File size: 34,368 Bytes
e5d1750
 
 
 
 
 
 
 
 
 
 
 
b297632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d1750
 
b297632
 
 
 
 
 
 
 
 
 
 
e5d1750
 
b297632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d1750
 
b297632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d1750
 
b297632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d1750
 
b297632
e5d1750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:499184
- loss:MultipleNegativesRankingLoss
base_model: answerdotai/ModernBERT-large
widget:
- source_sentence: how long will rotisserie chicken keep in refridgerator
  sentences:
  - >-
    1 Meats with gravy or sauces: 1 to 2 days refrigerator or 6 months
    (freezer). 2  Rotisserie chicken: 3 to 4 days (refrigerator) or 2 to 3
    months (freezer). 3  Opened package of hot dogs: 1 week (refrigerator) or 1
    to 2 months (freezer).4  Opened package of deli meat: 3 to 4 days
    (refrigerator) or 1 to 2 months (freezer). Rotisserie chicken: 3 to 4 days
    (refrigerator) or 2 to 3 months (freezer). 2  Opened package of hot dogs: 1
    week (refrigerator) or 1 to 2 months (freezer). 3  Opened package of deli
    meat: 3 to 4 days (refrigerator) or 1 to 2 months (freezer).
  - >-
    Can Spinach Cause Constipation? Those who have problems with constipation
    will want to stay away from certain foods including spinach. Because spinach
    has so much fiber in it, it can cause constipation in some people,
    especially those who are already prone to it. Other foods which you will
    want to avoid if you problems with constipation include apples, peaches, raw
    carrots, zucchini, kidney beans, lima beans, and whole-grain cereal.
  - >-
    Brush the chickens with oil and season the outside and cavities with salt
    and pepper. Skewer the chickens onto the rotisserie rod and grill, on the
    rotisserie, for 30 to 35 minutes, or until the chicken is golden brown and
    just cooked through. Remove from grill and let rest for 10 minutes before
    serving.
- source_sentence: empyema causes
  sentences:
  - "Causes of an Empyema. Most cases of an empyema are related to bacterial pneumonia (infection of the lung). Pneumonia tends to cause a pleural effusion â\x80\x93 para-pneumonic effusion. This can be uncomplicated (containing exudate), complicated (exudate with high concentrations of neurophils) or empyema thoracis (pus in the pleural space)."
  - >-
    empyema - a collection of pus in a body cavity (especially in the lung
    cavity) inflammatory disease - a disease characterized by inflammation.
    purulent pleurisy - a collection of pus in the lung cavity. Translations.
  - >-
    Laminar Flow. The resistance to flow in a liquid can be characterized in
    terms of the viscosity of the fluid if the flow is smooth. In the case of a
    moving plate in a liquid, it is found that there is a layer or lamina which
    moves with the plate, and a layer which is essentially stationary if it is
    next to a stationary plate.
- source_sentence: why is coal found in layers
  sentences:
  - >-
    Email the author | Follow on Twitter. on March 06, 2015 at 6:03 PM, updated
    March 06, 2015 at 6:35 PM. Comments. CLEVELAND, Ohio -- The first day of
    spring 2015 will be on March 20, with winter officially ending at 6:45 p.m.
    that day. Summer 2015 will begin on June 21, fall on Sept. 23 and winter on
    Dec. 21.
  - >-
    EXPERT ANSWER. Coal if formed when dead animals and plants got buried inside
    the layer of Earth. The layers increase form time to time and more dead
    plants and animals get buried in the layers.Therefore, coal is found in
    layers.For example, let us consider the layers of sandwich, on the first
