkv = CPLinear(self.n_embd, self.n_head, self.head_dim, self.rank, self.q_rank)
        self.o_proj = nn.Linear(self.n_head * self.head_dim, self.n_embd, bias=False)
        
        self.register_buffer(
            "cos_cached",
            self._compute_rope_embeddings(
                self.max_position_embeddings,
                self.head_dim,
                self.rope_theta,
                dtype=torch.float32,
                device=self.o_proj.weight.device,
            )[0],
            persistent=False,
        )
        self.register_buffer(
            "sin_cached",
            self._compute_rope_embeddings(
                self.max_position_embeddings,
                self.head_dim,
                self.rope_theta,
                dtype=torch.float32,
                device=self.o_proj.weight.device,
            )[1],
            persistent=False,
        )

        self.using_groupnorm = getattr(config, 'using_groupnorm', False)
        self.subln = LlamaRMSNorm(self.head_dim, eps=1e-5)
            
    def _compute_rope_embeddings(self, max_position_embeddings, head_dim, base=10000, dtype=None, device=None):
        inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2, device=device).float() / head_dim))
        t = torch.arange(max_position_embeddings, device=device, dtype=torch.float32)
        freqs = torch.einsum("i,j->ij", t, inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1)
        cos = emb.cos().to(dtype)
        sin = emb.sin().to(dtype)
        return cos.unsqueeze(0), sin.unsqueeze(0)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:
        # In B S (H D)
        bsz, seq_len, _ = hidden_states.size()
        
        if position_ids is None:
            position_ids = torch.arange(seq_len, device=hidden_states.device)
            position_ids = repeat(position_ids, 'l -> b l', b=bsz)

        q, k, v = self.c_qkv(hidden_states) # B S (HD) -> B S H D 

        cos = self.cos_cached[:, position_ids]  # [1, bsz, seq_len, dim]
        sin = self.sin_cached[:, position_ids]  # [1, bsz, seq_len, dim]
        
        q, k = LigerRopeFunction.apply(
            q,
            k,
            cos.squeeze(0),
            sin.squeeze(0),
            position_ids
        )

        attn_out = flash_attn_func(
            q,
            k,
            v,
            dropout_p=0.0,
            causal=attention_mask is None
        )
        
        attn_out = self.subln(attn_out)
        
        attn_out = rearrange(attn_out, "b s h d -> b s (h d)")
        attn_out = self.o_proj(attn_out)
        return attn_out