Rename README.md to Update README.md
Browse files- README.md +0 -22
- Update README.md +187 -0
README.md
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
metrics:
|
6 |
-
- accuracy
|
7 |
-
base_model:
|
8 |
-
- microsoft/resnet-50
|
9 |
-
- timm/vgg19.tv_in1k
|
10 |
-
- google/vit-base-patch16-224
|
11 |
-
- xai-org/grok-1
|
12 |
-
pipeline_tag: image-classification
|
13 |
-
tags:
|
14 |
-
- Ocular-Toxoplasmosis(FundusImages)
|
15 |
-
- Retinal-images(Diabetics,Cataract,Gulocoma,Healthy)
|
16 |
-
- Pytorch
|
17 |
-
- Transformers
|
18 |
-
- Image-Classification
|
19 |
-
- Image_feature_extraction
|
20 |
-
- Grad-CAM
|
21 |
-
- XAI-Visualization
|
22 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Update README.md
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
base_model:
|
8 |
+
- microsoft/resnet-50
|
9 |
+
- timm/vgg19.tv_in1k
|
10 |
+
- google/vit-base-patch16-224
|
11 |
+
- xai-org/grok-1
|
12 |
+
pipeline_tag: image-classification
|
13 |
+
tags:
|
14 |
+
- Ocular-Toxoplasmosis(FundusImages)
|
15 |
+
- Retinal-images(Diabetics,Cataract,Gulocoma,Healthy)
|
16 |
+
- Pytorch
|
17 |
+
- Transformers
|
18 |
+
- Image-Classification
|
19 |
+
- Image_feature_extraction
|
20 |
+
- Grad-CAM
|
21 |
+
- XAI-Visualization
|
22 |
+
---
|
23 |
+
|
24 |
+
# Model Card: ROYXAI [Vision Transformer + VGG19 + ResNet50 Ensemble with Grad-CAM]
|
25 |
+
|
26 |
+
## Model Description
|
27 |
+
This model is an ensemble of three deep learning architectures: **Vision Transformer (ViT), VGG19, and ResNet50**. The ensemble approach enhances classification performance on medical image datasets related to ocular diseases. The model also integrates **Grad-CAM** visualization to highlight regions of interest for better interpretability.
|
28 |
+
|
29 |
+
## Model Details
|
30 |
+
- **Model Name**: ROYXAI
|
31 |
+
- **Developed by**: Avishek Roy Sparsho
|
32 |
+
- **Framework**: PyTorch
|
33 |
+
- **Ensemble Method**: Bagging
|
34 |
+
- **Backbone Models**: Vision Transformer, VGG19, ResNet50
|
35 |
+
- **Target Task**: Medical Image Classification
|
36 |
+
- **Supported Classes**:
|
37 |
+
- OT
|
38 |
+
- Healthy
|
39 |
+
- SC_diabetes
|
40 |
+
- SC_cataract
|
41 |
+
- SC_glucoma
|
42 |
+
|
43 |
+
## Dataset
|
44 |
+
- **Dataset Name**: Custom Ocular Disease and its Secondary complications Dataset
|
45 |
+
- **Dataset Source**: Private Dataset (Medical Images)
|
46 |
+
- **Dataset Structure**: Images stored in folders based on class labels
|
47 |
+
- **Preprocessing**:
|
48 |
+
- Resized images to 224x224 pixels
|
49 |
+
- Normalized using ImageNet mean and standard deviation
|
50 |
+
|
51 |
+
## Model Performance
|
52 |
+
- **Accuracy**: 98% on the test dataset
|
53 |
+
- **Precision/Recall/F1-score**: Evaluated and optimized for medical diagnosis
|
54 |
+
- **Overfitting Prevention**: Implemented **data augmentation, dropout, weight regularization**
|
55 |
+
|
56 |
+
## Installation and Usage
|
57 |
+
### Clone the Repository
|
58 |
+
```bash
|
59 |
+
git clone https://huggingface.co/Aviroy/ROYXAI
|
60 |
+
cd ROYXAI
|
61 |
+
```
|
62 |
+
|
63 |
+
### Install Dependencies
|
64 |
+
```bash
|
65 |
+
pip install -r requirements.txt
|
66 |
+
```
|
67 |
+
|
68 |
+
### Training the Model
|
69 |
+
To train the model from scratch, run:
|
70 |
+
```bash
|
71 |
+
python train.py --epochs 50 --batch_size 32
|
72 |
+
```
|
73 |
+
|
74 |
+
### Load Pretrained Model
|
75 |
+
To directly use the trained model:
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
from PIL import Image
|
79 |
+
import torchvision.transforms as transforms
|
80 |
+
from model import ensemble_model # Load the trained ensemble model
|
81 |
+
|
82 |
+
# Define image transformations
|
83 |
+
transform = transforms.Compose([
|
84 |
+