    bread we apply the toppings and cover it another slice. Then some more
    topping is added to second slice and is covered by third slide.XPERT ANSWER.
    Coal if formed when dead animals and plants got buried inside the layer of
    Earth. The layers increase form time to time and more dead plants and
    animals get buried in the layers.
  - >-
    Why is Coal not classified as a Mineral? July 8, 2011, shiela, Leave a
    comment. Why is Coal not classified as a Mineral? Coal is not a mineral
    because it does not qualify to be one. A mineral is made of rocks. It is
    non-living and made up of atoms of elements. Coals on the other hand are
    carbon-based and came from fossilized plants. By just looking into the
    origin of coals, these are not qualified to be minerals because they come
    from organic material and it has no definite chemical composition. Minerals
    are not formed from living things such as plants or animals. They are
    building blocks of rocks and are formed thousands of years ago. Coals on the
    other hand came from dead plants and animals. The coals are formed when
    these living creatures will decay. Again, it takes thousands of years to
    form a coal.
- source_sentence: where is the ford edge built
  sentences:
  - >-
    Amongst fruit-bearing cherry trees, there are two main types: Prunus avium
    (sweet cherries), which are the kind sold in produce sections for eating,
    and Prunus cerasus (sour cherries), which are the kind used in cooking and
    baking.mongst fruit-bearing cherry trees, there are two main types: Prunus
    avium (sweet cherries), which are the kind sold in produce sections for
    eating, and Prunus cerasus (sour cherries), which are the kind used in
    cooking and baking.
  - >-
    Ford is recalling 204,448 Edge and Lincoln MKX crossovers in North America
    for fuel-tank brackets that can rust and cause gas to leak, the automaker
    said.
  - >-
    Ford Edge to be built at new $760 million plant in China. DETROIT, MI - Ford
    Motor Co. announced Tuesday it has opened its sixth assembly plant in China,
    with a $760 million investment for the Changan Ford Hangzhou Plant.
- source_sentence: what is a tensilon universal testing instrument
  sentences:
  - >-
    Universal Material Testing Instrument. The TENSILON RTF is our newest
    universal testing machine offering innovative measuring possibilities, based
    on A&D's newly-developed and extensive technological knowledge.The RTF
    Series is a world-class Class 0.5 testing machine.Having improved the
    overall design and structure of the machine, we achieved a very strong load
    frame stiffness enabling super-high accuracy in measurement.he RTF Series is
    a world-class Class 0.5 testing machine. Having improved the overall design
    and structure of the machine, we achieved a very strong load frame stiffness
    enabling super-high accuracy in measurement.
  - >-
    The term ectopic pregnancy frequently refers to a pregnancy that has
    occurred in one of the fallopian tubes, instead of the uterus. This is the
    case about 95 percent of the time, but ectopic pregnancies can also be
    abdominal, ovarian, cornual, or cervical.
  - >-
    The McDonald Patent Universal String Tension Calculator (MPUSTC) is a handy
    calculator to figure string tensions in steel-string instruments. If you
    plug in your scale length, string gauges and tuning, it will give you a
    readout of the tension on each of the strings. This is useful when you're
    trying to fine-tune a set of custom gauges, or when you're working out how
    far you can push a drop tuning before it becomes unmanageable.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: mit
---

# SentenceTransformer based on answerdotai/ModernBERT-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) <!-- at revision 45bb4654a4d5aaff24dd11d4781fa46d39bf8c13 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'what is a tensilon universal testing instrument',
    "Universal Material Testing Instrument. The TENSILON RTF is our newest universal testing machine offering innovative measuring possibilities, based on A&D's newly-developed and extensive technological knowledge.The RTF Series is a world-class Class 0.5 testing machine.Having improved the overall design and structure of the machine, we achieved a very strong load frame stiffness enabling super-high accuracy in measurement.he RTF Series is a world-class Class 0.5 testing machine. Having improved the overall design and structure of the machine, we achieved a very strong load frame stiffness enabling super-high accuracy in measurement.",
    "The McDonald Patent Universal String Tension Calculator (MPUSTC) is a handy calculator to figure string tensions in steel-string instruments. If you plug in your scale length, string gauges and tuning, it will give you a readout of the tension on each of the strings. This is useful when you're trying to fine-tune a set of custom gauges, or when you're working out how far you can push a drop tuning before it becomes unmanageable.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 499,184 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                       | sentence_1                                                                          | sentence_2                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.07 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 80.89 tokens</li><li>max: 254 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 79.05 tokens</li><li>max: 226 tokens</li></ul> |
* Samples:
  | sentence_0                                   | sentence_1                                                                                                                                                                                                                                                                                                                                                                          | sentence_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:---------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is a dependent person</code>      | <code>1. depending on a person or thing for aid, support, life, etc. 2. (postpositive; foll by on or upon) influenced or conditioned (by); contingent (on) 3. subordinate; subject: a dependent prince. 4. obsolete hanging down.</code>                                                                                                                                            | <code>Dependent personality disorder (DPD) is one of the most frequently diagnosed personality disorders. It occurs equally in men and women, usually becoming apparent in young adulthood or later as important adult relationships form. People with DPD become emotionally dependent on other people and spend great effort trying to please others. People with DPD tend to display needy, passive, and clinging behavior, and have a fear of separation. Other common characteristics of this personality disorder include:</code>       |
  | <code>what is the hat trick in hockey</code> | <code>Definition of hat trick. 1  1 : the retiring of three batsmen with three consecutive balls by a bowler in cricket. 2  2 : the scoring of three goals in one game (as of hockey or soccer) by a single player. 3  3 : a series of three victories, successes, or related accomplishments scored a hat trick when her three best steers corralled top honors — People.</code> | <code>Hat trick was first recorded in print in the 1870s, but has since been widened to apply to any sport in which the person competing carries off some feat three times in quick succession, such as scoring three goals in one game of soccer.</code>                                                                                                                                                                                                                                                                                     |