transforms.Resize((224, 224)),
|
85 |
+
transforms.ToTensor(),
|
86 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
87 |
+
])
|
88 |
+
|
89 |
+
# Load and preprocess an image
|
90 |
+
image_path = "path/to/image.jpg"
|
91 |
+
image = Image.open(image_path).convert('RGB')
|
92 |
+
image = transform(image).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu')
|
93 |
+
|
94 |
+
# Perform inference
|
95 |
+
ensemble_model.eval()
|
96 |
+
with torch.no_grad():
|
97 |
+
output = ensemble_model(image)
|
98 |
+
predicted_class = torch.argmax(output, dim=1).item()
|
99 |
+
|
100 |
+
# Print classification result
|
101 |
+
print("Predicted Class:", predicted_class)
|
102 |
+
```
|
103 |
+
|
104 |
+
## Grad-CAM Visualization
|
105 |
+
### Visualizing Attention Maps for Interpretability
|
106 |
+
#### Vision Transformer (ViT)
|
107 |
+
```python
|
108 |
+
from visualization import visualize_gradcam_vit # Function for ViT Grad-CAM
|
109 |
+
|
110 |
+
# Generate Grad-CAM visualization
|
111 |
+
overlay = visualize_gradcam_vit(ensemble_model.models[0], image, target_class=predicted_class)
|
112 |
+
|
113 |
+
# Display the Grad-CAM output
|
114 |
+
import matplotlib.pyplot as plt
|
115 |
+
plt.imshow(overlay)
|
116 |
+
plt.axis('off')
|
117 |
+
plt.title("Grad-CAM for Vision Transformer")
|
118 |
+
plt.show()
|
119 |
+
```
|
120 |
+
|
121 |
+
#### ResNet50
|
122 |
+
```python
|
123 |
+
from visualization import visualize_gradcam # General Grad-CAM function
|
124 |
+
|
125 |
+
# Generate Grad-CAM visualization for ResNet50
|
126 |
+
overlay = visualize_gradcam(ensemble_model.models[2], image, target_class=predicted_class)
|
127 |
+
|
128 |
+
# Display the Grad-CAM output
|
129 |
+
import matplotlib.pyplot as plt
|
130 |
+
plt.imshow(overlay)
|
131 |
+
plt.axis('off')
|
132 |
+
plt.title("Grad-CAM for ResNet50")
|
133 |
+
plt.show()
|
134 |
+
```
|
135 |
+
|
136 |
+
#### VGG19
|
137 |
+
```python
|
138 |
+
from visualization import visualize_gradcam # General Grad-CAM function
|
139 |
+
|
140 |
+
# Generate Grad-CAM visualization for VGG19
|
141 |
+
overlay = visualize_gradcam(ensemble_model.models[1], image, target_class=predicted_class)
|
142 |
+
|
143 |
+
# Display the Grad-CAM output
|
144 |
+
import matplotlib.pyplot as plt
|
145 |
+
plt.imshow(overlay)
|
146 |
+
plt.axis('off')
|
147 |
+
plt.title("Grad-CAM for VGG19")
|
148 |
+
plt.show()
|
149 |
+
```
|
150 |
+
|
151 |
+
## Training Configuration
|
152 |
+
- **Optimizer**: Adam with weight decay
|
153 |
+
- **Learning Rate Scheduler**: Cosine Annealing LR
|
154 |
+
- **Loss Function**: Cross-Entropy Loss
|
155 |
+
- **Batch Size**: 32
|
156 |
+
- **Training Epochs**: 20
|
157 |
+
- **Hardware Used**: T4 GPU x2 ,M1chip ,GPU P100
|
158 |
+
|
159 |
+
## Limitations & Considerations
|
160 |
+
- This model is trained on a specific dataset and may not generalize well to other medical image datasets without fine-tuning.
|
161 |
+
- It is **not a substitute for professional medical diagnosis**.
|
162 |
+
- The Vision Transformer model is computationally expensive compared to CNNs.
|
163 |
+
|
164 |
+
## Citation
|
165 |
+
If you use this model in your research, please cite:
|
166 |
+
```
|
167 |
+
@article{Sparsho2025,
|
168 |
+
author = {Avishek Roy Sparsho},
|
169 |
+
title = {ROYXAI Model For Proper Visualization of Classified Medical Image},
|
170 |
+
journal = {Medical AI Research},
|
171 |
+
year = {2025}
|
172 |
+
}
|
173 |
+
```
|
174 |
+
|
175 |
+
## Acknowledgments
|
176 |
+
Special thanks to the open-source community and Kaggle for providing medical datasets for deep learning research.
|
177 |
+
|
178 |
+
## License
|
179 |
+
This model is released under the **Apache 2.0 License**. Use it responsibly.
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|