  | <code>what is an egalitarian</code>          | <code>An egalitarian is defined as a person who believes all people were created equal and should be treated equal. An example of an egalitarian is a person who fights for civil rights, like Martin Luther King Jr.</code>                                                                                                                                                        | <code>About Egalitarian Companies. In the tradition hierarchical corporate structure, each employee operates under a specific job description. Each employee also reports to a superior who monitors his progress and issues instructions. Egalitarian-style companies eliminate most of this structure. Employees in an egalitarian company have general job descriptions, rather than specific ones. Instead of reporting to a superior, all employees in an egalitarian company work collaboratively on tasks and behave as equals.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 10
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step   | Training Loss |
|:------:|:------:|:-------------:|
| 0.0321 | 500    | 1.1178        |
| 0.0641 | 1000   | 0.293         |
| 0.0962 | 1500   | 0.2542        |
| 0.1282 | 2000   | 0.2357        |
| 0.1603 | 2500   | 0.2187        |
| 0.1923 | 3000   | 0.2107        |
| 0.2244 | 3500   | 0.1959        |
| 0.2564 | 4000   | 0.2049        |
| 0.2885 | 4500   | 0.1945        |
| 0.3205 | 5000   | 0.1848        |
| 0.3526 | 5500   | 0.1846        |
| 0.3846 | 6000   | 0.1736        |
| 0.4167 | 6500   | 0.1795        |
| 0.4487 | 7000   | 0.1767        |
| 0.4808 | 7500   | 0.1727        |
| 0.5128 | 8000   | 0.1688        |
| 0.5449 | 8500   | 0.1708        |
| 0.5769 | 9000   | 0.1663        |
| 0.6090 | 9500   | 0.1654        |
| 0.6410 | 10000  | 0.1637        |
| 0.6731 | 10500  | 0.1651        |
| 0.7051 | 11000  | 0.1625        |
| 0.7372 | 11500  | 0.1584        |
| 0.7692 | 12000  | 0.1607        |
| 0.8013 | 12500  | 0.156         |
| 0.8333 | 13000  | 0.1548        |
| 0.8654 | 13500  | 0.1484        |
| 0.8974 | 14000  | 0.1527        |
| 0.9295 | 14500  | 0.1555        |
| 0.9615 | 15000  | 0.1528        |
| 0.9936 | 15500  | 0.1533        |
| 1.0256 | 16000  | 0.0827        |
| 1.0577 | 16500  | 0.0597        |
| 1.0897 | 17000  | 0.0599        |
| 1.1218 | 17500  | 0.0592        |
| 1.1538 | 18000  | 0.0592        |
| 1.1859 | 18500  | 0.0584        |
| 1.2179 | 19000  | 0.0615        |
| 1.25   | 19500  | 0.0589        |
| 1.2821 | 20000  | 0.0612        |
| 1.3141 | 20500  | 0.0618        |
| 1.3462 | 21000  | 0.0606        |
| 1.3782 | 21500  | 0.0587        |
| 1.4103 | 22000  | 0.0611        |
| 1.4423 | 22500  | 0.0616        |
| 1.4744 | 23000  | 0.0623        |
| 1.5064 | 23500  | 0.0615        |
| 1.5385 | 24000  | 0.0602        |
| 1.5705 | 24500  | 0.0658        |
| 1.6026 | 25000  | 0.068         |
| 1.6346 | 25500  | 0.0649        |
| 1.6667 | 26000  | 0.0645        |
| 1.6987 | 26500  | 0.0652        |
| 1.7308 | 27000  | 0.0632        |
| 1.7628 | 27500  | 0.0631        |
| 1.7949 | 28000  | 0.0655        |
| 1.8269 | 28500  | 0.0633        |
| 1.8590 | 29000  | 0.0607        |
| 1.8910 | 29500  | 0.0633        |
| 1.9231 | 30000  | 0.0612        |
| 1.9551 | 30500  | 0.0631        |
| 1.9872 | 31000  | 0.0616        |
| 2.0192 | 31500  | 0.0382        |
| 2.0513 | 32000  | 0.0178        |
| 2.0833 | 32500  | 0.0177        |
| 2.1154 | 33000  | 0.0178        |
| 2.1474 | 33500  | 0.0171        |
| 2.1795 | 34000  | 0.0188        |
| 2.2115 | 34500  | 0.0186        |
| 2.2436 | 35000  | 0.0177        |
| 2.2756 | 35500  | 0.0183        |
| 2.3077 | 36000  | 0.0195        |
| 2.3397 | 36500  | 0.0202        |
| 2.3718 | 37000  | 0.0199        |
| 2.4038 | 37500  | 0.0197        |
| 2.4359 | 38000  | 0.019         |
| 2.4679 | 38500  | 0.021         |
| 2.5    | 39000  | 0.0195        |
| 2.5321 | 39500  | 0.0211        |
| 2.5641 | 40000  | 0.0205        |
| 2.5962 | 40500  | 0.0207        |
| 2.6282 | 41000  | 0.0222        |
| 2.6603 | 41500  | 0.0204        |
| 2.6923 | 42000  | 0.0205        |
| 2.7244 | 42500  | 0.0211        |
| 2.7564 | 43000  | 0.0232        |
| 2.7885 | 43500  | 0.0202        |
| 2.8205 | 44000  | 0.0207        |
| 2.8526 | 44500  | 0.0225        |
| 2.8846 | 45000  | 0.0224        |
| 2.9167 | 45500  | 0.0203        |
| 2.9487 | 46000  | 0.0215        |
| 2.9808 | 46500  | 0.0218        |
| 3.0128 | 47000  | 0.0159        |
| 3.0449 | 47500  | 0.0064        |
| 3.0769 | 48000  | 0.0069        |
| 3.1090 | 48500  | 0.0074        |
| 3.1410 | 49000  | 0.0075        |
| 3.1731 | 49500  | 0.0066        |
| 3.2051 | 50000  | 0.0076        |
| 3.2372 | 50500  | 0.0073        |
| 3.2692 | 51000  | 0.0077        |
| 3.3013 | 51500  | 0.0075        |
| 3.3333 | 52000  | 0.0079        |
| 3.3654 | 52500  | 0.008         |
| 3.3974 | 53000  | 0.0087        |
| 3.4295 | 53500  | 0.0077        |
| 3.4615 | 54000  | 0.0084        |
| 3.4936 | 54500  | 0.0086        |
| 3.5256 | 55000  | 0.009         |
| 3.5577 | 55500  | 0.0082        |
| 3.5897 | 56000  | 0.0084        |
| 3.6218 | 56500  | 0.0084        |
| 3.6538 | 57000  | 0.008         |
| 3.6859 | 57500  | 0.0079        |
| 3.7179 | 58000  | 0.0085        |
| 3.75   | 58500  | 0.0096        |
| 3.7821 | 59000  | 0.0087        |
| 3.8141 | 59500  | 0.0086        |
| 3.8462 | 60000  | 0.0089        |
| 3.8782 | 60500  | 0.0081        |
| 3.9103 | 61000  | 0.0087        |
| 3.9423 | 61500  | 0.0085        |
| 3.9744 | 62000  | 0.0082        |
| 4.0064 | 62500  | 0.0076        |
| 4.0385 | 63000  | 0.0037        |
| 4.0705 | 63500  | 0.0035        |
| 4.1026 | 64000  | 0.0037        |
| 4.1346 | 64500  | 0.004         |
| 4.1667 | 65000  | 0.0037        |
| 4.1987 | 65500  | 0.0036        |
| 4.2308 | 66000  | 0.0042        |
| 4.2628 | 66500  | 0.0044        |
| 4.2949 | 67000  | 0.0041        |
| 4.3269 | 67500  | 0.004         |
| 4.3590 | 68000  | 0.0037        |
| 4.3910 | 68500  | 0.0043        |
| 4.4231 | 69000  | 0.0035        |
| 4.4551 | 69500  | 0.0045        |
| 4.4872 | 70000  | 0.0042        |
| 4.5192 | 70500  | 0.0043        |
| 4.5513 | 71000  | 0.0042        |
| 4.5833 | 71500  | 0.0049        |
| 4.6154 | 72000  | 0.0041        |
| 4.6474 | 72500  | 0.0041        |
| 4.6795 | 73000  | 0.0044        |
| 4.7115 | 73500  | 0.0038        |
| 4.7436 | 74000  | 0.0039        |
| 4.7756 | 74500  | 0.0049        |
| 4.8077 | 75000  | 0.0041        |
| 4.8397 | 75500  | 0.0044        |
| 4.8718 | 76000  | 0.0043        |
| 4.9038 | 76500  | 0.0053        |
| 4.9359 | 77000  | 0.0043        |
| 4.9679 | 77500  | 0.0049        |
| 5.0    | 78000  | 0.0042        |
| 5.0321 | 78500  | 0.0022        |
| 5.0641 | 79000  | 0.0023        |
| 5.0962 | 79500  | 0.0021        |
| 5.1282 | 80000  | 0.003         |
| 5.1603 | 80500  | 0.0024        |
| 5.1923 | 81000  | 0.0022        |
| 5.2244 | 81500  | 0.0023        |
| 5.2564 | 82000  | 0.0022        |
| 5.2885 | 82500  | 0.0027        |
| 5.3205 | 83000  | 0.0023        |
| 5.3526 | 83500  | 0.0029        |
| 5.3846 | 84000  | 0.0027        |
| 5.4167 | 84500  | 0.0025        |
| 5.4487 | 85000  | 0.0029        |
| 5.4808 | 85500  | 0.0029        |
| 5.5128 | 86000  | 0.0024        |
| 5.5449 | 86500  | 0.0026        |
| 5.5769 | 87000  | 0.0026        |
| 5.6090 | 87500  | 0.0028        |
| 5.6410 | 88000  | 0.0025        |
| 5.6731 | 88500  | 0.0026        |
| 5.7051 | 89000  | 0.0023        |
| 5.7372 | 89500  | 0.0029        |
| 5.7692 | 90000  | 0.0027        |
| 5.8013 | 90500  | 0.0019        |
| 5.8333 | 91000  | 0.0023        |
| 5.8654 | 91500  | 0.0022        |
| 5.8974 | 92000  | 0.003         |
| 5.9295 | 92500  | 0.0023        |
| 5.9615 | 93000  | 0.0026        |
| 5.9936 | 93500  | 0.0027        |
| 6.0256 | 94000  | 0.0015        |
| 6.0577 | 94500  | 0.0012        |
| 6.0897 | 95000  | 0.0016        |
| 6.1218 | 95500  | 0.0018        |
| 6.1538 | 96000  | 0.0017        |
| 6.1859 | 96500  | 0.0014        |
| 6.2179 | 97000  | 0.0013        |
| 6.25   | 97500  | 0.0022        |
| 6.2821 | 98000  | 0.0015        |
| 6.3141 | 98500  | 0.002         |
| 6.3462 | 99000  | 0.0021        |
| 6.3782 | 99500  | 0.0016        |
| 6.4103 | 100000 | 0.0024        |
| 6.4423 | 100500 | 0.002         |
| 6.4744 | 101000 | 0.0014        |
| 6.5064 | 101500 | 0.0019        |
| 6.5385 | 102000 | 0.0017        |
| 6.5705 | 102500 | 0.0019        |
| 6.6026 | 103000 | 0.0016        |
| 6.6346 | 103500 | 0.0013        |
| 6.6667 | 104000 | 0.0012        |
| 6.6987 | 104500 | 0.0015        |
| 6.7308 | 105000 | 0.0015        |
| 6.7628 | 105500 | 0.0018        |
| 6.7949 | 106000 | 0.0018        |
| 6.8269 | 106500 | 0.0016        |
| 6.8590 | 107000 | 0.0018        |
| 6.8910 | 107500 | 0.0026        |
| 6.9231 | 108000 | 0.0013        |
| 6.9551 | 108500 | 0.0019        |
| 6.9872 | 109000 | 0.0015        |
| 7.0192 | 109500 | 0.0014        |
| 7.0513 | 110000 | 0.0009        |
| 7.0833 | 110500 | 0.0012        |
| 7.1154 | 111000 | 0.0016        |
| 7.1474 | 111500 | 0.0014        |
| 7.1795 | 112000 | 0.0013        |
| 7.2115 | 112500 | 0.0009        |
| 7.2436 | 113000 | 0.0015        |
| 7.2756 | 113500 | 0.0011        |
| 7.3077 | 114000 | 0.0011        |
| 7.3397 | 114500 | 0.0011        |
| 7.3718 | 115000 | 0.0013        |
| 7.4038 | 115500 | 0.001         |
| 7.4359 | 116000 | 0.0012        |
| 7.4679 | 116500 | 0.0012        |
| 7.5    | 117000 | 0.0013        |
| 7.5321 | 117500 | 0.0014        |
| 7.5641 | 118000 | 0.0013        |
| 7.5962 | 118500 | 0.0013        |
| 7.6282 | 119000 | 0.0014        |
| 7.6603 | 119500 | 0.001         |
| 7.6923 | 120000 | 0.0012        |
| 7.7244 | 120500 | 0.0018        |
| 7.7564 | 121000 | 0.001         |
| 7.7885 | 121500 | 0.0014        |
| 7.8205 | 122000 | 0.0011        |
| 7.8526 | 122500 | 0.0012        |
| 7.8846 | 123000 | 0.0012        |
| 7.9167 | 123500 | 0.0008        |
| 7.9487 | 124000 | 0.0013        |
| 7.9808 | 124500 | 0.0014        |
| 8.0128 | 125000 | 0.001         |
| 8.0449 | 125500 | 0.0007        |
| 8.0769 | 126000 | 0.001         |
| 8.1090 | 126500 | 0.0009        |
| 8.1410 | 127000 | 0.0007        |
| 8.1731 | 127500 | 0.0007        |
| 8.2051 | 128000 | 0.001         |
| 8.2372 | 128500 | 0.0011        |
| 8.2692 | 129000 | 0.0008        |
| 8.3013 | 129500 | 0.0007        |
| 8.3333 | 130000 | 0.0013        |
| 8.3654 | 130500 | 0.0012        |
| 8.3974 | 131000 | 0.001         |
| 8.4295 | 131500 | 0.001         |
| 8.4615 | 132000 | 0.0007        |
| 8.4936 | 132500 | 0.001         |
| 8.5256 | 133000 | 0.001         |
| 8.5577 | 133500 | 0.001         |
| 8.5897 | 134000 | 0.0011        |
| 8.6218 | 134500 | 0.0013        |
| 8.6538 | 135000 | 0.0007        |
| 8.6859 | 135500 | 0.001         |
| 8.7179 | 136000 | 0.0008        |
| 8.75   | 136500 | 0.001         |
| 8.7821 | 137000 | 0.0008        |
| 8.8141 | 137500 | 0.0006        |
| 8.8462 | 138000 | 0.0006        |
| 8.8782 | 138500 | 0.0009        |
| 8.9103 | 139000 | 0.0007        |
| 8.9423 | 139500 | 0.0009        |
| 8.9744 | 140000 | 0.0006        |
| 9.0064 | 140500 | 0.0018        |
| 9.0385 | 141000 | 0.0008        |
| 9.0705 | 141500 | 0.0008        |
| 9.1026 | 142000 | 0.0009        |
| 9.1346 | 142500 | 0.0006        |
| 9.1667 | 143000 | 0.0009        |
| 9.1987 | 143500 | 0.0007        |
| 9.2308 | 144000 | 0.0007        |
| 9.2628 | 144500 | 0.0006        |
| 9.2949 | 145000 | 0.0008        |
| 9.3269 | 145500 | 0.0009        |
| 9.3590 | 146000 | 0.0005        |
| 9.3910 | 146500 | 0.001         |
| 9.4231 | 147000 | 0.001         |
| 9.4551 | 147500 | 0.0011        |
| 9.4872 | 148000 | 0.0011        |
| 9.5192 | 148500 | 0.0012        |
| 9.5513 | 149000 | 0.0011        |
| 9.5833 | 149500 | 0.0007        |
| 9.6154 | 150000 | 0.0008        |
| 9.6474 | 150500 | 0.0005        |
| 9.6795 | 151000 | 0.0007        |
| 9.7115 | 151500 | 0.0008        |
| 9.7436 | 152000 | 0.0007        |
| 9.7756 | 152500 | 0.0009        |
| 9.8077 | 153000 | 0.0007        |
| 9.8397 | 153500 | 0.0012        |
| 9.8718 | 154000 | 0.0005        |
| 9.9038 | 154500 | 0.0008        |
| 9.9359 | 155000 | 0.0007        |
| 9.9679 | 155500 | 0.0007        |
| 10.0   | 156000 | 0.0011        |

</details>

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->